Gotowa bibliografia na temat „Neuroimplant”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Neuroimplant”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Neuroimplant"

1

Mutlu, Mustafa, Enes Caldir, Ibrahim Erkutlu i Metin Tulgar. "The latest innovative study in neurotechnology: A fully implantable - external rechargeable and controlled neuroimplant system." Natural Science and Discovery 2, nr 1 (30.03.2016): 22. http://dx.doi.org/10.20863/nsd.11561.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Shestakova, L. A. "Neural investigators: utopia or future". Juridical Journal of Samara University 9, nr 1 (12.04.2023): 60–65. http://dx.doi.org/10.18287/2542-047x-2023-9-1-60-65.

Pełny tekst źródła
Streszczenie:
The article explores neurotechnologies, gives their definition, provides their classification and objective grounds for implementation. The author of the article, thinking prospectively, assesses the legal and ethical risks in the work of an investigator, interrogator with neuroimplants. The author of the article believes that the use of neotechnologies is a promising direction for solving the problems of investigators, interrogators, whose workload is excessive. This reduces the quality of crime investigation.
Style APA, Harvard, Vancouver, ISO itp.
3

Ronzhes, Olena. "Improving the Effectiveness of Learning with the Help of Neurocomputer Interface". Visnyk of V. N. Karazin Kharkiv National University. A Series of Psychology, nr 72 (5.08.2022): 44–51. http://dx.doi.org/10.26565/2225-7756-2022-72-05.

Pełny tekst źródła
Streszczenie:
The article considers modern technologies for reading signals from the human brain and nervous system and selects the optimal technology to improve the efficiency of adult learning with the help of a neurocomputer interface. Existing brain-computer interfaces (BCI) technologies can be divided into invasive and non-invasive. The first, invasive BCIs, are neuroimplants in certain parts of the brain that work on the basis of electrocorticography (ECOG) or intracranial EEG (iEEG) technology and do not require deep intervention in brain structures; or another invasive BCIs, based on intracortical recording technology using implants with electrodes placed in brain closer to the signal source, and required more complicate operation. The second, non-invasive BCI, reads signals from the brain and nervous system and is based on electroencephalogram (EEG). Compared to invasive BCIs with their more accurate signal, transcranial BCIs communicate with the brain through the skull bones, muscles, and all tissues. Their use does not require intervention in the human body. To increase the effectiveness of training, there was chosen a physiotherapeutic method of transcranial electrical stimulation (TES) in combination with a braincomputer interface based on electroencephalography (EEG), as the most accessible non-invasive method of exposure and feedback due to BCI without known side effects to mental functions and personality. The use of brain-computer interfaces, in particular transcranial electrical stimulation in combination with electroencephalography, increases cognitive abilities in learning, including multitasking. This method can also be used to increase the effectiveness of human assimilation of the necessary new digital environments and is used not only for training complex professions, but also for the masses. Side effects on higher mental functions and personality have not been sufficiently studied to recommend or avoid the use of neurocomputer interfaces for widespread use in education.
Style APA, Harvard, Vancouver, ISO itp.
4

Sharon, Aviv, Nava Shmoel, Hadas Erez, Maciej M. Jankowski, Yael Friedmann i Micha E. Spira. "Ultrastructural Analysis of Neuroimplant-Parenchyma Interfaces Uncover Remarkable Neuroregeneration Along-With Barriers That Limit the Implant Electrophysiological Functions". Frontiers in Neuroscience 15 (22.11.2021). http://dx.doi.org/10.3389/fnins.2021.764448.

Pełny tekst źródła
Streszczenie:
Despite increasing use of in vivo multielectrode array (MEA) implants for basic research and medical applications, the critical structural interfaces formed between the implants and the brain parenchyma, remain elusive. Prevailing view assumes that formation of multicellular inflammatory encapsulating-scar around the implants [the foreign body response (FBR)] degrades the implant electrophysiological functions. Using gold mushroom shaped microelectrodes (gMμEs) based perforated polyimide MEA platforms (PPMPs) that in contrast to standard probes can be thin sectioned along with the interfacing parenchyma; we examined here for the first time the interfaces formed between brains parenchyma and implanted 3D vertical microelectrode platforms at the ultrastructural level. Our study demonstrates remarkable regenerative processes including neuritogenesis, axon myelination, synapse formation and capillaries regrowth in contact and around the implant. In parallel, we document that individual microglia adhere tightly and engulf the gMμEs. Modeling of the formed microglia-electrode junctions suggest that this configuration suffice to account for the low and deteriorating recording qualities of in vivo MEA implants. These observations help define the anticipated hurdles to adapting the advantageous 3D in vitro vertical-electrode technologies to in vivo settings, and suggest that improving the recording qualities and durability of planar or 3D in vivo electrode implants will require developing approaches to eliminate the insulating microglia junctions.
Style APA, Harvard, Vancouver, ISO itp.
5

