Gotowa bibliografia na temat „Ni Nanowire”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Ni Nanowire”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Ni Nanowire"
Rai, Rajesh K., i Chandan Srivastava. "Nonequilibrium Microstructures for Ag–Ni Nanowires". Microscopy and Microanalysis 21, nr 2 (6.02.2015): 491–97. http://dx.doi.org/10.1017/s1431927615000069.
Pełny tekst źródłaKim, Joondong, Jong-Uk Bae, Wayne A. Anderson, Hyun-Mi Kim i Ki-Bum Kim. "Solid-state growth of nickel silicide nanowire by the metal-induced growth method". Journal of Materials Research 21, nr 11 (listopad 2006): 2936–40. http://dx.doi.org/10.1557/jmr.2006.0364.
Pełny tekst źródłaHe, Li Zhong, Li Rong Qin, Jian Wei Zhao, Yu Yang i Ying Ying Yin. "Preparation of Pt/Ni Multilayer Nanowires with Enhanced Magnetic Property and Electrocatalytic Activity". Journal of Nano Research 40 (marzec 2016): 20–28. http://dx.doi.org/10.4028/www.scientific.net/jnanor.40.20.
Pełny tekst źródłaZuo, Yan, Juan Tang, Xiao Tian Li, Yan Zhao, Hai Lan Gong i Shi Lun Qiu. "Electrodeposition of Ni and Ni-Cu Nanowires in Rectified Porous Anodic Alumina Membrane". Materials Science Forum 663-665 (listopad 2010): 1121–24. http://dx.doi.org/10.4028/www.scientific.net/msf.663-665.1121.
Pełny tekst źródłaLee, Sun Sook, Hyun Jin Kim, Taek-Mo Chung, Young Kuk Lee, Chang Gyoun Kim i Ki-Seok An. "Fabrication of Nanocomposite Based on ZnO Nanowire". Journal of Nanoscience and Nanotechnology 8, nr 9 (1.09.2008): 4895–98. http://dx.doi.org/10.1166/jnn.2008.ic80.
Pełny tekst źródłaAzmy, Ilham, i Jun Wang. "Construction of Hierarchical CuCo2O4-Ni(OH)2 Core-Shell Nanowire Arrays for High-Performance Pseudocapacitors". Aceh International Journal of Science and Technology 11, nr 1 (30.04.2022): 85–95. http://dx.doi.org/10.13170/aijst.11.1.24181.
Pełny tekst źródłaPan, H., J. B. Yi, B. H. Liu, S. Thongmee, J. Ding, Yuan Ping Feng i Jian Yi Lin. "Magnetic Properties of Highly-Ordered Ni, Co and Their Alloy Nanowires in AAO Templates". Solid State Phenomena 111 (kwiecień 2006): 123–26. http://dx.doi.org/10.4028/www.scientific.net/ssp.111.123.
Pełny tekst źródłaYu, Yanlong, Jinpeng Li, Jun Wang, Xige Wu, Cuiyan Yu, Tao Xu, Bingdong Chang, Hongyu Sun i Hamidreza Arandiyan. "Orientation Growth and Magnetic Properties of Electrochemical Deposited Nickel Nanowire Arrays". Catalysts 9, nr 2 (3.02.2019): 152. http://dx.doi.org/10.3390/catal9020152.
Pełny tekst źródłaPodlaha, Elizabeth J., Mohammadsadegh Beheshti, Deyang Li i Sunggook Park. "Fe-Ni-Co Electrodeposited Nanowires Decorated with Au". ECS Meeting Abstracts MA2022-01, nr 24 (7.07.2022): 2487. http://dx.doi.org/10.1149/ma2022-01242487mtgabs.
Pełny tekst źródłaShang, Wei Zheng, Wei Guo Zhang i Hong Zhi Wang. "Morphological and Magnetic Properties of Electrodeposited Ni-Ag Alloy Nanowire Arrays in Modified AAO Template". Advanced Materials Research 875-877 (luty 2014): 14–17. http://dx.doi.org/10.4028/www.scientific.net/amr.875-877.14.
