Artykuły w czasopismach na temat „Non-canonical initiation codon”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 38 najlepszych artykułów w czasopismach naukowych na temat „Non-canonical initiation codon”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Firth, Andrew E., and Ian Brierley. "Non-canonical translation in RNA viruses." Journal of General Virology 93, no. 7 (2012): 1385–409. http://dx.doi.org/10.1099/vir.0.042499-0.
Pełny tekst źródłaPrasad, Sharanya, Shelley Starck, and Nilabh Shastri. "Presentation of cryptic peptides by MHC I molecules is enhanced by inflammatory stimuli. (P5003)." Journal of Immunology 190, no. 1_Supplement (2013): 110.2. http://dx.doi.org/10.4049/jimmunol.190.supp.110.2.
Pełny tekst źródłaColdwell, Mark J., Ulrike Sack, Joanne L. Cowan, et al. "Multiple isoforms of the translation initiation factor eIF4GII are generated via use of alternative promoters, splice sites and a non-canonical initiation codon." Biochemical Journal 448, no. 1 (2012): 1–11. http://dx.doi.org/10.1042/bj20111765.
Pełny tekst źródłaGraça, Rafael, Rafael Fernandes, Ana Catarina Alves, Juliane Menezes, Luísa Romão, and Mafalda Bourbon. "Characterization of Two Variants at Met 1 of the Human LDLR Gene Encoding the Same Amino Acid but Causing Different Functional Phenotypes." Biomedicines 9, no. 9 (2021): 1219. http://dx.doi.org/10.3390/biomedicines9091219.
Pełny tekst źródłaGao, Fei, Maria Wesolowska, Reuven Agami, et al. "Using mitoribosomal profiling to investigate human mitochondrial translation." Wellcome Open Research 2 (December 11, 2017): 116. http://dx.doi.org/10.12688/wellcomeopenres.13119.1.
Pełny tekst źródłaGao, Fei, Maria Wesolowska, Reuven Agami, et al. "Using mitoribosomal profiling to investigate human mitochondrial translation." Wellcome Open Research 2 (January 29, 2018): 116. http://dx.doi.org/10.12688/wellcomeopenres.13119.2.
Pełny tekst źródłaFecher-Trost, Claudia, Ulrich Wissenbach, Andreas Beck, et al. "The in Vivo TRPV6 Protein Starts at a Non-AUG Triplet, Decoded as Methionine, Upstream of Canonical Initiation at AUG." Journal of Biological Chemistry 288, no. 23 (2013): 16629–44. http://dx.doi.org/10.1074/jbc.m113.469726.
Pełny tekst źródłaJewett, Mollie W., Sunny Jain, Angelika K. Linowski, Amit Sarkar, and Patricia A. Rosa. "Molecular characterization of the Borrelia burgdorferi in vivo-essential protein PncA." Microbiology 157, no. 10 (2011): 2831–40. http://dx.doi.org/10.1099/mic.0.051706-0.
Pełny tekst źródłaPaudel, Dinesh Babu, and Hélène Sanfaçon. "Mapping of sequences in the 5’ region and 3’ UTR of tomato ringspot virus RNA2 that facilitate cap-independent translation of reporter transcripts in vitro." PLOS ONE 16, no. 4 (2021): e0249928. http://dx.doi.org/10.1371/journal.pone.0249928.
Pełny tekst źródłaAlekhina, Olga, Ilya Terenin, Sergey Dmitriev, and Konstantin Vassilenko. "Functional Cyclization of Eukaryotic mRNAs." International Journal of Molecular Sciences 21, no. 5 (2020): 1677. http://dx.doi.org/10.3390/ijms21051677.
Pełny tekst źródłaRahman, M. Sayeedur, Jason A. Simser, Kevin R. Macaluso, and Abdu F. Azad. "Functional analysis of secA homologues from rickettsiae." Microbiology 151, no. 2 (2005): 589–96. http://dx.doi.org/10.1099/mic.0.27556-0.
Pełny tekst źródłaTruniger, Verónica, Giuliano Sting Pechar, and Miguel A. Aranda. "Advances in Understanding the Mechanism of Cap-Independent Cucurbit Aphid-Borne Yellows Virus Protein Synthesis." International Journal of Molecular Sciences 24, no. 24 (2023): 17598. http://dx.doi.org/10.3390/ijms242417598.
Pełny tekst źródłaWu, Yu, Jianling Xie, Xin Jin, et al. "eEF2K enhances expression of PD-L1 by promoting the translation of its mRNA." Biochemical Journal 477, no. 22 (2020): 4367–81. http://dx.doi.org/10.1042/bcj20200697.
Pełny tekst źródłaStarck, Shelley R., Vivian Jiang, Mariana Pavon-Eternod, et al. "Leucine-tRNA Initiates at CUG Start Codons for Protein Synthesis and Presentation by MHC Class I." Science 336, no. 6089 (2012): 1719–23. http://dx.doi.org/10.1126/science.1220270.
Pełny tekst źródłaPan, Bingchen, Bowen Zheng, Chengzhong Xing, and Jingwei Liu. "Non-Canonical Programmed Cell Death in Colon Cancer." Cancers 14, no. 14 (2022): 3309. http://dx.doi.org/10.3390/cancers14143309.
Pełny tekst źródłaMeinnel, T., C. Sacerdot, M. Graffe, S. Blanquet, and M. Springer. "Discrimination by Escherichia coli initiation factor IF3 against initiation on non-canonical codons relies on complementarity rules." Journal of Molecular Biology 290, no. 4 (1999): 825–37. http://dx.doi.org/10.1006/jmbi.1999.2881.
Pełny tekst źródłaCastelli, Lydia M., Wan-Ping Huang, Ya-Hui Lin, Kung-Yao Chang, and Guillaume M. Hautbergue. "Mechanisms of repeat-associated non-AUG translation in neurological microsatellite expansion disorders." Biochemical Society Transactions 49, no. 2 (2021): 775–92. http://dx.doi.org/10.1042/bst20200690.
Pełny tekst źródłaMonteuuis, Geoffray, Anna Miścicka, Michał Świrski, et al. "Non-canonical translation initiation in yeast generates a cryptic pool of mitochondrial proteins." Nucleic Acids Research 47, no. 11 (2019): 5777–91. http://dx.doi.org/10.1093/nar/gkz301.
Pełny tekst źródłaBaudet, Mathieu, Philippe Ortet, Jean-Charles Gaillard, et al. "Proteomics-based Refinement ofDeinococcus desertiGenome Annotation Reveals an Unwonted Use of Non-canonical Translation Initiation Codons." Molecular & Cellular Proteomics 9, no. 2 (2009): 415–26. http://dx.doi.org/10.1074/mcp.m900359-mcp200.
Pełny tekst źródłaSchmitz, J. "Non-canonical translation mechanisms in plants: efficient in vitro and in planta initiation at AUU codons of the tobacco mosaic virus enhancer sequence." Nucleic Acids Research 24, no. 2 (1996): 257–63. http://dx.doi.org/10.1093/nar/24.2.257.
Pełny tekst źródłaSikandar, Shaheen, Diana Dizon, Xiling Shen, Zuomei Li, Jeffery Besterman, and Steven M. Lipkin. "The Class I Hdac Inhibitor Mgcd0103 Induces Cell Cycle Arrest and Apoptosis in Colon Cancer Initiating Cells by Upregulating Dickkopf-1 and Non-Canonical Wnt Signaling." Oncotarget 1, no. 7 (2010): 596–605. http://dx.doi.org/10.18632/oncotarget.194.
Pełny tekst źródłaSlack, Jeffrey, Christopher Nguyen, and Amanda Ibe-Enwo. "A Lac Repressor-Inducible Baculovirus Expression Vector for Controlling Adeno-Associated Virus Capsid Ratios." Viruses 16, no. 1 (2023): 51. http://dx.doi.org/10.3390/v16010051.
Pełny tekst źródłaLin, Kangyu, and John Paul Shen. "Abstract 6066: Elucidating cancer stem cells heterogeneity in colorectal cancer by single-cell RNA sequencing." Cancer Research 82, no. 12_Supplement (2022): 6066. http://dx.doi.org/10.1158/1538-7445.am2022-6066.
Pełny tekst źródłaPrice, Lauren E., Abigail B. Loewen Faul, Aleksandra Vuchkovska, et al. "Molecular Genetic Analysis of Rbm45/Drbp1: Genomic Structure, Expression, and Evolution." Journal of Student Research 7, no. 2 (2019): 49–61. http://dx.doi.org/10.47611/jsr.v7i2.426.
Pełny tekst źródłaSaks, Margaret E., John Oh, Austin C. Deets, George M. Mastorakos, and Susan Anne Martinis. "Translational Regulation of Gene Expression in Mycobacterium: A Means for Coordinating the Expression of Functionally Related Proteins." FASEB Journal 31, S1 (2017). http://dx.doi.org/10.1096/fasebj.31.1_supplement.759.7.
Pełny tekst źródłaAndreev, Dmitry E., Gary Loughran, Alla D. Fedorova, Maria S. Mikhaylova, Ivan N. Shatsky, and Pavel V. Baranov. "Non-AUG translation initiation in mammals." Genome Biology 23, no. 1 (2022). http://dx.doi.org/10.1186/s13059-022-02674-2.
Pełny tekst źródłaLee, Byeong Sung, Woon Jong Choi, Sang Woo Lee, Byoung Joon Ko, and Tae Hyeon Yoo. "Towards Engineering an Orthogonal Protein Translation Initiation System." Frontiers in Chemistry 9 (October 26, 2021). http://dx.doi.org/10.3389/fchem.2021.772648.
Pełny tekst źródłaAyyub, Shreya Ahana, Divya Dobriyal, and Umesh Varshney. "Contributions of the N- and C-Terminal Domains of Initiation Factor 3 to Its Functions in the Fidelity of Initiation and Antiassociation of the Ribosomal Subunits." Journal of Bacteriology 199, no. 11 (2017). http://dx.doi.org/10.1128/jb.00051-17.
Pełny tekst źródłaGrove, Daisy J., Paul J. Russell, and Michael G. Kearse. "To initiate or not to initiate: A critical assessment of eIF2A, eIF2D, and MCT‐1·DENR to deliver initiator tRNA to ribosomes." WIREs RNA 15, no. 2 (2024). http://dx.doi.org/10.1002/wrna.1833.
Pełny tekst źródłaMiścicka, Anna, Kristen Lu, Irina S. Abaeva, Tatyana V. Pestova, and Christopher U. T. Hellen. "Initiation of translation on nedicistrovirus and related intergenic region IRESs by their factor-independent binding to the P site of 80S ribosomes." RNA, April 11, 2023, rna.079599.123. http://dx.doi.org/10.1261/rna.079599.123.
Pełny tekst źródłaSonobe, Yoshifumi, Jihad Aburas, Gopinath Krishnan, et al. "A C. elegans model of C9orf72-associated ALS/FTD uncovers a conserved role for eIF2D in RAN translation." Nature Communications 12, no. 1 (2021). http://dx.doi.org/10.1038/s41467-021-26303-x.
Pełny tekst źródłaHuntzinger, Eric, Jordan Sinteff, Bastien Morlet, and Bertrand Séraphin. "HELZ2: a new, interferon-regulated, human 3′-5′ exoribonuclease of the RNB family is expressed from a non-canonical initiation codon." Nucleic Acids Research, August 21, 2023. http://dx.doi.org/10.1093/nar/gkad673.
Pełny tekst źródłaAlghoul, Fatima, Schaeffer Laure, Gilbert Eriani, and Franck Martin. "Translation inhibitory elements from Hoxa3 and Hoxa11 mRNAs use uORFs for translation inhibition." eLife 10 (June 2, 2021). http://dx.doi.org/10.7554/elife.66369.
Pełny tekst źródłaZhang, Yanchao, Tom S. Bailey, Philip Hittmeyer, Ludwig J. Dubois, Jan Theys, and Philippe Lambin. "Multiplex genetic manipulations in Clostridium butyricum and Clostridium sporogenes to secrete recombinant antigen proteins for oral-spore vaccination." Microbial Cell Factories 23, no. 1 (2024). http://dx.doi.org/10.1186/s12934-024-02389-y.
Pełny tekst źródłaSingh, Jitendra, Rishi Kumar Mishra, Shreya Ahana Ayyub, Tanweer Hussain, and Umesh Varshney. "The initiation factor 3 (IF3) residues interacting with initiator tRNA elbow modulate the fidelity of translation initiation and growth fitness in Escherichia coli." Nucleic Acids Research, November 18, 2022. http://dx.doi.org/10.1093/nar/gkac1053.
Pełny tekst źródłaSonobe, Yoshifumi, Soojin Lee, Gopinath Krishnan, et al. "Translation of dipeptide repeat proteins in C9ORF72 ALS/FTD through unique and redundant AUG initiation codons." eLife 12 (September 7, 2023). http://dx.doi.org/10.7554/elife.83189.
Pełny tekst źródłaKienzle, Laura, Stefano Bettinazzi, Thierry Choquette, et al. "A small protein coded within the mitochondrial canonical gene nd4 regulates mitochondrial bioenergetics." BMC Biology 21, no. 1 (2023). http://dx.doi.org/10.1186/s12915-023-01609-y.
Pełny tekst źródłaRodriguez, Jose Manuel, Federico Abascal, Daniel Cerdán-Vélez, Laura Martínez Gómez, Jesús Vázquez, and Michael L. Tress. "Evidence for widespread translation of 5′ untranslated regions." Nucleic Acids Research, July 2, 2024. http://dx.doi.org/10.1093/nar/gkae571.
Pełny tekst źródła