Artykuły w czasopismach na temat „Newtonian bubble”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Newtonian bubble”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Rosenbaum, Eilis, Mehrdad Massoudi i Kaushik Dayal. "Surfactant stabilized bubbles flowing in a Newtonian fluid". Mathematics and Mechanics of Solids 24, nr 12 (26.06.2019): 3823–42. http://dx.doi.org/10.1177/1081286519854508.
Pełny tekst źródłaDe Kee and, D., C. F. Chan Man Fong i J. Yao. "Bubble Shape in Non-Newtonian Fluids". Journal of Applied Mechanics 69, nr 5 (16.08.2002): 703–4. http://dx.doi.org/10.1115/1.1480822.
Pełny tekst źródłaKontaxi, Georgia, Yorgos G. Stergiou i Aikaterini A. Mouza. "Experimental Study of Bubble Formation from a Micro-Tube in Non-Newtonian Fluid". Micromachines 12, nr 1 (11.01.2021): 71. http://dx.doi.org/10.3390/mi12010071.
Pełny tekst źródłaKontaxi, Georgia, Yorgos G. Stergiou i Aikaterini A. Mouza. "Experimental Study of Bubble Formation from a Micro-Tube in Non-Newtonian Fluid". Micromachines 12, nr 1 (11.01.2021): 71. http://dx.doi.org/10.3390/mi12010071.
Pełny tekst źródłaShan, Jie, i Xiaojun Zhou. "The Effect of Bubbles on Particle Migration in Non-Newtonian Fluids". Separations 8, nr 4 (24.03.2021): 36. http://dx.doi.org/10.3390/separations8040036.
Pełny tekst źródłaAquino, Andrea, Davide Picchi i Pietro Poesio. "Modeling the motion of a Taylor bubble in a microchannel through a shear-thinning fluid". E3S Web of Conferences 312 (2021): 05006. http://dx.doi.org/10.1051/e3sconf/202131205006.
Pełny tekst źródłaIslam, Md Tariqul, P. Ganesan i Ji Cheng. "A pair of bubbles’ rising dynamics in a xanthan gum solution: a CFD study". RSC Advances 5, nr 11 (2015): 7819–31. http://dx.doi.org/10.1039/c4ra15728a.
Pełny tekst źródłaTruby, J. M., S. P. Mueller, E. W. Llewellin i H. M. Mader. "The rheology of three-phase suspensions at low bubble capillary number". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 471, nr 2173 (styczeń 2015): 20140557. http://dx.doi.org/10.1098/rspa.2014.0557.
Pełny tekst źródłaZhao, Xinxin, Xiangzhen Yan, Hongwei Jiang, Guang Yang, Jintang Wang, Xiaohui Sun, Yonghai Gao i Faling Yin. "Simulation Analysis of Gas Bubble Formation and Escape in Non-Newtonian Drilling Fluids". Geofluids 2021 (9.04.2021): 1–14. http://dx.doi.org/10.1155/2021/6680653.
Pełny tekst źródłaFakhari, Ahmad, i Célio Fernandes. "Single-Bubble Rising in Shear-Thinning and Elastoviscoplastic Fluids Using a Geometric Volume of Fluid Algorithm". Polymers 15, nr 16 (17.08.2023): 3437. http://dx.doi.org/10.3390/polym15163437.
Pełny tekst źródłaMoreira, Ana I., Luís A. M. Rocha, João Carneiro, José D. P. Araújo, João B. L. M. Campos i João M. Miranda. "Isolated Taylor Bubbles in Co-Current with Shear Thinning CMC Solutions in Microchannels—A Numerical Study". Processes 8, nr 2 (20.02.2020): 242. http://dx.doi.org/10.3390/pr8020242.
Pełny tekst źródłaPILLAPAKKAM, SHRIRAM B., PUSHPENDRA SINGH, DENIS BLACKMORE i NADINE AUBRY. "Transient and steady state of a rising bubble in a viscoelastic fluid". Journal of Fluid Mechanics 589 (8.10.2007): 215–52. http://dx.doi.org/10.1017/s0022112007007628.
Pełny tekst źródłaAraújo, J. D. P., J. M. Miranda i J. B. L. M. Campos. "CFD Study of the Hydrodynamics of Slug Flow Systems: Interaction between Consecutive Taylor Bubbles". International Journal of Chemical Reactor Engineering 13, nr 4 (1.12.2015): 541–49. http://dx.doi.org/10.1515/ijcre-2014-0161.