Rizea, R. E., Karina Lidia Gheorghita, Gh David i A. V. Ciurea. "Neuromodulation devices nowadays". Romanian Neurosurgery, 20.03.2019, 31–33. http://dx.doi.org/10.33962/roneuro-2019-005.

Pełny tekst źródła
Streszczenie:
Introduction. Neuromodulation devices have known a great progress in the past years being used in treatment of drug resistant neurological diseases such as epilepsies and migraines. A neuromodulation device can stimulate profound or superficial neural pathways in order to balance chronic drug-resistant disorders that involve disturbances of cellular electrical potentials. Material. Cranial neuromodulation devices implants used until now usually determined skull irregularities, implant site infection, resorption of the bone flap or osteomyelitis. In order to solve these problems, it was needed a customized cranial implant that integrates the neuromodulation device. We report the first description of a fully integrated neuromodulation device within a customized cranial implant, publicised in 2018 by Gordon et al., that demonstrates the utility of a computerized neurostimulation device combined with clear custom-designed cranial implant. Conclusion. The new approach of neurotechnology confines a better solution for neuroimplants devices with less follow-up complications and great patient’s satisfaction.
Style APA, Harvard, Vancouver, ISO itp.
6

Alexandra, Kourgiantaki. "Neural Stem Cells (NSCs) in 3D Collagen Scaffolds: developing pharmacologically monitored neuroimplants for Spinal Cord Injury (SCI)". Frontiers in Systems Neuroscience 8 (2014). http://dx.doi.org/10.3389/conf.fnsys.2014.05.00003.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Sharon, Aviv, Maciej M. Jankowski, Nava Shmoel, Hadas Erez i Micha E. Spira. "Significantly reduced inflammatory foreign-body-response to neuroimplants and improved recording performance in young compared to adult rats". Acta Biomaterialia, styczeń 2023. http://dx.doi.org/10.1016/j.actbio.2023.01.002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Rozprawy doktorskie na temat "Neuroimplant"

1

Schmitt, Christina Verfasser], Kirsten [Akademischer Betreuer] [Hattermann i Regina [Gutachter] Scherließ. "Influence of neuroimplant materials, drugs and drug-material combinations on healthy cells of the brain / Christina Schmitt ; Gutachter: Regina Scherließ ; Betreuer: Kirsten Hattermann-Koch". Kiel : Universitätsbibliothek Kiel, 2020. http://nbn-resolving.de/urn:nbn:de:gbv:8-mods-2020-00182-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Schmitt, Christina [Verfasser], Kirsten [Akademischer Betreuer] Hattermann-Koch i Regina [Gutachter] Scherließ. "Influence of neuroimplant materials, drugs and drug-material combinations on healthy cells of the brain / Christina Schmitt ; Gutachter: Regina Scherließ ; Betreuer: Kirsten Hattermann-Koch". Kiel : Universitätsbibliothek Kiel, 2020. http://d-nb.info/1213294746/34.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Sénépart, Océane. "Challenges in surface energy modulations for (moto)neurons axonal growth". Electronic Thesis or Diss., Sorbonne université, 2022. http://www.theses.fr/2022SORUS455.

Pełny tekst źródła
Streszczenie:
Afin de créer des circuits neuronaux fonctionnels, les axones reçoivent des signaux de guidage lors du développement et/ou de la régénération du système nerveux. Leur expression est variée dans le temps et l'espace and ils sont traduits par le cône de croissance en voie d'accès à leur cible : un neurone ou une cellule musculaire selon le type de neurone étudié. Cette route est générée par des interactions avec l'environnement extracellulaire, composé d'autres cellules et de substrats d'adhésion telles que les matrices extracellulaires. Comprendre ces interactions avec le substrat pourrait permettre de les reproduire dans d'innovants biomatériaux et/ou implants. Nous avons choisi de nous concentrer sur la réparation axonale dans le motoneurone après un trauma pour cette étude. En effet, après une lésion neuronale, l'axone endommagé va connaître une longue régénération non dirigée dans le système nerveux périphérique. La spécificité de ce système nerveux est l'importante taille de ses axones qui va ralentir la vitesse de rétablissement et multiplier les possibles repousses inopérantes. De ce fait, une solution doit être trouvée pour accélérer et guider la régénération axonale. Nous proposons d'étudier l'effet d'un champ électrique exogène sur la repousse axonale sous forme d'étude préliminaire à la création d'un neuro-implant électroactif. L'originalité de ce projet réside dans la méthode de stimulation, qui se fait sans contact entre les cellules et l'électrode, et la géométrie innovante de l'électrode, grâce à laquelle le champ global est nul. Il n'y a pas de conduction et les effets d'électrolyse et d'augmentation du pH sont évités. Cette configuration permet de caractériser l'effet direct du champ électrique sur les cellules sans interaction parasite. Pour commencer, comprendre les mécanismes sous-jacents aux interactions entre les cellules et le champ électrique est nécessaire et passe par des tests in-vitro en culture cellulaire 2D. Après évaluation des propriétés mécaniques des motoneurones, un dispositif de stimulation sans contact est dessiné et un protocole de stimulation des PC12 est imaginé. Le protocole est testé sur deux lignées de motoneurones in-vitro : MN1 et NSC34 pour améliorer ses paramètres, le voltage et le temps de stimulation par exemple, et l'effet du champ sur le substrat d'adhésion est quantifié par simulation CST et mesure des angles de contact. L'impact de la stimulation sur les MN1 et NSC34 est évalué selon plusieurs tests : la taille et l'orientation des neurites, la surface occupée par les cellules entre autres et l'immunohistochimie permet de visualiser les résultats. Nous pouvons conclure sur la capacité du champ électrique à influencer différentes lignées de motoneurones, en augmentant la taille de leurs neurites, en les orientant et en améliorant leur adhésion à la surface d'adhésion. Ce travail démontre la possibilité d'utiliser un champ électrique sans contact pour accélérer et orienter la pousse des axones et nous permet de comprendre son impact sur les cellules et le substrat d'adhésion
To create functional neuronal circuit units, axons during nervous system development and/or regeneration are subjected to guidance signals. Their expressions occur in spatio-temporal variation and are translated by the growth cone into a pathway to reach the connecting target. Their targets can be a neuron or a muscle cell, depending on the type of neuron. This path is generated by interactions with the surrounding environment such as cells or other substrates of which are the extracellular matrices. Understanding these interactions with the substrate would allow us to mimic them in innovative biomaterials and/or implants. We chose to focus on motoneuron axonal repair after trauma in this study. Indeed, after a nerve injury or cut, the axon that was cut will undergo a non-targeted and slow regeneration in the peripheral nervous system. The specificity of this nervous system part is the size of its axons that will slow the recovery speed down and multiply the possible uneffective regrowth routes because they are usually very long. Thus, a solution must be found to accelerate and guide the axonal regeneration. We propose to study the effect of an exogenous electric field on axonal regrowth as a preliminary study to the creation of an electroactive neuro-implant. The originality of the project lies in the contactless stimulation method : the cells are not in direct contact with the electrodes, and the innovative electrode geometry : the global field is null, with no conduction to prevent electrolysis and pH increase. This configuration gives access to the direct electric field impact on the cells without parasitic interactions. To start, understanding the mechanisms underlying the interactions between the cells and the electric field is necessary and the choice is made to start with in-vitro tests in 2D cell culture. After evaluating the motoneuron mechanical properties, a contactless stimulation device is designed and a protocol to stimulate PC12 cells is determined. The protocol is tested on two motoneurons cell lines : MN1 and NSC34 to improve its parameters, such as stimulation voltage and duration, and the electric field effect on the adhesion surface is assessed with CST simulation and contact angle measurements. The stimulation impact on MN1 and NSC34 cell lines is evaluated with several tests such as neurite size, neurite orientation and surface occupied by the cells and the results are observed thanks to immunohistochemistry. A conclusion is made on the capacity of the EF to influence different motoneuron cell lines by increasing their neurite sizes, orientate them and improve their adhesion to the substrate. This work illustrates the possibility to use a contactless electric field to accelerate and guide the axon growth and allows us to elucidate the mechanisms behind the impact of it on the cells and the substrate
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii