Gotowa bibliografia na temat „Neuroendocrine transdifferentiation”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Neuroendocrine transdifferentiation”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Neuroendocrine transdifferentiation"
Sergeant, Camille, Christel Jublanc, Delphine Leclercq, Anne-Laure Boch, Franck Bielle, Gerald Raverot, Adrian F. Daly, Jacqueline Trouillas i Chiara Villa. "Transdifferentiation of Neuroendocrine Cells". American Journal of Surgical Pathology 41, nr 6 (czerwiec 2017): 849–53. http://dx.doi.org/10.1097/pas.0000000000000803.
Pełny tekst źródłaStone, Louise. "A novel mechanism of neuroendocrine transdifferentiation". Nature Reviews Urology 15, nr 5 (20.03.2018): 263. http://dx.doi.org/10.1038/nrurol.2018.40.
Pełny tekst źródłaCordeiro-Rudnisky, Fernanda, Yue Sun i Rayan Saade. "Prostate Carcinoma With Overlapping Features of Small Cell and Acinar Adenocarcinoma: A Case Report". American Journal of Clinical Pathology 152, Supplement_1 (11.09.2019): S66—S67. http://dx.doi.org/10.1093/ajcp/aqz113.072.
Pełny tekst źródłaQuintanal-Villalonga, Alvaro, Hirokazu Taniguchi, Yingqian A. Zhan, Jacklynn V. Egger, Umesh Bhanot, Juan Qiu, Elisa de Stanchina i in. "AKT inhibition as a therapeutic strategy to constrain histological transdifferentiation in EGFR-mutant lung adenocarcinoma." Journal of Clinical Oncology 40, nr 16_suppl (1.06.2022): e21166-e21166. http://dx.doi.org/10.1200/jco.2022.40.16_suppl.e21166.
Pełny tekst źródłaYuan, Ta-Chun, Suresh Veeramani i Ming-Fong Lin. "Neuroendocrine-like prostate cancer cells: neuroendocrine transdifferentiation of prostate adenocarcinoma cells". Endocrine-Related Cancer 14, nr 3 (wrzesień 2007): 531–47. http://dx.doi.org/10.1677/erc-07-0061.
Pełny tekst źródłaVon Amsberg, Gunhild, Sergey Dyshlovoy, Jessica Hauschild, Verena Sailer, Sven Perner, Anne Offermann, Lina Merkens i in. "Long-term taxane exposure and transdifferentiation of prostate cancer in vitro." Journal of Clinical Oncology 41, nr 6_suppl (20.02.2023): 254. http://dx.doi.org/10.1200/jco.2023.41.6_suppl.254.
Pełny tekst źródłaQuintanal-Villalonga, Alvaro, Hirokazu Taniguchi, Yingqian A. Zhan, Fathema Uddin, Viola Allaj, Parvathy Manoj, Nisargbhai S. Shah i in. "Abstract 658: AKT pathway as a therapeutic target to constrain lineage plasticity leading to histological transdifferentiation". Cancer Research 82, nr 12_Supplement (15.06.2022): 658. http://dx.doi.org/10.1158/1538-7445.am2022-658.
Pełny tekst źródłaFrigo, Daniel E., i Donald P. McDonnell. "Differential effects of prostate cancer therapeutics on neuroendocrine transdifferentiation". Molecular Cancer Therapeutics 7, nr 3 (marzec 2008): 659–69. http://dx.doi.org/10.1158/1535-7163.mct-07-0480.
Pełny tekst źródłaPatel, Girijesh, Sayanika Dutta, Mosharaf Mahmud Syed, Sabarish Ramachandran, Monica Sharma, Venkatesh Rajamanickam, Vadivel Ganapathy i in. "TBX2 Drives Neuroendocrine Prostate Cancer through Exosome-Mediated Repression of miR-200c-3p". Cancers 13, nr 19 (7.10.2021): 5020. http://dx.doi.org/10.3390/cancers13195020.