Pełny tekst źródłaRozprawy doktorskie na temat "Ni Nanowire"
Saifulin, M. M., A. A. Mashentseva i M. V. Zdorovets. "Template Synthesis and Composition of Bimetallic Co/Ni Nanostructures Arrays". Thesis, Sumy State University, 2013. http://essuir.sumdu.edu.ua/handle/123456789/35265.
Pełny tekst źródłaSilva, Charles da Rocha. "Estudo das interações magnéticas em nanofios de Ni obtidos por eletrodeposição AC". Universidade de São Paulo, 2007. http://www.teses.usp.br/teses/disponiveis/43/43134/tde-29022008-105215/.
Pełny tekst źródłaStudies of magnetic and structural properties of nickel nanowires deposited on nanoporous alumina membranes were carried out. The samples were obtained by a two-step anodization, followed by an AC electrodeposition. It was noted that the diameters of the nanowires and the crystalline grain size of the deposited nickel increase with the anodization voltage. The mean diameters and the grain sizes varied from 10 to 20 nm and from 30 to 50 nm, respectively. The samples exhibited a strong shape anisotropy, with coercivities between 565 and 725 Oe. Magnetic interactions were studied via `delta´M curves, which showed that the dominant interactions are rather demagnetizing in these systems. An interacting Stoner-Wohlfarth model was developed to simulate and reproduce the magnetic behavior of the nanowires. From the comparison between numerical and experimental results (which exhibit excellent agreement), it was noted that reversible components of magnetization (Mrev) do not depend on the initial state of the system, whereas irreversible components (Mirr) do. From the analysis of Mrev(Mirr)Hi curves of numerical and experimental results, it was noted that there is strong evidence for the curling magnetization reversal mode for these systems
Bukharaev, A. A., N. I. Nurgazizov, D. A. Biziaev, A. P. Chuklanov i T. F. Khanipov. "Current-induced Phase Transition in Ni Nanowires". Thesis, Sumy State University, 2012. http://essuir.sumdu.edu.ua/handle/123456789/35343.
Pełny tekst źródłaLi, Yanguang. "Nanostructured Materials for Energy Applications". The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1275610758.
Pełny tekst źródłaEl, Kousseifi Mike. "Ni silicide contacts : Diffusion and reaction in nanometric films and nanowires". Thesis, Aix-Marseille, 2014. http://www.theses.fr/2014AIXM4349.
Pełny tekst źródłaThis thesis focuses on the phenomena that occur during the reaction between metal and silicon (silicide) on thin films and nanowires. Indeed, phenomena such as nucleation, lateral growth, normal growth and diffusion must be understood to make contacts for future microelectronic devices. The comparison between the silicide formation on thin films and nanowires is one of the main aspects of this work. Atomic distribution in 3D for the elements in different Ni silicide phase was obtained by atom probe tomography (APT). To enable the analysis of different types of silicon nanowires by APT, several original methods for sample preparation by focused ion beam has been developed and tested. On the other hand, in situ and real-time analysis by X-ray diffraction during the reactive diffusion helped to highlight the importance of the nucleation of a phase and to determine the kinetics of formation of Ni(Pt) silicides, including the reaction on the interfaces and the lateral growth. The characteristic shape associated with the lateral growth was determined by ex-situ transmission electron microscopy analyzes and was compared with the existing theoretical models. Moreover, the determination of the fastest diffusing species by APT provided information on the mechanisms of phase formation and stress relaxation in the silicide
Böhnert, Tim [Verfasser], i Kornelius [Akademischer Betreuer] Nielsch. "Magneto-thermopower and Magnetoresistance of Co-Ni Alloy and Co-Ni/Cu Multilayered Nanowires. / Tim Böhnert. Betreuer: Kornelius Nielsch". Hamburg : Staats- und Universitätsbibliothek Hamburg, 2014. http://d-nb.info/1052996698/34.
Pełny tekst źródłaSilva, Elvis Lira da. "Propriedades estruturais e magnéticas de nanofios de Ni e Co". [s.n.], 2006. http://repositorio.unicamp.br/jspui/handle/REPOSIP/278291.
Pełny tekst źródłaDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin
Made available in DSpace on 2018-08-11T12:53:07Z (GMT). No. of bitstreams: 1 Silva_ElvisLirada_M.pdf: 8983880 bytes, checksum: 9cf84b0bedd17ff35f94bf813d128441 (MD5) Previous issue date: 2006
Resumo: Os arranjos de nanofios magnéticos tem atraído um interesse considerável da comunidade científica, motivado principalmente pela sua utilização como sistemas-modelo e na possível aplicação em mídias magnéticas de alta densidade de informação. O comportamento magnético macroscópico desses sistemas é fortemente dependente das anisotropias magnéticas efetivas (determinadas principalmente pelas contribuições das anisotropias de forma, magnetocristalina e magnetoelástica). Neste trabalho realizamos um estudo completo das propriedades magnéticas de nanofios magnéticos de Ni e Co, variando o comprimento dos nanofios e a temperatura das amostras. Os nanofios são obtidos por eletrodeposição em nanoporos de membranas de alumina preparadas por um duplo processo de anodização em substratos de alumínio. A caracterização estrutural dos nanofios foi feita por microscopia eletrônica de varredura de alta resolução e microscopia de força magnética e revela que os arranjos de nanofios estão organizados em uma rede hexagonal onde possuem diametros de aproximadamente 35 nm e a distância entre os nanofios de aproximadamente 105 nm. O comprimento dos nanofios varia de aproximadamente 560 nm até 2250 nm. Observamos uma mudança do eixo fácil de magnetização da direção paralela ao eixo dos nanofios na temperatura ambiente para direção perpendicular ao eixo dos nanofios em baixas temperaturas. Analisamos a dependência da remanência reduzida e da coercividade em relação à temperatura e verificamos que as amostras apresentam uma temperatura de cruzamento entre as remanências reduzidas com campo aplicado paralela e perpendicularmente ao eixo dos nanofios, que varia de acordo com o comprimento dos nanofios. Interpretamos nossos resultados em termos de uma competição entre a anisotropia de forma, que tende orientar a magnetização na direção paralela ao eixo dos nanofios, e uma anisotropia dependente da temperatura, que tenta alinhar a magnetizaçao na direção perpendicular ao eixo dos nanofios. O mecanismo utilizado para tentar explicar de maneira qualitativa os resultados que observamos, ao diminuirmos a temperatura da amostra, origina-se da tensão provocada pela alumina sobre os nanofios, em decorrência dos diferentes coeficientes de expansão térmica desses materiais, que induz uma anisotropia magnetoelástica perpendicular ao eixo dos nanofios
Abstract: Arrays of magnetic nanowires have attracted considerable interest, mainly motivated by their use as model systems and by possible applications in high-density magnetic information storage. The macroscopic magnetic behavior of such systems is strongly dependent on the effective magnetic anisotropy (mainly determined by shape and crystalline contributions). In this work, we carry out a systematic study of the magnetic properties on highly-ordered magnetic arrays of Co and Ni nanowires as functions of length of the nanowires and temperature. Nanowires were obtained by electrodeposition into nanopores of alumina membranes prepared by a two-step anodization process from pure aluminium. Structural studies were performed by high resolution scanning electron microscopy and magnetic force microscopy. The images revealed uniform arrays of nanowires with diameter of 35 nm, and with hexagonal symmetry arrangement with lattice constant (or inter-nanowire distance) of 105 nm. The nanowires length varies between 560 nm and 2250 nm. We observed a change in the magnetic easy axis from parallel to the axis wires at room temperature to transverse to the wire axis at low temperatures. We analysed the temperature dependence of the reduced remanence and coercive field we verified that the samples present a crossover temperature of reduced remanence with magnetic field applied both perpendicular and parallel to the nanowires axis that varies with nanowires length. We interpreted our results in terms of a competition between the shape anisotropy of the wires, which tends to align the magnetization along the wires axis and the temperature dependent magnetic anisotropy, which tends to orient the magnetization transverse to the wires axis. The mechanism which can qualitatively explain the observed results as a function of temperature is an induced anisotropy of magnetoelastic origin transversal to the nanowires axis, caused by strains and stresses, due to the different thermal expansion coefficient of nanowires and the alumina matrix, respectively
Mestrado
Materiais Magneticos e Propriedades Magneticas
Mestre em Física
Peixoto, Thiago Ribeiro Fonseca. "Análise FORC em nanofios de Ni e Co e excitação de mágnons de superfície em filmes de O-Fe/W(001) via SPEELS". Universidade de São Paulo, 2010. http://www.teses.usp.br/teses/disponiveis/43/43134/tde-26012011-124128/.