Pełny tekst źródłaHersey, Eric, Mauro Rodriguez i Eric Johnsen. "Dynamics of an oscillating microbubble in a blood-like Carreau fluid". Journal of the Acoustical Society of America 153, nr 3 (marzec 2023): 1836–45. http://dx.doi.org/10.1121/10.0017342.
Pełny tekst źródłaLiu, Yaxin, Eric R. Upchurch i Evren M. Ozbayoglu. "Experimental Study of Single Taylor Bubble Rising in Stagnant and Downward Flowing Non-Newtonian Fluids in Inclined Pipes". Energies 14, nr 3 (23.01.2021): 578. http://dx.doi.org/10.3390/en14030578.
Pełny tekst źródłaBräuer, Felix, Elias Trautner, Josef Hasslberger, Paolo Cifani i Markus Klein. "Turbulent Bubble-Laden Channel Flow of Power-Law Fluids: A Direct Numerical Simulation Study". Fluids 6, nr 1 (12.01.2021): 40. http://dx.doi.org/10.3390/fluids6010040.
Pełny tekst źródłaVélez-Cordero, J. Rodrigo, Johanna Lantenet, Juan Hernández-Cordero i Roberto Zenit. "Compact bubble clusters in Newtonian and non-Newtonian liquids". Physics of Fluids 26, nr 5 (maj 2014): 053101. http://dx.doi.org/10.1063/1.4874630.
Pełny tekst źródłaFavelukis, Moshe, i Ramon J. Albalak. "Bubble growth in viscous newtonian and non-newtonian liquids". Chemical Engineering Journal and the Biochemical Engineering Journal 63, nr 3 (wrzesień 1996): 149–55. http://dx.doi.org/10.1016/s0923-0467(96)03119-3.
Pełny tekst źródłaJiang, Xiao F., Chunying Zhu i Huai Z. Li. "Bubble pinch-off in Newtonian and non-Newtonian fluids". Chemical Engineering Science 170 (październik 2017): 98–104. http://dx.doi.org/10.1016/j.ces.2016.12.057.
Pełny tekst źródłaMitrou, Stamatina, Simona Migliozzi, Panagiota Angeli i Luca Mazzei. "Effect of polydispersity and bubble clustering on the steady shear viscosity of semidilute bubble suspensions in Newtonian media". Journal of Rheology 67, nr 3 (maj 2023): 635–46. http://dx.doi.org/10.1122/8.0000585.
Pełny tekst źródłaYoshida, Masanori, Hitoshi Igarashi, Kento Iwasaki, Sayaka Fuse i Aya Togashi. "Evaluation of Viscosity of Non-Newtonian Liquid Foods with a Flow Tube Instrument". International Journal of Food Engineering 11, nr 6 (1.12.2015): 815–23. http://dx.doi.org/10.1515/ijfe-2015-0138.
Pełny tekst źródłaWang, Tao, Jian Hua Zhang, Yi Zhang i Xiu Hua Ren. "Optimization of Bubble Amount in Resin Mineral Composite Based Vacuum Pouring Procedure". Applied Mechanics and Materials 395-396 (wrzesień 2013): 60–63. http://dx.doi.org/10.4028/www.scientific.net/amm.395-396.60.
Pełny tekst źródłaYao, Shun, Yichong Chen, Yijie Ling, Dongdong Hu, Zhenhao Xi i Ling Zhao. "Analysis of Bubble Growth in Supercritical CO2 Extrusion Foaming Polyethylene Terephthalate Process Based on Dynamic Flow Simulation". Polymers 13, nr 16 (20.08.2021): 2799. http://dx.doi.org/10.3390/polym13162799.
Pełny tekst źródłaALEXANDROU, A. N., V. M. ENTOV, S. S. KOLGANOV i N. V. KOLGANOVA. "On bubble rising in a Hele–Shaw cell filled with a non-Newtonian fluid". European Journal of Applied Mathematics 15, nr 3 (czerwiec 2004): 315–27. http://dx.doi.org/10.1017/s0956792504005509.
Pełny tekst źródłaHariri, Amirhossein, Mohammad T. Shervani-Tabar i Rezayat Parvizi. "Laser-Produced Cavitation Bubble Behavior in Newtonian and Non-Newtonian Liquid Inside a Rigid Cylinder: Numerical Study of Liquid Disc Microjet Impact Using OpenFOAM". Micromachines 14, nr 7 (14.07.2023): 1416. http://dx.doi.org/10.3390/mi14071416.