Pełny tekst źródłaTurner, Leo, Andrew Burbanks i Marianna Cerasuolo. "Mathematical insights into neuroendocrine transdifferentiation of human prostate cancer cells". Nonlinear Analysis: Modelling and Control 26, nr 5 (1.09.2021): 884–913. http://dx.doi.org/10.15388/namc.2021.26.24441.
Pełny tekst źródłaRozprawy doktorskie na temat "Neuroendocrine transdifferentiation"
Guo, Yingbo. "Rôle du cil primaire au cours de la transdifferentiation neuroendocrine du cancer de la prostate". Electronic Thesis or Diss., Université Côte d'Azur, 2024. http://www.theses.fr/2024COAZ6005.
Pełny tekst źródłaProstate cancer is one of the most common malignancy cancers worldwide. 95% of PCa patients are diagnosed with adenocarcinoma of the prostate showing no expression of neuroendocrine markers. De novo neuroendocrine prostate cancer is a rare and aggressive subtype of prostate cancer, characterized by neuroendocrine markers expression. Approximatively 20% of adenocarcinoma cases progress to neuroendocrine prostate cancer following androgen deprivation therapy. The potential side effect of androgen deprivation therapy, resulting in neuroendocrine differentiation of adenocarcinoma of the prostate, brings a novel challenge for prostate cancer treatment. While many molecular mechanisms of neuroendocrine differentiation have been described, the timing of the neuroendocrine differentiation occurrence and how these driving factors result in neuroendocrine differentiation remain unclear.The primary cilium is a non-motile organelle present in nearly all human cells. Loss of primary cilium has been observed in various cancers, including clear cell Renal Cell Carcinoma (ccRCC) and PCa. Previous findings from our research team identified a distinct subgroup of pataients within ccRCC, which retained primary cilium and exhibited resistance to therapy. The presence of primary cilium was characterized by the GLI1+/IFT20+ signature. Under hypoxic conditions, primary cilium was inhibited due to stabilization of HIF-1α, correlating with increased aggressiveness of ccRCC. Considering that both ccRCC and prostate cancer are typically described as cancer lacking PC, we postulated the existence of a unique subgroup in prostate cancer exhibiting primary cilium presence associated with higher aggressiveness.We developed multiple approaches to enhance in the number of primary cilium numbers in both normal prostate cells and prostate cancer-like cells in 2D or 3D cell culture settings. This increase was correlated with a reduction in proliferation and growth of 3D structures. Notably, these methods maintained their effectiveness in inducing primary cilium numbers even under hypoxic conditions. Our findings confirmed the robustness of the GLI1+/IFT20+ signature in increasing primary cilium numbers in normal cells, while this signature was less pronounced in prostate cancer-like cells. In parallel, we discovered that the restoration of primary cilium in prostate cancer cells is associated to the neuroendocrine transdifferentiation of prostate cancer. Furthermore, the regulation of primary cilium is linked to the cancer aggressiveness.Our research provides evidence that primary cilium is present in a more aggressive subgroup of prostate cancer patients, similar to what is observed in ccRCC. Analyzing the role of primary cilium in the transdifferentiation of prostate cancer provides new insights into potential treatment strategies
Streszczenia konferencji na temat "Neuroendocrine transdifferentiation"
Li, Yinan. "Abstract 4473: SRRM4 drives treatment-induced neuroendocrine transdifferentiation of prostate adenocarcinoma under androgen receptor pathway inhibition". W Proceedings: AACR Annual Meeting 2017; April 1-5, 2017; Washington, DC. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.am2017-4473.
Pełny tekst źródłaBeshiri, Mike L., Caitlin M. Tice, Adam G. Sowalsky, Crystal Tran, Fatima Karzai, William Dahut i Kathy Kelly. "Abstract 5020: A patient-derived organoid model of neuroendocrine prostate cancer transdifferentiation informing the role of the BAF complex component ARID1A". W Proceedings: AACR Annual Meeting 2018; April 14-18, 2018; Chicago, IL. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1538-7445.am2018-5020.
Pełny tekst źródła