Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: NMR methods.

Artykuły w czasopismach na temat „NMR methods”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „NMR methods”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

WILSON, ELIZABETH K. "NMR METHODS BLOSSOM". Chemical & Engineering News 76, nr 39 (28.09.1998): 25–35. http://dx.doi.org/10.1021/cen-v076n039.p025.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Halkides, Christopher, i Cynthia K. McClure. "12 NMR Spectroscopic methods". Annual Reports Section "B" (Organic Chemistry) 96 (2000): 497–521. http://dx.doi.org/10.1039/b006370n.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Halkides, Christopher, i R. Thomas Williamson. "14 NMR spectroscopic methods". Annu. Rep. Prog. Chem., Sect. B: Org. Chem. 98 (2002): 639–70. http://dx.doi.org/10.1039/b110384a.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Albert, Klaus. "Books: Modern NMR methods". Analytical Chemistry 70, nr 13 (lipiec 1998): 472A—473A. http://dx.doi.org/10.1021/ac9818780.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Norwood, Timothy J. "Multiple-quantum NMR methods". Progress in Nuclear Magnetic Resonance Spectroscopy 24, nr 4 (styczeń 1992): 295–375. http://dx.doi.org/10.1016/0079-6565(92)80005-z.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Shapiro, Michael J. "ChemInform Abstract: NMR Methods". ChemInform 32, nr 50 (23.05.2010): no. http://dx.doi.org/10.1002/chin.200150297.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

TAKEUCHI, Y. "ChemInform Abstract: NMR Methods". ChemInform 23, nr 43 (21.08.2010): no. http://dx.doi.org/10.1002/chin.199243312.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Spiess, H. W. "NMR Methods for Solid Polymers". Annual Review of Materials Science 21, nr 1 (sierpień 1991): 131–58. http://dx.doi.org/10.1146/annurev.ms.21.080191.001023.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Shapiro, Michael J., i James R. Wareing. "NMR methods in combinatorial chemistry". Current Opinion in Chemical Biology 2, nr 3 (czerwiec 1998): 372–75. http://dx.doi.org/10.1016/s1367-5931(98)80011-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Dumoulin, Charles, i Howard Hart. "4714081 Methods for NMR angiography". Magnetic Resonance Imaging 6, nr 4 (lipiec 1988): IX. http://dx.doi.org/10.1016/0730-725x(88)90514-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Halkides, Christopher, i Cynthia K. McClure. "ChemInform Abstract: NMR Spectroscopic Methods". ChemInform 32, nr 17 (24.04.2001): no. http://dx.doi.org/10.1002/chin.200117277.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Halkides, Christopher, i Cynthia K. McClure. "ChemInform Abstract: NMR Spectroscopic Methods". ChemInform 33, nr 20 (21.05.2010): no. http://dx.doi.org/10.1002/chin.200220300.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Viti, Vincenza, Caterina Petrucci i Piero Barone. "Prony methods in NMR spectroscopy". International Journal of Imaging Systems and Technology 8, nr 6 (1997): 565–71. http://dx.doi.org/10.1002/(sici)1098-1098(1997)8:6<565::aid-ima9>3.0.co;2-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Massou, Stéphane, Cécile Nicolas, Fabien Letisse i Jean-Charles Portais. "NMR-based fluxomics: Quantitative 2D NMR methods for isotopomers analysis". Phytochemistry 68, nr 16-18 (sierpień 2007): 2330–40. http://dx.doi.org/10.1016/j.phytochem.2007.03.011.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Nordon, Alison, Céline Meunier, Colin A. McGill i David Littlejohn. "Comparison of Calibration Methods for the Monitoring of a Fluorobenzene Batch Reaction Using Low-Field 19F NMR, 1H NMR, NIR, and Raman Spectrometries". Applied Spectroscopy 56, nr 4 (kwiecień 2002): 515–20. http://dx.doi.org/10.1366/0003702021954971.

