Gotowa bibliografia na temat „Noble Metal Nanoparticle - Biomedical Applications”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Noble Metal Nanoparticle - Biomedical Applications”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Noble Metal Nanoparticle - Biomedical Applications"
Sanchez, Laura M., i Vera A. Alvarez. "Advances in Magnetic Noble Metal/Iron-Based Oxide Hybrid Nanoparticles as Biomedical Devices". Bioengineering 6, nr 3 (28.08.2019): 75. http://dx.doi.org/10.3390/bioengineering6030075.
Pełny tekst źródłaConde, João, Gonçalo Doria i Pedro Baptista. "Noble Metal Nanoparticles Applications in Cancer". Journal of Drug Delivery 2012 (5.10.2012): 1–12. http://dx.doi.org/10.1155/2012/751075.
Pełny tekst źródłaAzharuddin, Mohammad, Geyunjian H. Zhu, Debapratim Das, Erdogan Ozgur, Lokman Uzun, Anthony P. F. Turner i Hirak K. Patra. "A repertoire of biomedical applications of noble metal nanoparticles". Chemical Communications 55, nr 49 (2019): 6964–96. http://dx.doi.org/10.1039/c9cc01741k.
Pełny tekst źródłaPandey, Prem C., i Govind Pandey. "Synthesis and characterization of bimetallic noble metal nanoparticles for biomedical applications". MRS Advances 1, nr 11 (2016): 681–91. http://dx.doi.org/10.1557/adv.2016.47.
Pełny tekst źródłaXu, Jing, Chuanqi Peng, Mengxiao Yu i Jie Zheng. "Renal clearable noble metal nanoparticles: photoluminescence, elimination, and biomedical applications". Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 9, nr 5 (10.01.2017): e1453. http://dx.doi.org/10.1002/wnan.1453.
Pełny tekst źródłaDehghan Banadaki, Arash, i Amir Kajbafvala. "Recent Advances in Facile Synthesis of Bimetallic Nanostructures: An Overview". Journal of Nanomaterials 2014 (2014): 1–28. http://dx.doi.org/10.1155/2014/985948.
Pełny tekst źródłaFernandez, Carlos A., i Chien W. Wai. "A Simple and Rapid Method of Making 2D and 3D Arrays of Gold Nanoparticles". Journal of Nanoscience and Nanotechnology 6, nr 3 (1.03.2006): 669–74. http://dx.doi.org/10.1166/jnn.2006.120.
Pełny tekst źródłaSaivarshine S, Keerthi Sasanka L, Gayathri R i Dhanraj Ganapathy. "Awareness of Silver Nanoparticles and its Biomedical Applications among Undergraduate Dental and Medical Students - A Survey". International Journal of Research in Pharmaceutical Sciences 11, SPL3 (9.09.2020): 140–44. http://dx.doi.org/10.26452/ijrps.v11ispl3.2904.
Pełny tekst źródłaTran, Hung-Vu, Nhat M. Ngo, Riddhiman Medhi, Pannaree Srinoi, Tingting Liu, Supparesk Rittikulsittichai i T. Randall Lee. "Multifunctional Iron Oxide Magnetic Nanoparticles for Biomedical Applications: A Review". Materials 15, nr 2 (10.01.2022): 503. http://dx.doi.org/10.3390/ma15020503.
Pełny tekst źródłaYang, Xu, Wu, Fang, Zhong, Wang, Bu i Yuan. "Atomic Force Microscope Guided SERS Spectra Observation for Au@Ag-4MBA@PVP Plasmonic Nanoparticles". Molecules 24, nr 20 (21.10.2019): 3789. http://dx.doi.org/10.3390/molecules24203789.
Pełny tekst źródłaRozprawy doktorskie na temat "Noble Metal Nanoparticle - Biomedical Applications"
Choi, Sungmoon. "Fluorescent noble metal nanodots for biological applications". Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/37195.
Pełny tekst źródłaRoth, Kristina L. "Development of Metal-based Nanomaterials for Biomedical Applications". Diss., Virginia Tech, 2017. http://hdl.handle.net/10919/85365.
Pełny tekst źródłaPh. D.
Vadala, Michael Lawrence. "Preparation and Functionalization of Macromolecule-Metal and Metal Oxide Nanocomplexes for Biomedical Applications". Diss., Virginia Tech, 2006. http://hdl.handle.net/10919/27098.
Pełny tekst źródłaPh. D.
AMICI, JULIA GINETTE NICOLE. "Preparation and characterization of metallic and metal oxide nanoparticles for biomedical applications". Doctoral thesis, Politecnico di Torino, 2013. http://hdl.handle.net/11583/2511697.
