Artykuły w czasopismach na temat „NMR spectroscopy”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: NMR spectroscopy.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „NMR spectroscopy”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Gainov, Ramil R., Alexander V. Dooglav, Farit G. Vagizov, Ivan N. Pen'kov, Vladimir A. Golovanevskiy, Anna Yu Orlova, Il'ya A. Evlampiev i in. "NQR/NMR and Mössbauer spectroscopy of sulfides: potential and versatility". European Journal of Mineralogy 25, nr 4 (20.12.2013): 569–78. http://dx.doi.org/10.1127/0935-1221/2013/0025-2325.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Kovalenko, Anton D., Alexander A. Pavlov, Ilya D. Ustinovich, Alena S. Kalyakina, Alexander S. Goloveshkin, Łukasz Marciniak, Leonid S. Lepnev i in. "Highly NIR-emitting ytterbium complexes containing 2-(tosylaminobenzylidene)-N-benzoylhydrazone anions: structure in solution and use for bioimaging". Dalton Transactions 50, nr 11 (2021): 3786–91. http://dx.doi.org/10.1039/d0dt03913f.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Soroko, L. M. "Multipulse NMR spectroscopy". Uspekhi Fizicheskih Nauk 156, nr 12 (1988): 653. http://dx.doi.org/10.3367/ufnr.0156.198812b.0653.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Tycko, R., i S. J. Opella. "Overtone NMR spectroscopy". Journal of Chemical Physics 86, nr 4 (15.02.1987): 1761–74. http://dx.doi.org/10.1063/1.452176.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Evilia, Ronald F. "QUANTITATIVE NMR SPECTROSCOPY". Analytical Letters 34, nr 13 (30.09.2001): 2227–36. http://dx.doi.org/10.1081/al-100107290.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Soroko, L. M. "Multipulse NMR spectroscopy". Soviet Physics Uspekhi 31, nr 12 (31.12.1988): 1043–59. http://dx.doi.org/10.1070/pu1988v031n12abeh005658.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Listinsky, Jay J. "Biomolecular NMR Spectroscopy". Radiology 204, nr 1 (lipiec 1997): 100. http://dx.doi.org/10.1148/radiology.204.1.100.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Knowles, Peter. "Biomolecular NMR spectroscopy". Biochemical Education 24, nr 1 (styczeń 1996): 67. http://dx.doi.org/10.1016/s0307-4412(96)80024-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