Pełny tekst źródłaWe study the static behavior and the mechanisms of magnetization reversal of arrays of self-organized Ni and Co nanowires with high shape anisotropy. The arrays are obtained by two-step anodization of Al foils and subsequent electrodeposition of the magnetic metal.Their structural characterization is obtained by scanning electron microscopy, atomic and magnetic force microscopy and X-ray diffraction. Their magnetic behavior is studied from the measurement of first order reversal curves (FORCs) at room temperature, via SQUID or vibrating sample magnetometry. The FORC analysis method consists in building a map of the magnetic response of the material from the experimental data and it can be interpreted from the direct analogy with the Preisach model of hysteresis. We present results of the influence of the diameter of the nanowires and the angle of the applied external field in relation to the anisotropy easy-axis on the main features of the FORC diagrams. We also study the spin dynamics of O-Fe/W(001) surfaces through spin-polarized electron energy loss spectroscopy (SPEELS). The samples consist of 30 atomic monolayers of Fe grown on a W(001) single crystal via molecular beam epitaxy at room temperature. Subsequently, the samples are exposed to 5 langmuirs of O2 and suffer a mild annealing at 500 K. The structure and purity of the samples are analyzed by low-energy electron diffraction and Auger electron spectroscopy. The magnetic characterization is performed by magneto-optical Kerr effect magnetometry, resulting in films with high remanent in-plane magnetization. SPEEL-spectra reveal a rich profusion of inelastic spin-flip and non-spin-flip peaks, which exhibit clear dispersion for wave vectors throughout the whole surface Brillouin zone. The results are attributed to surface modes of phonons and magnons (spin waves), in accordance with the literature and with current theoretical models.
Miguel, Federico Luis Verfasser], i Frank [Akademischer Betreuer] [Mücklich. "Design and characterisation of Ni-matrix nanocomposite films reinforced with Ag-coated SnO2 nanowires for electrical contact applications / Federico Luis Miguel. Betreuer: Frank Mücklich". Saarbrücken : Saarländische Universitäts- und Landesbibliothek, 2016. http://d-nb.info/1104733366/34.
Pełny tekst źródłaHuang, Ciou-yu, i 黃秋玉. "Studies of electroplating Ni-film and Ni-nanowire in the supercritical carbon dioxide". Thesis, 2007. http://ndltd.ncl.edu.tw/handle/99111051813347681830.