Pełny tekst źródłaAllen, John, i Ronald A. Roy. "Bubble dynamics in non‐Newtonian fluids". Journal of the Acoustical Society of America 103, nr 5 (maj 1998): 3013. http://dx.doi.org/10.1121/1.422486.
Pełny tekst źródłaFan, Wenyuan, i Xiaohong Yin. "Bubble formation in shear-thinning fluids: Laser image measurement and a novel correlation for detached volume". Chemical Industry and Chemical Engineering Quarterly 23, nr 3 (2017): 301–9. http://dx.doi.org/10.2298/ciceq151019045f.
Pełny tekst źródłaMorshed, Munzarin, Muhammad Saad Khan, Mohammad Azizur Rahman i Syed Imtiaz. "Flow Regime, Slug Frequency and Wavelet Analysis of Air/Newtonian and Air/non-Newtonian Two-Phase Flow". Applied Sciences 10, nr 9 (8.05.2020): 3272. http://dx.doi.org/10.3390/app10093272.
Pełny tekst źródłaShen, Zhongxiang, Ming Gao, Wuhan Dong i Lixin Zhang. "Comparative experimental study on dynamic characteristics of bubble microlayers in small channel flow boiling and pool boiling". Journal of Physics: Conference Series 2280, nr 1 (1.06.2022): 012036. http://dx.doi.org/10.1088/1742-6596/2280/1/012036.
Pełny tekst źródłaShen, Zhongxiang, Ming Gao, Wuhan Dong i Lixin Zhang. "Comparative experimental study on dynamic characteristics of bubble microlayers in small channel flow boiling and pool boiling". Journal of Physics: Conference Series 2280, nr 1 (1.06.2022): 012036. http://dx.doi.org/10.1088/1742-6596/2280/1/012036.
Pełny tekst źródłaLi, H. Z., Y. Mouline, L. Choplin i N. Midoux. "Chaotic bubble coalescence in non-Newtonian fluids". International Journal of Multiphase Flow 23, nr 4 (sierpień 1997): 713–23. http://dx.doi.org/10.1016/s0301-9322(97)00004-9.
Pełny tekst źródłaBrujan, Emil-Alexandru. "Cavitation bubble dynamics in non-Newtonian fluids". Polymer Engineering & Science 49, nr 3 (15.12.2008): 419–31. http://dx.doi.org/10.1002/pen.21292.
Pełny tekst źródłaRodrigue, Denis, Daniel De Kee i C. F. Chan Man Fong. "Bubble drag in contaminated non-newtonian solutions". Canadian Journal of Chemical Engineering 75, nr 4 (sierpień 1997): 794–96. http://dx.doi.org/10.1002/cjce.5450750418.
Pełny tekst źródłaKawase, Y., i M. Moo-Young. "Liquid phase mixing in bubble columns with Newtonian and non-Newtonian fluids". Chemical Engineering Science 41, nr 8 (1986): 1969–77. http://dx.doi.org/10.1016/0009-2509(86)87113-5.
Pełny tekst źródłaKumar Jana, Sumit, i Sudip Kumar Das. "TAPERED BUBBLE COLUMN USING PSEUDOPLASTIC NON-NEWTONIAN LIQUIDS – EMPIRICAL CORRELATION FOR PRESSURE DROP". Chemistry & Chemical Technology 11, nr 3 (28.08.2017): 327–32. http://dx.doi.org/10.23939/chcht11.03.327.
Pełny tekst źródłaHAQUE, M. W., K. D. P. NIGAM, K. VISWANATHAN i J. B. JOSHI. "STUDIES ON BUBBLE RISE VELOCITY IN BUBBLE COLUMNS EMPLOYING NON-NEWTONIAN SOLUTIONS". Chemical Engineering Communications 73, nr 1 (listopad 1988): 31–42. http://dx.doi.org/10.1080/00986448808940431.
Pełny tekst źródłaChen, Zai Liang, i Tian Qi Huang. "Mathematical Model of Bubble Dissolution Process in Polymer Melt". Advanced Materials Research 154-155 (październik 2010): 1251–54. http://dx.doi.org/10.4028/www.scientific.net/amr.154-155.1251.
Pełny tekst źródłaFan, Wen Yuan, i Xiao Hong Yin. "Fractal Approach to Bubble Rising Dynamics in Non-Newtonian Fluids". Advanced Materials Research 889-890 (luty 2014): 559–62. http://dx.doi.org/10.4028/www.scientific.net/amr.889-890.559.
Pełny tekst źródłaClark, Nigel N., Rory L. C. Flemmer i Jan W. Van Egmond. "Non-newtonian two-phase circulation in bubble columns". Canadian Journal of Chemical Engineering 67, nr 5 (październik 1989): 862–65. http://dx.doi.org/10.1002/cjce.5450670520.
Pełny tekst źródłaFrank, Xavier, Huai Z. Li, Denis Funfschilling, Florence Burdin i Youguang Ma. "Bubble Motion in Non-Newtonian Fluids and Suspensions". Canadian Journal of Chemical Engineering 81, nr 3-4 (19.05.2008): 483–90. http://dx.doi.org/10.1002/cjce.5450810321.
Pełny tekst źródłaALEXANDROU, ANDREAS N., i VLADIMIR ENTOV. "On the steady-state advancement of fingers and bubbles in a Hele–Shaw cell filled by a non-Newtonian fluid". European Journal of Applied Mathematics 8, nr 1 (luty 1997): 73–87. http://dx.doi.org/10.1017/s0956792596002963.
Pełny tekst źródłaTSAMOPOULOS, J., Y. DIMAKOPOULOS, N. CHATZIDAI, G. KARAPETSAS i M. PAVLIDIS. "Steady bubble rise and deformation in Newtonian and viscoplastic fluids and conditions for bubble entrapment". Journal of Fluid Mechanics 601 (25.04.2008): 123–64. http://dx.doi.org/10.1017/s0022112008000517.
Pełny tekst źródłaMahmoudi, Sadra, Farshid Hemmatian, Kaveh Padasht Dahkaee, Mark W. Hlawitschka i Apostolos Kantzas. "Detailed study of single bubble behavior and drag correlations in Newtonian and non-Newtonian liquids for the design of bubble columns". Chemical Engineering Research and Design 179 (marzec 2022): 119–29. http://dx.doi.org/10.1016/j.cherd.2022.01.013.
Pełny tekst źródłaGARCÍA-CALVO, E., P. LETÓN i M. A. ARRANZ. "THEORETICAL PREDICTION OF GAS HOLDUP IN BUBBLE COLUMNS WITH NEWTONIAN AND NON-NEWTONIAN LIQUIDS". Chemical Engineering Communications 143, nr 1 (styczeń 1996): 117–32. http://dx.doi.org/10.1080/00986449608936437.
Pełny tekst źródłaMIYAHARA, TOSHIRO, WEI-HONG WANG i TERUO TAKAHASHI. "Bubble formation at a submerged orifice in non-Newtonian and highly viscous Newtonian liquids." Journal of Chemical Engineering of Japan 21, nr 6 (1988): 620–26. http://dx.doi.org/10.1252/jcej.21.620.
Pełny tekst źródłaKawase, Yoshinori, i Takahiro Kumagai. "Heat transfer in bubble column and airlift bioreactors: Newtonian and non-Newtonian fermentation broths". Journal of Chemical Technology & Biotechnology 51, nr 3 (24.04.2007): 323–34. http://dx.doi.org/10.1002/jctb.280510305.
Pełny tekst źródłaYamamoto, Takehiro, Takanori Suga, Kiyoji Nakamura i Noriyasu Mori. "The Gas Penetration Through Viscoelastic Fluids With Shear-Thinning Viscosity in a Tube". Journal of Fluids Engineering 126, nr 2 (1.03.2004): 148–52. http://dx.doi.org/10.1115/1.1669402.
Pełny tekst źródłaKwak, Ho-Young. "Entropy Generation Due to the Heat Transfer for Evolving Spherical Objects". Entropy 20, nr 8 (28.07.2018): 562. http://dx.doi.org/10.3390/e20080562.
Pełny tekst źródłaGolubyatnikov, A. N., i D. V. Ukrainskii. "Dynamics of a Spherical Bubble in Non-Newtonian Liquids". Fluid Dynamics 56, nr 4 (17.06.2021): 492–502. http://dx.doi.org/10.1134/s0015462821040078.
Pełny tekst źródłaLi, Huai Z., Youssef Mouline i Noël Midoux. "Modelling the bubble formation dynamics in non-Newtonian fluids". Chemical Engineering Science 57, nr 3 (luty 2002): 339–46. http://dx.doi.org/10.1016/s0009-2509(01)00394-3.
Pełny tekst źródła