Spis treści
Gotowa bibliografia na temat „Neuroretinal organoids”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Neuroretinal organoids”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Neuroretinal organoids"
Atac, David, Kevin Maggi, Silke Feil, Jordi Maggi, Elisa Cuevas, Jane C. Sowden, Samuel Koller i Wolfgang Berger. "Identification and Characterization of ATOH7-Regulated Target Genes and Pathways in Human Neuroretinal Development". Cells 13, nr 13 (3.07.2024): 1142. http://dx.doi.org/10.3390/cells13131142.
Pełny tekst źródłaTakata, Nozomu, Deepti Abbey, Luciano Fiore, Sandra Acosta, Ruopeng Feng, Hyea Jin Gil, Alfonso Lavado i in. "An Eye Organoid Approach Identifies Six3 Suppression of R-spondin 2 as a Critical Step in Mouse Neuroretina Differentiation". Cell Reports 21, nr 6 (listopad 2017): 1534–49. http://dx.doi.org/10.1016/j.celrep.2017.10.041.
Pełny tekst źródłaAfting, Cassian, Tobias Walther, Oliver M. Drozdowski, Christina Schlagheck, Ulrich S. Schwarz, Joachim Wittbrodt i Kerstin Göpfrich. "DNA microbeads for spatio-temporally controlled morphogen release within organoids". Nature Nanotechnology, 9.09.2024. http://dx.doi.org/10.1038/s41565-024-01779-y.
Pełny tekst źródłaLiu, Wei, Rupendra Shrestha, Albert Lowe, Xusheng Zhang i Ludovic Spaeth. "Self-formation of concentric zones of telencephalic and ocular tissues and directional retinal ganglion cell axons". eLife 12 (4.09.2023). http://dx.doi.org/10.7554/elife.87306.3.
Pełny tekst źródłaIsla-Magrané, Helena, Maddalen Zufiaurre-Seijo, José García-Arumí i Anna Duarri. "All-trans retinoic acid modulates pigmentation, neuroretinal maturation, and corneal transparency in human multiocular organoids". Stem Cell Research & Therapy 13, nr 1 (28.07.2022). http://dx.doi.org/10.1186/s13287-022-03053-1.
Pełny tekst źródłaRozprawy doktorskie na temat "Neuroretinal organoids"
Frank, Elie. "Modélisation du Syndrome d'Alström à partir de cellules souches pluripotentes humaines pour l'identification de cibles moléculaires d'intérêt thérapeutique". Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASQ041.
Pełny tekst źródłaAlström syndrome (AS) is a monogenic recessive multi-systemic disease characterized by hearing and vision loss, obesity, type 2 diabetes, cardiomyopathy and progressive liver and kidney failure. Symptoms affecting vision develop in the first few weeks after birth and gradually lead to total loss of sight. At present, there is no cure for this disease, and only solutions that reduce the effects of the symptoms can be proposed.The aim of this thesis is to develop a cellular model of AS with a view to understanding the molecular mechanisms driving the disease and identifying therapeutic targets.We obtained different clones with pathological or de novo mutations using genome-editing systems associated with CRISPR/Cas9. We characterized these model clones by seeking to identify specific phenotypic markers within the hiPSCs. The mutations generated did not change the properties of these cells.In a second step, still with the aim of identifying a pathological phenotype, we differentiated the model iPSC lines into RPE cells.Again, no specific phenotypic marker was identified. Finally, we differentiated our model hiPSC lines into neuroretinal organoids to study retinal cells development within these structures with a particular focus on photoreceptors. We were able to observe the absence or reduced expression of opsins characteristic of cones and rods in organoids derived from ALMS1-mutant hiPSCs. In addition, these organoids showed increased cell death compared with organoids derived from healthy hiPSC lines. This suggests that photoreceptors degenerate during differentiation within organoids. The mechanisms by which mutations in ALMS1 lead to this degeneration remain unclear.The cellular models of AS presented in this thesis therefore reproduce a pathological phenotype and will be invaluable tools for understanding the mechanisms responsible for the visual symptoms of the disease, and pave the way for screening strategies aimed at identifying new therapeutic targets