Pełny tekst źródła國立中正大學
化學工程所
95
This study is to investigate the characteristic of nickel electroplating in supercritical carbon dioxide (SC-CO2) electroplating process, and to apply this technology to produce Ni-nanowires in anodic aluminum oxide template. It is found that the Ni-film is polycrystalline structure and grain size of the Ni-film decrease with increasing pressure under SC-CO2 electroplating. The reasons could be attributed to: (i) pressure can induce nucleation rate and (ii) the emulsified electrolyte by SC-CO2 acts like pulsation electroplating, leading to a decrease in grain size. In addition, because fine grain size and reduce porosity of the Ni-film under SC-CO2 electroplating. The hardness of the Ni-film in the pressure 10.2MPa to reach 8.29GPa and is about four-time higher than that by ambient electroplating (2GPa). Due to SC-CO2 having the advantages of low surface tension and high mass transfer, the electrolyte can be brought into nanopores, leading to an enhancement of the Ni-nanowire filling rate in anodic aluminum oxide template. Ni-nanowire and Ni-film is like polycrystalline structure and also decreases with increasing pressure. Both of produced Ni-film and Ni-nanowire have the same decreasing trend in coercive field and squareness ratio as increasing pressure.
Książki na temat "Ni Nanowire"
Osika, Anita A. V. The electrical properties of electrochemically fabicated: Ni nanowires. Dept of Chemistry, U of Toronto, 2000.
Znajdź pełny tekst źródłaCzęści książek na temat "Ni Nanowire"
Katakam, Krishna Chaitanya, Sudhakar Rao Gorja i Natraj Yedla. "Influence of Crystallographic Orientation on the Mechanical Properties and Deformation Behavior of Ni Nanowire Using Large Scale Molecular Dynamics". W Springer Proceedings in Materials, 75–84. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-3937-1_8.
Pełny tekst źródłaChèze, Caroline. "Ni Collector-Induced Growth of GaN Nanowires on C-Plane Sapphire by Plasma-Assisted Molecular Beam Epitaxy". W Wide Band Gap Semiconductor Nanowires 1, 157–76. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118984321.ch7.
Pełny tekst źródłaPan, H., J. B. Yi, B. H. Liu, S. Thongmee, J. Ding, Yuan Ping Feng i Jian Yi Lin. "Magnetic Properties of Highly-Ordered Ni, Co and Their Alloy Nanowires in AAO Templates". W Solid State Phenomena, 123–26. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/3-908451-18-3.123.
Pełny tekst źródłaSharma, Sanjeev Kumar, Parveen Kumar i Balwinder Raj. "Introduction to Nanowires". W Advances in Computer and Electrical Engineering, 1–15. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-6467-7.ch001.
Pełny tekst źródłaA., Carlos, Ettore Vassallo, Emilio De i Manuel Vzquez. "On the behavior of Ni Magnetic Nanowires as studied by FMR and the effect of “blocking”." W Nanowires - Fundamental Research. InTech, 2011. http://dx.doi.org/10.5772/16926.
Pełny tekst źródłaPelez, Samuel, Carlo Guerrero, Ricardo Paredes, Pedro A. i Pedro Garca-Mochales. "Modelling Metallic Nanowires Breakage for Statistical Studies: Ni Case as Example". W Electrodeposited Nanowires and their Applications. InTech, 2010. http://dx.doi.org/10.5772/39483.
Pełny tekst źródłaNaghib, Seyed Morteza, Seyed Mahdi Katebi i Sadegh Ghorbanzade. "Material and Biomaterial for Biosensing Platform". W Electrochemical Biosensors in Practice: Materials and Methods, 59–104. BENTHAM SCIENCE PUBLISHERS, 2023. http://dx.doi.org/10.2174/9789815123944123010004.
Pełny tekst źródłaLow, It-Meng, Hani Manssor Albetran, Victor Manuel de la Prida Pidal i Fong Kwong Yam. "Ni Nanowires Grown in Anodic TiO2 Nanotube Arrays as Diluted Magnetic Semiconductor Nanocomposites". W Nanostructured Titanium Dioxide in Photocatalysis, 273–84. Jenny Stanford Publishing, 2021. http://dx.doi.org/10.1201/9781003148531-18.
Pełny tekst źródłaStreszczenia konferencji na temat "Ni Nanowire"
Kansara, Shivam, Sanjeev Gupta i Yogesh Sonvane. "Diameter effects on the quantum confined Ni nanowire arrays". W DAE SOLID STATE PHYSICS SYMPOSIUM 2018. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5112934.