George Ratcliffe, R., Albrecht Roscher i Yair Shachar-Hill. "Plant NMR spectroscopy". Progress in Nuclear Magnetic Resonance Spectroscopy 39, nr 4 (grudzień 2001): 267–300. http://dx.doi.org/10.1016/s0079-6565(01)00035-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Kupče, Eriks, Toshiaki Nishida i Ray Freeman. "Hadamard NMR spectroscopy". Progress in Nuclear Magnetic Resonance Spectroscopy 42, nr 3-4 (sierpień 2003): 95–122. http://dx.doi.org/10.1016/s0079-6565(03)00022-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Penner, Glenn H., i Xiaolong Liu. "Silver NMR spectroscopy". Progress in Nuclear Magnetic Resonance Spectroscopy 49, nr 2 (wrzesień 2006): 151–67. http://dx.doi.org/10.1016/j.pnmrs.2006.06.004.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Kupče, Eriks, i Ray Freeman. "Hyperdimensional NMR spectroscopy". Progress in Nuclear Magnetic Resonance Spectroscopy 52, nr 1 (styczeń 2008): 22–30. http://dx.doi.org/10.1016/j.pnmrs.2007.07.003.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Howard, Mark J. "Protein NMR spectroscopy". Current Biology 8, nr 10 (maj 1998): R331—R333. http://dx.doi.org/10.1016/s0960-9822(98)70214-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Munowitz, M. "13C NMR spectroscopy". TrAC Trends in Analytical Chemistry 8, nr 3 (marzec 1989): 117. http://dx.doi.org/10.1016/0165-9936(89)85011-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Levitt, Malcolm H., i Thomas A. Frenkiel. "4470014 NMR spectroscopy". Magnetic Resonance Imaging 3, nr 1 (styczeń 1985): ii—iii. http://dx.doi.org/10.1016/0730-725x(85)90027-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Kupče, Ēriks, i Ray Freeman. "Hyperdimensional NMR Spectroscopy". Journal of the American Chemical Society 128, nr 18 (maj 2006): 6020–21. http://dx.doi.org/10.1021/ja0609598.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Ingwal, Joanne S., i Robert G. Weiss. "31P NMR spectroscopy". Trends in Cardiovascular Medicine 3, nr 1 (styczeń 1993): 29–37. http://dx.doi.org/10.1016/1050-1738(93)90025-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Hinton, J. F., K. R. Metz i R. W. Briggs. "Thallium NMR spectroscopy". Progress in Nuclear Magnetic Resonance Spectroscopy 20, nr 5 (styczeń 1988): 423–513. http://dx.doi.org/10.1016/0079-6565(88)80005-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Lickiss, Paul D. "Modern NMR Spectroscopy". Journal of Organometallic Chemistry 332, nr 3 (październik 1987): C21. http://dx.doi.org/10.1016/0022-328x(87)85108-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Mikhalev, V. A. "99Tc NMR Spectroscopy". Radiochemistry 47, nr 4 (lipiec 2005): 319–33. http://dx.doi.org/10.1007/s11137-005-0097-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Frahm, J. "Why NMR spectroscopy?" NMR in Biomedicine 2, nr 5-6 (grudzień 1989): v—vi. http://dx.doi.org/10.1002/nbm.1940020502.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Nicolay, Klaas, Kees P. J. Braun, Robin A. de Graaf, Rick M. Dijkhuizen i Marijn J. Kruiskamp. "Diffusion NMR spectroscopy". NMR in Biomedicine 14, nr 2 (2001): 94–111. http://dx.doi.org/10.1002/nbm.686.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Hecke, Paul Van, i Sabine Van Huffel. "NMR spectroscopy quantitation". NMR in Biomedicine 14, nr 4 (2001): 223. http://dx.doi.org/10.1002/nbm.696.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Cory, David. "NMR spectroscopy techniques". Concepts in Magnetic Resonance 9, nr 6 (1997): 431–32. http://dx.doi.org/10.1002/(sici)1099-0534(1997)9:6<431::aid-cmr4>3.0.co;2-#.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Separovic, Frances. "Biological NMR spectroscopy". Concepts in Magnetic Resonance 10, nr 1 (1998): 57–58. http://dx.doi.org/10.1002/(sici)1099-0534(1998)10:1<57::aid-cmr5>3.0.co;2-v.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Stoica, Petre, i Tomas Sundin. "Nonparametric NMR Spectroscopy". Journal of Magnetic Resonance 152, nr 1 (wrzesień 2001): 57–69. http://dx.doi.org/10.1006/jmre.2001.2377.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Hinton, J. F. "Thallium NMR spectroscopy". Magnetic Resonance in Chemistry 25, nr 8 (sierpień 1987): 659–69. http://dx.doi.org/10.1002/mrc.1260250802.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Ordidge, Roger J. "4906932 NMR spectroscopy and NMR imaging". Magnetic Resonance Imaging 9, nr 3 (styczeń 1991): X. http://dx.doi.org/10.1016/0730-725x(91)90478-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Takeda, Kazuyuki, Youta Kobayashi, Yasuto Noda i K. Takegoshi. "Inner-product NMR spectroscopy: A variant of covariance NMR spectroscopy". Journal of Magnetic Resonance 297 (grudzień 2018): 146–51. http://dx.doi.org/10.1016/j.jmr.2018.10.012.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Pelzer, Stefanie, Beate Neumann, Hans-Georg Stammler, Nikolai Ignat’ev, Reint Eujen i Berthold Hoge. "Synthesis and Characterization of Tetrakis(pentafluoroethyl)germane". Synthesis 49, nr 11 (3.05.2017): 2389–93. http://dx.doi.org/10.1055/s-0036-1589005.