Pełny tekst źródłaPorret, Estelle. "Applications des nanoclusters de métaux nobles pour lediagnostic et la thérapie ciblée du cancer Hydrophobicity of Gold Nanoclusters Influences Their Interactions with Biological Barriers Metal nanoclusters for biomedical applications : toward in vivo studies". Thesis, Université Grenoble Alpes (ComUE), 2019. https://thares.univ-grenoble-alpes.fr/2019GREAV034.pdf.
Pełny tekst źródłaGold nanoparticles (Au NPs) have shown promising results in nanomedicine applied to oncology. They are capable of accumulating in tumor areas, inducing a therapeutic effect by delivering drugs or a photo-/radiotherapeutic effect thanks to their energy absorption properties. They also allow diagnosis by different imaging techniques. This dual activity defines them as theranostic agents. Gold nanoclusters (Au NCs) define an interesting sub-family of Au NPs. They are composed of about ten to hundred gold atoms stabilized by organic molecules. Their size smaller than ~8 nm allows them to be eliminated by the kidneys and to exhibit photoluminescence (PL) properties until infrared wavelengths, which are suitable for in vivo optical imaging. They can also induce cell death under irradiation due to the intrinsic properties of gold. Their optical features, pharmaco-kinetic and tumor accumulation are highly sensitive to size and surface chemistry modification. Currently, preclinical results are not sufficient for clinical transfer and it is necessary to improve the characterization of Au NCs and to study their behaviour in vitro and in vivo.In this context, my thesis project focused on the functionalization of Au NCs in order to improve their accumulation in tumors. The first strategy is based on the self-aggregation of Au NCs in the tumor microenvironment. For this purpose, the surface of the Au NCs was either functionalized with i) molecules promoting bioorthogonal click chemistry reactions, or ii) complementary oligonucleotides that can hybridize. The self-aggregation of Au NCs in solution confirmed the increase in PL by inter-particle energy transfer. The self-agregation of Au NCs could potentially improve the therapeutic effect, but the Au NCs still need to be characterized in vivo. The second strategy consisted in increasing the affinity of Au NCs for cells by adding controlled amounts of arginine on their surface. Indeed, arginine is known to promote electrostatic interaction with plasma membranes and cellular internalization. We have determined the maximum arginine threshold per Au NCs, allowing to increase the PL while keeping their small size with high colloidal stability. The best candidates have a high capacity for electrostatic interaction with artificial membranes even in the presence of serum, suggesting that the opsonization of Au NCs is low. Their interaction (< 5min) and internalization (<30 min) capacities are rapid, and have been confirmed on human melanoma cells in vitro, without significant toxicity. However, according to a study on irradiated spheroids performed in our team, the addition of arginines would have a "trapping" effect on the production of reactive oxygen species, reducing the radiosensitizing power of Au NCs. The presence of positive charges on Au NCs containing arginines and their internalization capacity also can serve in vitro to deliver anionic polymers and biomolecules such as siRNA. However, these Au NCs administered intravenously to tumor-bearing mice are eliminated extremely rapidly by the kidneys, thus reducing their ability to accumulate in tumors. This work showed that the functionalization of Au NCs strongly influences their optical and physicochemical properties, their interactions with cells and their theranostic effects. It would be interesting to apply these strategies to Au NCs circulating longer in the blood to demonstrate the effect of these functionalizations on tumor diagnostics and therapy
Części książek na temat "Noble Metal Nanoparticle - Biomedical Applications"
Sabui, Piyali, Sadhucharan Mallick i Adhish Jaiswal. "Synthesis and Biomedical Application of Coinage-Metal Nanoparticle and Their Composite". W Synthesis and Applications of Nanomaterials and Nanocomposites, 147–70. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1350-3_6.
Pełny tekst źródłaFilipović, Nenad, Nina Tomić, Maja Kuzmanović i Magdalena M. Stevanović. "Nanoparticles. Potential for Use to Prevent Infections". W Urinary Stents, 325–39. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-04484-7_26.
Pełny tekst źródłaZhang, Zhenjiang, i Ping-Chang Lin. "Noble metal nanoparticles: synthesis, and biomedical implementations". W Emerging Applications of Nanoparticles and Architecture Nanostructures, 177–233. Elsevier, 2018. http://dx.doi.org/10.1016/b978-0-323-51254-1.00007-5.
Pełny tekst źródłaFabris, Laura. "Noble Metal Nanoparticles as SERS Tags: Fundamentals and Biomedical Applications". W The World Scientific Encyclopedia of Nanomedicine and Bioengineering I, 67–101. WORLD SCIENTIFIC, 2016. http://dx.doi.org/10.1142/9789813202504_0003.
Pełny tekst źródłaMarson, Domenico, Ye Yang, Stefan Guldin i Paola Posocco. "Noble metal nanoparticles with anisotropy in shape and surface functionality for biomedical applications". W Anisotropic Particle Assemblies, 313–33. Elsevier, 2018. http://dx.doi.org/10.1016/b978-0-12-804069-0.00011-3.
Pełny tekst źródłaNasrollahzadeh, Mahmoud, Nayyereh Sadat Soheili Bidgoli, Fahimeh Soleimani, Nasrin Shafiei, Zahra Nezafat i Talat Baran. "Biomedical applications of biopolymer-based (nano)materials". W Biopolymer-Based Metal Nanoparticle Chemistry for Sustainable Applications, 189–332. Elsevier, 2021. http://dx.doi.org/10.1016/b978-0-323-89970-3.00005-6.
Pełny tekst źródłaRivera, V. A. G., F. A. Ferri i E. Marega. "Localized Surface Plasmon Resonances: Noble Metal Nanoparticle Interaction with Rare-Earth Ions". W Plasmonics - Principles and Applications. InTech, 2012. http://dx.doi.org/10.5772/50753.
Pełny tekst źródłaN. Moholkar, Disha, Darshana V. Havaldar, Rachana S. Potadar i Kiran D. Pawar. "Optimization of Biogenic Synthesis of Colloidal Metal Nanoparticles". W Colloids - Types, Preparation and Applications [Working Title]. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.94853.
Pełny tekst źródłaAlexis S.P. Tubalinal, Gabriel, Leonard Paulo G. Lucero, Jim Andreus V. Mangahas, Marvin A. Villanueva i Claro N. Mingala. "Application of Noble Metals in the Advances in Animal Disease Diagnostics". W Noble Metals and Intermetallic Compounds - Recent Advanced Studies and Applications [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.99162.
Pełny tekst źródłaEddy, Nnabuk Okon, i Rajni Garg. "CaO Nanoparticles". W Handbook of Research on Green Synthesis and Applications of Nanomaterials, 247–68. IGI Global, 2022. http://dx.doi.org/10.4018/978-1-7998-8936-6.ch011.
Pełny tekst źródłaStreszczenia konferencji na temat "Noble Metal Nanoparticle - Biomedical Applications"
Kulah, Jonathan, i Ahmet Aykaç. "Synthesis and Characterization of Graphene Quantum Dots Functionalized Silver Nanoparticle from Moringa Oleifera Extracts". W 6th International Students Science Congress. Izmir International Guest Student Association, 2022. http://dx.doi.org/10.52460/issc.2022.050.
Pełny tekst źródłaInya-Agha, Obianuju, Robert J. Forster i Tia E. Keyes. "Noninvasive noble metal nanoparticle arrays for surface-enhanced Raman spectroscopy of proteins". W Biomedical Optics (BiOS) 2007, redaktorzy Tuan Vo-Dinh i Joseph R. Lakowicz. SPIE, 2007. http://dx.doi.org/10.1117/12.725068.
Pełny tekst źródłaSheridan, Eoin, Obianuju Inya-Agha, Tia Keyes i Robert Forster. "Electrodeposited noble metal SERS: control of single nanoparticle size and control of array interparticle spacing". W Biomedical Optics (BiOS) 2007, redaktorzy Tuan Vo-Dinh i Joseph R. Lakowicz. SPIE, 2007. http://dx.doi.org/10.1117/12.725069.
Pełny tekst źródłaLapin, I. N., i V. A. Svetlichnyi. "Synthesis of noble metals nanoparticles in water by laser ablation method for biomedical applications and cosmetology". W 2012 IEEE 11th International Conference on Actual Problems of Electronics Instrument Engineering (APEIE). IEEE, 2012. http://dx.doi.org/10.1109/apeie.2012.6629029.
Pełny tekst źródłaNedyalkov, N. N., Ru G. Nikov i P. A. Atanasov. "Near field intensity enhancement and localization in noble metal nanoparticle ensembles". W Seventeenth International School on Quantum Electronics: Laser Physics and Applications, redaktorzy Tanja N. Dreischuh i Albena T. Daskalova. SPIE, 2013. http://dx.doi.org/10.1117/12.2013200.
Pełny tekst źródłaMayavan, S., N. R. Choudhury i N. K. Dutta. "Polymer stabilized noble metal colloids for catalytic and biomedical applications". W Smart Materials, Nano-and Micro-Smart Systems, redaktorzy Nicolas H. Voelcker i Helmut W. Thissen. SPIE, 2008. http://dx.doi.org/10.1117/12.810659.
Pełny tekst źródłaBrown, Paige K., Ammar T. Qureshi, Daniel J. Hayes i W. Todd Monroe. "Targeted Gene Silencing With Light and a Silver Nanoparticle Antisense Delivery System". W ASME 2011 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2011. http://dx.doi.org/10.1115/sbc2011-53647.
Pełny tekst źródłaBayazitoglu, Yildiz. "Nanoshell Assisted Cancer Therapy: Numerical Simulations". W ASME 2009 Second International Conference on Micro/Nanoscale Heat and Mass Transfer. ASMEDC, 2009. http://dx.doi.org/10.1115/mnhmt2009-18546.
Pełny tekst źródła