Pełny tekst źródłaMarjoribanks, R. S., L. Lecherbourg, P. Audebert, J.-P. Geindre, B. Teeple, M. Servol, A. Héron i in. "Ultra-intense 35fs Laser-Matter Interaction Physics in Nanostructured Ni-Nanowire Targets". W Frontiers in Optics. Washington, D.C.: OSA, 2008. http://dx.doi.org/10.1364/fio.2008.fmb3.
Pełny tekst źródłaGapin, A., X. Ye, J. F. Aubuchon, L. Chen i S. Jin. "Patterned Media Based on Soft/Hard, Composite Nanowire Array of Ni/CoPt". W INTERMAG 2006 - IEEE International Magnetics Conference. IEEE, 2006. http://dx.doi.org/10.1109/intmag.2006.376287.
Pełny tekst źródłaBhuyan, Prabal Dev, Sanjeev K. Gupta, Yogesh Sonvane i P. N. Gajjar. "Quantum transport properties of Ni/Si nanowire for nano-electronic device application". W DAE SOLID STATE PHYSICS SYMPOSIUM 2018. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5113283.
Pełny tekst źródłaMarjoribanks, R. S., M. Servol, L. Lecherbourg, P. Forrester, H. Levy, L. McKinney, B. Teeple i in. "Theory and experiment in ultraintense laser-matter interaction in nanostructured Ni-nanowire targets". W 2008 Conference on Lasers and Electro-Optics (CLEO). IEEE, 2008. http://dx.doi.org/10.1109/cleo.2008.4552391.
Pełny tekst źródłaHollinger, R., S. Wang, H. Song, R. Nedbailo, Y. Wang, V. Shlyaptsev, J. Rocca i in. "K-shell spectroscopy of Ni nanowire plasmas heated with highly relativistic laser pulses". W 2021 IEEE International Conference on Plasma Science (ICOPS). IEEE, 2021. http://dx.doi.org/10.1109/icops36761.2021.9588459.
Pełny tekst źródłaPark, Joung-Man, Pyung-Gee Kim, Jung-Hoon Jang, Sung-Ju Kim, Dong-Jin Yoon, George Hansen i K. Lawrence DeVries. "Self-sensing of CNF and Ni nanowire/PVDF and cellulose composites using electro-micromechanical test". W NanoScience + Engineering, redaktorzy Elizabeth A. Dobisz i Louay A. Eldada. SPIE, 2007. http://dx.doi.org/10.1117/12.731389.
Pełny tekst źródłaFeng Tian, Dan Wei i Jing Zhu. "Experimental and micromagnetics studies on magnetism of Ni nanowire arrays prepared with magnetic field induction". W INTERMAG Asia 2005: Digest of the IEEE International Magnetics Conference. IEEE, 2005. http://dx.doi.org/10.1109/intmag.2005.1464114.
Pełny tekst źródłaPark, Joung-Man, Sung-Ju Kim, Pyung-Gee Kim, Dong-Jin Yoon, George Hansen i K. Lawrence DeVries. "Self-sensing and actuation of CNF and Ni nanowire/polymer composites using electro-micromechanical test". W MOEMS-MEMS 2007 Micro and Nanofabrication, redaktorzy Allyson L. Hartzell i Rajeshuni Ramesham. SPIE, 2007. http://dx.doi.org/10.1117/12.703384.
Pełny tekst źródłaMelilli, G., B. Madon, M. C. Clochard i J. E. Wegrowe. "Orientation effect on the giant stress field induced in a single Ni nanowire by mechanical strain". W SPIE Nanoscience + Engineering, redaktorzy Henri-Jean Drouhin, Jean-Eric Wegrowe i Manijeh Razeghi. SPIE, 2015. http://dx.doi.org/10.1117/12.2189085.
Pełny tekst źródła