Pełny tekst źródła
Streszczenie:
The suitability of different process spectrometry techniques has been assessed, in terms of calibration requirements, accuracy, and precision, for the at-line monitoring of the sulfonation of fluorobenzene. Partial least-squares (PLS) calibration was required to analyze the spectra obtained by NIR spectrometry and low-field (29.1 MHz) 1H NMR spectrometry. The low-field (27.4 MHz) 19F NMR spectra contained well-resolved signals for the three fluorine containing compounds and univariate calibration was adequate. The Raman spectra of two of the compounds exhibited fluorescence and so this technique was not considered suitable for monitoring the reaction. The accuracy of the results obtained using univariate analysis of the 19F NMR data and PLS analysis of NIR data were comparable (average % error of 3.5 and 2.9%, respectively, for concentrations >0.5 mol dm−3 and 11.3 and 11.1%, respectively, for <0.5 mol dm−3). The least accurate results were obtained using PLS analysis of low-field 1H NMR data, as the spectra of two of the components were too similar. For concentrations >0.05 mol dm−3, the most precise results were obtained with PLS analysis of NIR data (average RSD of 1.6%), although the precision of the results obtained using univariate analysis of 19F NMR data was still good (average RSD of 3.7%).
Style APA, Harvard, Vancouver, ISO itp.
16

Hu, Yunfei, Kai Cheng, Lichun He, Xu Zhang, Bin Jiang, Ling Jiang, Conggang Li, Guan Wang, Yunhuang Yang i Maili Liu. "NMR-Based Methods for Protein Analysis". Analytical Chemistry 93, nr 4 (13.01.2021): 1866–79. http://dx.doi.org/10.1021/acs.analchem.0c03830.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Jaipuria, Garima, Adil Hayat i Hanudatta S. Atreya. "New methods for NMR spectral analysis". Journal of Analytical Science and Technology 2, Supplement A (22.12.2011): A88—A93. http://dx.doi.org/10.5355/jast.2011.a88.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Munuera-Javaloy, C., R. Puebla i J. Casanova. "Dynamical decoupling methods in nanoscale NMR". EPL (Europhysics Letters) 134, nr 3 (1.05.2021): 30001. http://dx.doi.org/10.1209/0295-5075/ac0ed1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Furman, Gregory B., Victor M. Meerovich i Vladimir L. Sokolovsky. "NMR Methods of Quantum State Detection". Zeitschrift für Naturforschung A 62, nr 10-11 (1.11.2007): 620–26. http://dx.doi.org/10.1515/zna-2007-10-1110.

Pełny tekst źródła
Streszczenie:
The process of amplification of a single spin state using nuclear magnetic resonance (NMR) techniques in a rotating frame is considered. Our main aim is to investigate the efficiency of various schemes for quantum detection. Results of numerical simulation of the time dependence of individual and total nuclear polarizations for 1D, 2D, and 3D configurations of the spin systems are presented.
Style APA, Harvard, Vancouver, ISO itp.
20

Mobli, Mehdi, Mark W. Maciejewski, Adam D. Schuyler, Alan S. Stern i Jeffrey C. Hoch. "Sparse sampling methods in multidimensional NMR". Phys. Chem. Chem. Phys. 14, nr 31 (2012): 10835–43. http://dx.doi.org/10.1039/c2cp40174f.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Edgar, Mark. "Physical methods and techniques : NMR spectroscopy". Annual Reports Section "B" (Organic Chemistry) 105 (2009): 340. http://dx.doi.org/10.1039/b822068a.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Grutsch, Sarina, Sven Brüschweiler i Martin Tollinger. "NMR Methods to Study Dynamic Allostery". PLOS Computational Biology 12, nr 3 (10.03.2016): e1004620. http://dx.doi.org/10.1371/journal.pcbi.1004620.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Edgar, Mark. "Physical methods and techniques NMR spectroscopy". Annual Reports Section "B" (Organic Chemistry) 108 (2012): 292. http://dx.doi.org/10.1039/c2oc90013k.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Watson, A. Ted, i C. T. Philip Chang. "Characterizing porous media with NMR methods". Progress in Nuclear Magnetic Resonance Spectroscopy 31, nr 4 (listopad 1997): 343–86. http://dx.doi.org/10.1016/s0079-6565(97)00053-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Pecher, Oliver, Javier Carretero-González, Kent J. Griffith i Clare P. Grey. "Materials’ Methods: NMR in Battery Research". Chemistry of Materials 29, nr 1 (28.11.2016): 213–42. http://dx.doi.org/10.1021/acs.chemmater.6b03183.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Lönnqvist, Ingrid, Ali Khan i Olle Söderman. "Characterization of emulsions by NMR methods". Journal of Colloid and Interface Science 144, nr 2 (lipiec 1991): 401–11. http://dx.doi.org/10.1016/0021-9797(91)90406-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Shimba, Nobuhisa, Helena Kovacs, Alan S. Stern, Anson M. Nomura, Ichio Shimada, Jeffrey C. Hoch, Charles S. Craik i Volker Dötsch. "Optimization of13C direct detection NMR methods". Journal of Biomolecular NMR 30, nr 2 (październik 2004): 175–79. http://dx.doi.org/10.1023/b:jnmr.0000048855.35771.11.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Edgar, Mark. "Physical methods and techniques: NMR spectroscopy". Annual Reports Section "B" (Organic Chemistry) 109 (2013): 256. http://dx.doi.org/10.1039/c3oc90012f.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Edgar, Mark. "Physical methods and techniques: NMR spectroscopy". Annual Reports Section "B" (Organic Chemistry) 107 (2011): 308. http://dx.doi.org/10.1039/c1oc90006d.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Edgar, M. "Physical methods and techniques : NMR spectroscopy". Annual Reports Section "B" (Organic Chemistry) 103 (2007): 331. http://dx.doi.org/10.1039/b617867g.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Edgar, Mark. "Physical methods and techniques NMR spectroscopy". Annual Reports Section "B" (Organic Chemistry) 106 (2010): 325. http://dx.doi.org/10.1039/b927074b.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Edgar, Mark. "Physical methods and techniques : NMR spectroscopy". Annual Reports Section "B" (Organic Chemistry) 104 (2008): 312. http://dx.doi.org/10.1039/b801271g.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Nagana Gowda, G. A., i Daniel Raftery. "NMR Metabolomics Methods for Investigating Disease". Analytical Chemistry 95, nr 1 (10.01.2023): 83–99. http://dx.doi.org/10.1021/acs.analchem.2c04606.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Norwood, T. J. "New NMR Methods for Measuring Diffusion". Journal of Magnetic Resonance, Series A 103, nr 3 (lipiec 1993): 258–67. http://dx.doi.org/10.1006/jmra.1993.1165.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Singerman, R. W., i R. C. Richardson. "Methods for Heteronuclear Thin-Film NMR". Journal of Magnetic Resonance, Series A 123, nr 2 (grudzień 1996): 168–73. http://dx.doi.org/10.1006/jmra.1996.0231.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Furó, István, i Sergey V. Dvinskikh. "NMR methods applied to anisotropic diffusion". Magnetic Resonance in Chemistry 40, nr 13 (8.11.2002): S3—S14. http://dx.doi.org/10.1002/mrc.1123.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

NORWOOD, T. J. "ChemInform Abstract: Multiple-Quantum NMR Methods". ChemInform 24, nr 19 (20.08.2010): no. http://dx.doi.org/10.1002/chin.199319308.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Maity, Sanhita, Ravi Kumar Gundampati i Thallapuranam Krishnaswamy Suresh Kumar. "NMR Methods to Characterize Protein-Ligand Interactions". Natural Product Communications 14, nr 5 (1.05.2019): 1934578X1984929. http://dx.doi.org/10.1177/1934578x19849296.