Pełny tekst źródła
Streszczenie:
This paper describes the synthesis and comprehensive characterization of tetrakis(pentafluoroethyl)germane. In addition to a complete NMR spectroscopic characterization, including the rarely used 73Ge NMR spectroscopy, Ge(C2F5)4 was studied by IR spectroscopy, mass spectrometry as well as X-ray diffraction analysis. A 73Ge NMR investigation as well as an X-ray diffraction study of the related germane Ge(CF3)4 are also included.
Style APA, Harvard, Vancouver, ISO itp.
31

Nascimento, Paloma Andrade Martins, Paulo Lopes Barsanelli, Ana Paula Rebellato, Juliana Azevedo Lima Pallone, Luiz Alberto Colnago i Fabíola Manhas Verbi Pereira. "Time-Domain Nuclear Magnetic Resonance (TD-NMR) and Chemometrics for Determination of Fat Content in Commercial Products of Milk Powder". Journal of AOAC INTERNATIONAL 100, nr 2 (1.03.2017): 330–34. http://dx.doi.org/10.5740/jaoacint.16-0408.

Pełny tekst źródła
Streszczenie:
Abstract This study shows the use of time-domain (TD)-NMR transverse relaxation (T2) data and chemometrics in the nondestructive determination of fat content for powdered food samples such as commercial dried milk products. Most proposed NMR spectroscopy methods for measuring fat content correlate free induction decay or echo intensities with the sample's mass. The need for the sample's mass limits the analytical frequency of NMR determination, because weighing the samples is an additional step in this procedure. Therefore, the method proposed here is based on a multivariate model of T2 decay, measured with Carr-Purcell-Meiboom-Gill pulse sequence and reference values of fat content. The TD-NMR spectroscopy method shows high correlation (r = 0.95) with the lipid content, determined by the standard extraction method of Bligh and Dyer. For comparison, fat content determination was also performed using a multivariate model with near-IR (NIR) spectroscopy, which is also a nondestructive method. The advantages of the proposed TD-NMR methodare that it (1) minimizes toxic residue generation, (2) performs measurements with high analytical frequency (a few seconds per analysis), and (3) does not require sample preparation (such as pelleting, needed for NIR spectroscopy analyses) or weighing the samples.
Style APA, Harvard, Vancouver, ISO itp.
32

Gunawan, Ramdhan, i Asep Bayu Dani Nandiyanto. "How to Read and Interpret 1H-NMR and 13C-NMR Spectrums". Indonesian Journal of Science and Technology 6, nr 2 (15.05.2021): 267–98. http://dx.doi.org/10.17509/ijost.v6i2.34189.

Pełny tekst źródła
Streszczenie:
Nuclear magnetic resonance spectroscopy or NMR is a chemical instrument that can be used to evaluate the structure of a chemical compound other than FTIR, GC-MS, and HPLC. NMR spectroscopy commonly used for compound analysis is 1H-NMR and 13C-NMR. Techniques can be used to determine the structure conformation, the number of protons, and the number of carbons in the structure of a chemical compound. So far, there have been many publications related to the use of this spectroscopic technique. However, the steps in reading and interpreting the spectra of both 1H-NMR and 13C-NMR are not described in detail. Thus, in this paper, we described the steps in reading and interpreting the 1H-NMR and 13C-NMR spectra based on the level of difficulties: (1) simple compounds, (2) fairly complex compounds, (3) more complex compounds, and (4) very complex compounds.
Style APA, Harvard, Vancouver, ISO itp.
33

Pandiselvam, Ravi, Rathnakumar Kaavya, Sergio I. Martinez Monteagudo, V. Divya, Surangna Jain, Anandu Chandra Khanashyam, Anjineyulu Kothakota i in. "Contemporary Developments and Emerging Trends in the Application of Spectroscopy Techniques: A Particular Reference to Coconut (Cocos nucifera L.)". Molecules 27, nr 10 (19.05.2022): 3250. http://dx.doi.org/10.3390/molecules27103250.

Pełny tekst źródła
Streszczenie:
The number of food frauds in coconut-based products is increasing due to higher consumer demands for these products. Rising health consciousness, public awareness and increased concerns about food safety and quality have made authorities and various other certifying agencies focus more on the authentication of coconut products. As the conventional techniques for determining the quality attributes of coconut are destructive and time-consuming, non-destructive testing methods which are accurate, rapid, and easy to perform with no detrimental sampling methods are currently gaining importance. Spectroscopic methods such as nuclear magnetic resonance (NMR), infrared (IR)spectroscopy, mid-infrared (MIR)spectroscopy, near-infrared (NIR) spectroscopy, ultraviolet-visible (UV-VIS) spectroscopy, fluorescence spectroscopy, Fourier-transform infrared spectroscopy (FTIR), and Raman spectroscopy (RS) are gaining in importance for determining the oxidative stability of coconut oil, the adulteration of oils, and the detection of harmful additives, pathogens, and toxins in coconut products and are also employed in deducing the interactions in food constituents, and microbial contaminations. The objective of this review is to provide a comprehensive analysis on the various spectroscopic techniques along with different chemometric approaches for the successful authentication and quality determination of coconut products. The manuscript was prepared by analyzing and compiling the articles that were collected from various databases such as PubMed, Google Scholar, Scopus and ScienceDirect. The spectroscopic techniques in combination with chemometrics were shown to be successful in the authentication of coconut products. RS and NMR spectroscopy techniques proved their utility and accuracy in assessing the changes in coconut oil’s chemical and viscosity profile. FTIR spectroscopy was successfully utilized to analyze the oxidation levels and determine the authenticity of coconut oils. An FT-NIR-based analysis of various coconut samples confirmed the acceptable levels of accuracy in prediction. These non-destructive methods of spectroscopy offer a broad spectrum of applications in food processing industries to detect adulterants. Moreover, the combined chemometrics and spectroscopy detection method is a versatile and accurate measurement for adulterant identification.
Style APA, Harvard, Vancouver, ISO itp.
34

Borba, A., J. P. Vareda, L. Durães, A. Portugal i P. N. Simões. "Spectroscopic characterization of silica aerogels prepared using several precursors – effect on the formation of molecular clusters". New Journal of Chemistry 41, nr 14 (2017): 6742–59. http://dx.doi.org/10.1039/c7nj01082f.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Szarek, Walter A., B. Mario Pinto i Masaharu Iwakawa. "Nucleoside analogs involving modifications in the carbohydrate ring: nuclear magnetic resonance spectroscopic studies". Canadian Journal of Chemistry 63, nr 8 (1.08.1985): 2162–68. http://dx.doi.org/10.1139/v85-355.

Pełny tekst źródła
Streszczenie:
The concomitant use of 1H nmr and 13C nmr spectroscopy as a probe of structure, stereochemistry, and conformation of several nucleoside analogs derived from 1-oxa-4-thiacyclohexane is described. The 1H nmr spectroscopic properties of an acyclic nucleoside analog derived from uridine are also described.
Style APA, Harvard, Vancouver, ISO itp.
36

OHUCHI, Muneki, i Shizue KOHNO. "Three-dimensional NMR spectroscopy." Journal of Synthetic Organic Chemistry, Japan 48, nr 6 (1990): 577–86. http://dx.doi.org/10.5059/yukigoseikyokaishi.48.577.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Gronenborn, Angela M., i Tatyana Polenova. "Introduction: Biomolecular NMR Spectroscopy". Chemical Reviews 122, nr 10 (25.05.2022): 9265–66. http://dx.doi.org/10.1021/acs.chemrev.2c00142.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Holzgrabe, Ulrike, i Michael Bernstein. "Preface: Quantitative NMR spectroscopy". Journal of Pharmaceutical and Biomedical Analysis 215 (czerwiec 2022): 114787. http://dx.doi.org/10.1016/j.jpba.2022.114787.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Vosegaard, Thomas. "Single-crystal NMR spectroscopy". Progress in Nuclear Magnetic Resonance Spectroscopy 123 (kwiecień 2021): 51–72. http://dx.doi.org/10.1016/j.pnmrs.2021.01.001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

MITSUMORI, Fumiyuki. "In vivo NMR spectroscopy". Journal of Japan Oil Chemists' Society 38, nr 10 (1989): 783–90. http://dx.doi.org/10.5650/jos1956.38.783.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Mamone, Salvatore, Nasrollah Rezaei-Ghaleh, Felipe Opazo, Christian Griesinger i Stefan Glöggler. "Singlet-filtered NMR spectroscopy". Science Advances 6, nr 8 (luty 2020): eaaz1955. http://dx.doi.org/10.1126/sciadv.aaz1955.

Pełny tekst źródła
Streszczenie:
Selectively studying parts of proteins and metabolites in tissue with nuclear magnetic resonance promises new insights into molecular structures or diagnostic approaches. Nuclear spin singlet states allow the selection of signals from chemical moieties of interest in proteins or metabolites while suppressing background signal. This selection process is based on the electron-mediated coupling between two nuclear spins and their difference in resonance frequency. We introduce a generalized and versatile pulsed NMR experiment that allows populating singlet states on a broad scale of coupling patterns. This approach allowed us to filter signals from proton pairs in the Alzheimer’s disease–related b-amyloid 40 peptide and in metabolites in brain matter. In particular, for glutamine/glutamate, we have discovered a long-lived state in tissue without the typically required singlet sustaining by radiofrequency irradiation. We believe that these findings will open up new opportunities to study metabolites with a view on future in vivo applications.
Style APA, Harvard, Vancouver, ISO itp.
42

Warren, W., S. Mayr, D. Goswami i A. West. "Laser-enhanced NMR spectroscopy". Science 255, nr 5052 (27.03.1992): 1683–85. http://dx.doi.org/10.1126/science.1553555.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Webb, G. A. "Chapter 2. NMR spectroscopy". Annual Reports Section "C" (Physical Chemistry) 89 (1992): 3. http://dx.doi.org/10.1039/pc9928900003.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Fesik, S. W. "Isotope-edited NMR spectroscopy". Nature 332, nr 6167 (kwiecień 1988): 865–66. http://dx.doi.org/10.1038/332865a0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Bachelard, Herman, i Ronnitte Badar-Goffer. "NMR Spectroscopy in Neurochemistry". Journal of Neurochemistry 61, nr 2 (5.10.2006): 412–19. http://dx.doi.org/10.1111/j.1471-4159.1993.tb02141.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Parish, David M., i Thomas Szyperski. "Simultaneously Cycled NMR Spectroscopy". Journal of the American Chemical Society 130, nr 14 (kwiecień 2008): 4925–33. http://dx.doi.org/10.1021/ja711454e.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

A. Salvatore, B. "Chapter 11. NMR Spectroscopy". Annual Reports Section "B" (Organic Chemistry) 94 (1998): 361. http://dx.doi.org/10.1039/oc094361.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Bai, Shi, Wei Wang i Cecil Dybowski. "Solid State NMR Spectroscopy". Analytical Chemistry 82, nr 12 (15.06.2010): 4917–24. http://dx.doi.org/10.1021/ac100761m.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Song, Yi-Qiao, Andre Souza, Muthusamy Vembusubramanian, Yiqiao Tang, Kamilla Fellah, Ling Feng i Stacy L. Reeder. "Multiphysics NMR correlation spectroscopy". Journal of Magnetic Resonance 322 (styczeń 2021): 106887. http://dx.doi.org/10.1016/j.jmr.2020.106887.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Bharti, Santosh Kumar, i Raja Roy. "Quantitative 1H NMR spectroscopy". TrAC Trends in Analytical Chemistry 35 (maj 2012): 5–26. http://dx.doi.org/10.1016/j.trac.2012.02.007.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii