Gotowa bibliografia na temat „Noisy-OR model”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Noisy-OR model”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Noisy-OR model"
Quintanar-Gago, David A., i Pamela F. Nelson. "The extended Recursive Noisy OR model: Static and dynamic considerations". International Journal of Approximate Reasoning 139 (grudzień 2021): 185–200. http://dx.doi.org/10.1016/j.ijar.2021.09.013.
Pełny tekst źródłaZhou, Kuang, Arnaud Martin i Quan Pan. "The Belief Noisy-OR Model Applied to Network Reliability Analysis". International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 24, nr 06 (30.11.2016): 937–60. http://dx.doi.org/10.1142/s0218488516500434.
Pełny tekst źródłaLi, W., P. Poupart i P. Van Beek. "Exploiting Structure in Weighted Model Counting Approaches to Probabilistic Inference". Journal of Artificial Intelligence Research 40 (19.04.2011): 729–65. http://dx.doi.org/10.1613/jair.3232.
Pełny tekst źródłaBüttner, Martha, Lisa Schneider, Aleksander Krasowski, Joachim Krois, Ben Feldberg i Falk Schwendicke. "Impact of Noisy Labels on Dental Deep Learning—Calculus Detection on Bitewing Radiographs". Journal of Clinical Medicine 12, nr 9 (23.04.2023): 3058. http://dx.doi.org/10.3390/jcm12093058.
Pełny tekst źródłaShang, Yuming, He-Yan Huang, Xian-Ling Mao, Xin Sun i Wei Wei. "Are Noisy Sentences Useless for Distant Supervised Relation Extraction?" Proceedings of the AAAI Conference on Artificial Intelligence 34, nr 05 (3.04.2020): 8799–806. http://dx.doi.org/10.1609/aaai.v34i05.6407.
Pełny tekst źródłaZheng, Guoqing, Ahmed Hassan Awadallah i Susan Dumais. "Meta Label Correction for Noisy Label Learning". Proceedings of the AAAI Conference on Artificial Intelligence 35, nr 12 (18.05.2021): 11053–61. http://dx.doi.org/10.1609/aaai.v35i12.17319.
Pełny tekst źródłaMaeda, Shin-ichi, Wen-Jie Song i Shin Ishii. "Nonlinear and Noisy Extension of Independent Component Analysis: Theory and Its Application to a Pitch Sensation Model". Neural Computation 17, nr 1 (1.01.2005): 115–44. http://dx.doi.org/10.1162/0899766052530866.
Pełny tekst źródłaZhan, Peida, Hong Jiao, Kaiwen Man i Lijun Wang. "Using JAGS for Bayesian Cognitive Diagnosis Modeling: A Tutorial". Journal of Educational and Behavioral Statistics 44, nr 4 (10.02.2019): 473–503. http://dx.doi.org/10.3102/1076998619826040.
Pełny tekst źródłaHong, Zhiwei, Xiaocheng Fan, Tao Jiang i Jianxing Feng. "End-to-End Unpaired Image Denoising with Conditional Adversarial Networks". Proceedings of the AAAI Conference on Artificial Intelligence 34, nr 04 (3.04.2020): 4140–49. http://dx.doi.org/10.1609/aaai.v34i04.5834.
Pełny tekst źródłaKağan Akkaya, Emre, i Burcu Can. "Transfer learning for Turkish named entity recognition on noisy text". Natural Language Engineering 27, nr 1 (28.01.2020): 35–64. http://dx.doi.org/10.1017/s1351324919000627.
Pełny tekst źródłaRozprawy doktorskie na temat "Noisy-OR model"
Li, Wei. "Exploiting Structure in Backtracking Algorithms for Propositional and Probabilistic Reasoning". Thesis, 2010. http://hdl.handle.net/10012/5322.
Pełny tekst źródłaKsiążki na temat "Noisy-OR model"
Back, Kerry E. Rational Expectations Equilibria. Oxford University Press, 2017. http://dx.doi.org/10.1093/acprof:oso/9780190241148.003.0022.
Pełny tekst źródłaPortillo, Rafael, Filiz Unsal, Stephen O’Connell i Catherine Pattillo. Implementation Errors and Incomplete Information. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198785811.003.0009.
Pełny tekst źródłaGolan, Amos. Foundations of Info-Metrics. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780199349524.001.0001.
Pełny tekst źródłaCzęści książek na temat "Noisy-OR model"
Woudenberg, Steven P. D., i Linda C. van der Gaag. "Using the Noisy-OR Model Can Be Harmful … But It Often Is Not". W Lecture Notes in Computer Science, 122–33. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22152-1_11.
Pełny tekst źródłaBolt, Janneke H., i Linda C. van der Gaag. "An Empirical Study of the Use of the Noisy-Or Model in a Real-Life Bayesian Network". W Communications in Computer and Information Science, 11–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14055-6_2.
Pełny tekst źródłaGuan, Ji, Wang Fang i Mingsheng Ying. "Verifying Fairness in Quantum Machine Learning". W Computer Aided Verification, 408–29. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-13188-2_20.
Pełny tekst źródłaCohen, Albert, Wolfgang Dahmen i Ron DeVore. "State Estimation—The Role of Reduced Models". W SEMA SIMAI Springer Series, 57–77. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-86236-7_4.
Pełny tekst źródłaSalotti, Jean Marc. "Noisy-or Nodes for Conditioning Models". W From Animals to Animats 11, 458–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15193-4_43.
Pełny tekst źródłaWalrand, Jean. "Speech Recognition: A". W Probability in Electrical Engineering and Computer Science, 205–15. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-49995-2_11.
Pełny tekst źródłaKoltai, Júlia, Zoltán Kmetty i Károly Bozsonyi. "From Durkheim to Machine Learning: Finding the Relevant Sociological Content in Depression and Suicide-Related Social Media Discourses". W Pathways Between Social Science and Computational Social Science, 237–58. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-54936-7_11.
Pełny tekst źródłaSrinivas, Sampath. "A Generalization of the Noisy-Or Model". W Uncertainty in Artificial Intelligence, 208–15. Elsevier, 1993. http://dx.doi.org/10.1016/b978-1-4832-1451-1.50030-5.
Pełny tekst źródłaBusemeyer, Marius R., i Julian L. Garritzmann. "Loud, Noisy, or Quiet Politics?" W The World Politics of Social Investment: Volume II, 59–85. Oxford University Press, 2022. http://dx.doi.org/10.1093/oso/9780197601457.003.0003.
Pełny tekst źródłaRodgers, Waymond. "The Expedient Algorithmic Pathway". W Dominant Algorithms to Evaluate Artificial Intelligence: From the view of Throughput Model, 96–129. BENTHAM SCIENCE PUBLISHERS, 2022. http://dx.doi.org/10.2174/9789815049541122010006.
Pełny tekst źródłaStreszczenia konferencji na temat "Noisy-OR model"
Nagesh, Ajay, Gholamreza Haffari i Ganesh Ramakrishnan. "Noisy Or-based model for Relation Extraction using Distant Supervision". W Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Stroudsburg, PA, USA: Association for Computational Linguistics, 2014. http://dx.doi.org/10.3115/v1/d14-1208.
Pełny tekst źródłaRamakrishnan, Ganesh, Krishna Prasad Chitrapura, Raghu Krishnapuram i Pushpak Bhattacharyya. "A model for handling approximate, noisy or incomplete labeling in text classification". W the 22nd international conference. New York, New York, USA: ACM Press, 2005. http://dx.doi.org/10.1145/1102351.1102437.
Pełny tekst źródłaYongjian Hu, Yunfei Zhou, Xuefei Jiang, Zhihuai Xiao i Zhaohui Sun. "Study of Hydropower Units Fault Diagnosis based on Bayesian Network Noisy Or Model". W 2014 ISFMFE - 6th International Symposium on Fluid Machinery and Fluid Engineering. Institution of Engineering and Technology, 2014. http://dx.doi.org/10.1049/cp.2014.1132.
Pełny tekst źródłaLi, Zhaohui, Xiaogang Wang, Wan Qiu i Dongxin Shi. "Research on Intelligent Traditional Chinese Medicine Prescription Model Based on Noisy-or Bayesian Network". W 2020 International Conference on Culture-oriented Science & Technology (ICCST). IEEE, 2020. http://dx.doi.org/10.1109/iccst50977.2020.00100.
Pełny tekst źródłaPan, Weiran, Wei Wei i Feida Zhu. "Automatic Noisy Label Correction for Fine-Grained Entity Typing". W Thirty-First International Joint Conference on Artificial Intelligence {IJCAI-22}. California: International Joint Conferences on Artificial Intelligence Organization, 2022. http://dx.doi.org/10.24963/ijcai.2022/599.
Pełny tekst źródłaPark, Jun H., i N. Sri Namachchivaya. "Noisy Impact Oscillators". W ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-60861.
Pełny tekst źródłaAsl, Sajjad Fekri, Michael Athans i Antonio Pascoal. "Estimation and Identification of Mass-Spring-Dashpot Systems Using Multiple-Model Adaptive Algorithms". W ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-33442.
Pełny tekst źródłaWu, Junshuang, Richong Zhang, Yongyi Mao, Hongyu Guo i Jinpeng Huai. "Modeling Noisy Hierarchical Types in Fine-Grained Entity Typing: A Content-Based Weighting Approach". W Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/731.
Pełny tekst źródłaWong, Harry W. H., Jack P. K. Ma, Donald P. H. Wong, Lucien K. L. Ng i Sherman S. M. Chow. "Learning Model with Error -- Exposing the Hidden Model of BAYHENN". W Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/488.
Pełny tekst źródłaChoi, Seunggil, i N. Sri Namachchivaya. "An Averaging Approach for Noisy Strongly Nonlinear Periodically Forced Systems". W ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-39384.
Pełny tekst źródła