Pełny tekst źródła
Streszczenie:
Structural information pertaining to the interactions between biological macromolecules and ligands is of potential significance for understanding of molecular mechanisms in key biological processes. Recently, nuclear magnetic resonance (NMR) spectroscopic techniques has come of age and has widened its scope to characterize binding interactions of small molecules with biological macromolecules especially, proteins. NMR spectroscopy-based techniques are versatile due to their ability to examine weak binding interactions and for rapid screening the binding affinities of ligands with proteins at atomic resolution. In this review, we provide a broad overview of some of the important NMR approaches to investigate interactions of small organic molecules with proteins.
Style APA, Harvard, Vancouver, ISO itp.
39

Akoka, Serge, i Patrick Giraudeau. "Fast hybrid multi-dimensional NMR methods based on ultrafast 2D NMR". Magnetic Resonance in Chemistry 53, nr 11 (31.03.2015): 986–94. http://dx.doi.org/10.1002/mrc.4237.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Matera, Robert, Katalin V. Horvath, Hari Nair, Ernst J. Schaefer i Bela F. Asztalos. "HDL Particle Measurement: Comparison of 5 Methods". Clinical Chemistry 64, nr 3 (1.03.2018): 492–500. http://dx.doi.org/10.1373/clinchem.2017.277632.

Pełny tekst źródła
Streszczenie:
Abstract BACKGROUND HDL cell cholesterol efflux capacity has been documented as superior to HDL cholesterol (HDL-C) in predicting cardiovascular disease risk. HDL functions relate to its composition. Compositional assays are easier to perform and standardize than functional tests and are more practical for routine testing. Our goal was to compare measurements of HDL particles by 5 different separation methods. METHODS HDL subfractions were measured in 98 samples using vertical auto profiling (VAP), ion mobility (IM), nuclear magnetic resonance (NMR), native 2-dimensional gel electrophoresis (2D-PAGE), and pre-β1-ELISA. VAP measured cholesterol in large HDL2 and small HDL3; IM measured particle number directly in large, intermediate, and small HDL particles; NMR measured lipid signals in large, medium, and small HDL; 2D-PAGE measured apolipoprotein (apo) A-I in large (α1), medium (α2), small (α3–4), and pre-β1 HDL particles; and ELISA measured apoA-I in pre-β1-HDL. The data were normalized and compared using Passing–Bablok, Lin concordance, and Bland–Altman plot analyses. RESULTS With decreasing HDL-C concentration, NMR measured a gradually lower percentage of large HDL, compared with IM, VAP, and 2D-PAGE. In the lowest HDL-C tertile, NMR measured 8% of large HDL, compared with IM, 22%; VAP, 20%; and 2D-PAGE, 18%. There was strong discordance between 2D-PAGE and NMR in measuring medium HDL (R2 = 0.356; rc = 0.042) and small HDL (R2 = 0.376; rc = 0.040). The 2D-PAGE assay measured a significantly higher apoA-I concentration in pre-β1-HDL than the pre-β1-ELISA (9.8 vs 1.6 mg/dL; R2 = 0.246; rc = 0.130). CONCLUSIONS NMR agreed poorly with the other methods in measuring large HDL, particularly in low HDL-C individuals. Similarly, there was strong discordance in pre-β1-HDL measurements between the ELISA and 2D-PAGE assays.
Style APA, Harvard, Vancouver, ISO itp.
41

Mobli, Mehdi, Mark W. Maciejewski, Adam D. Schuyler, Alan S. Stern i Jeffrey C. Hoch. "Correction: Sparse sampling methods in multidimensional NMR". Physical Chemistry Chemical Physics 18, nr 28 (2016): 19482. http://dx.doi.org/10.1039/c6cp90157c.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Zartler, Edward, Jiangli Yan, Huaping Mo, Allen Kline i Michael Shapiro. "1D NMR Methods in Ligand-Receptor Interactions". Current Topics in Medicinal Chemistry 3, nr 1 (1.01.2003): 25–37. http://dx.doi.org/10.2174/1568026033392750.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Ludwig, Christian. "Ligand based NMR methods for drug discovery". Frontiers in Bioscience Volume, nr 14 (2009): 4565. http://dx.doi.org/10.2741/3549.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Chao, Fa-An, i R. Andrew Byrd. "Protein dynamics revealed by NMR relaxation methods". Emerging Topics in Life Sciences 2, nr 1 (20.04.2018): 93–105. http://dx.doi.org/10.1042/etls20170139.

Pełny tekst źródła
Streszczenie:
Structural biology often focuses primarily on three-dimensional structures of biological macromolecules, deposited in the Protein Data Bank (PDB). This resource is a remarkable entity for the worldwide scientific and medical communities, as well as the general public, as it is a growing translation into three-dimensional space of the vast information in genomic databases, e.g. GENBANK. There is, however, significantly more to understanding biological function than the three-dimensional co-ordinate space for ground-state structures of biomolecules. The vast array of biomolecules experiences natural dynamics, interconversion between multiple conformational states, and molecular recognition and allosteric events that play out on timescales ranging from picoseconds to seconds. This wide range of timescales demands ingenious and sophisticated experimental tools to sample and interpret these motions, thus enabling clearer insights into functional annotation of the PDB. NMR spectroscopy is unique in its ability to sample this range of timescales at atomic resolution and in physiologically relevant conditions using spin relaxation methods. The field is constantly expanding to provide new creative experiments, to yield more detailed coverage of timescales, and to broaden the power of interpretation and analysis methods. This review highlights the current state of the methodology and examines the extension of analysis tools for more complex experiments and dynamic models. The future for understanding protein dynamics is bright, and these extended tools bring greater compatibility with developments in computational molecular dynamics, all of which will further our understanding of biological molecular functions. These facets place NMR as a key component in integrated structural biology.
Style APA, Harvard, Vancouver, ISO itp.
45

Haase, J., N. J. Curro, R. Stern i C. P. Slichter. "New Methods for NMR of Cuprate Superconductors". Physical Review Letters 81, nr 7 (17.08.1998): 1489–92. http://dx.doi.org/10.1103/physrevlett.81.1489.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Kanelis, Voula, Julie D. Forman-Kay i Lewis E. Kay. "Multidimensional NMR Methods for Protein Structure Determination". IUBMB Life (International Union of Biochemistry and Molecular Biology: Life) 52, nr 6 (1.12.2001): 291–302. http://dx.doi.org/10.1080/152165401317291147.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Harper, James, i Giovanna Pope. "Obtaining anisotropic atomic displacements from NMR methods". Acta Crystallographica Section A Foundations and Advances 75, a1 (20.07.2019): a306. http://dx.doi.org/10.1107/s0108767319097009.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Webba da Silva, Mateus. "NMR methods for studying quadruplex nucleic acids". Methods 43, nr 4 (grudzień 2007): 264–77. http://dx.doi.org/10.1016/j.ymeth.2007.05.007.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Shapiro, M. J., i J. S. Gounarides. "NMR methods utilized in combinatorial chemistry research". Progress in Nuclear Magnetic Resonance Spectroscopy 35, nr 2 (sierpień 1999): 153–200. http://dx.doi.org/10.1016/s0079-6565(99)00008-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Ebbels, Timothy M. D., i Rachel Cavill. "Bioinformatic methods in NMR-based metabolic profiling". Progress in Nuclear Magnetic Resonance Spectroscopy 55, nr 4 (listopad 2009): 361–74. http://dx.doi.org/10.1016/j.pnmrs.2009.07.003.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii