Gotowa bibliografia na temat „NeuroElectronics”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „NeuroElectronics”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "NeuroElectronics"
Jastrzebska‐Perfect, Patricia, Shilpika Chowdhury, George D. Spyropoulos, Zifang Zhao, Claudia Cea, Jennifer N. Gelinas i Dion Khodagholy. "Translational Neuroelectronics". Advanced Functional Materials 30, nr 29 (8.06.2020): 1909165. http://dx.doi.org/10.1002/adfm.201909165.
Pełny tekst źródłaWaldrop, M. Mitchell. "Neuroelectronics: Smart connections". Nature 503, nr 7474 (listopad 2013): 22–24. http://dx.doi.org/10.1038/503022a.
Pełny tekst źródłaKrook-Magnuson, Esther, Jennifer N. Gelinas, Ivan Soltesz i György Buzsáki. "Neuroelectronics and Biooptics". JAMA Neurology 72, nr 7 (1.07.2015): 823. http://dx.doi.org/10.1001/jamaneurol.2015.0608.
Pełny tekst źródłaGo, Gyeong‐Tak, Yeongjun Lee, Dae‐Gyo Seo i Tae‐Woo Lee. "Organic Neuroelectronics: From Neural Interfaces to Neuroprosthetics". Advanced Materials 35, nr 12 (marzec 2023): 2300758. http://dx.doi.org/10.1002/adma.202300758.
Pełny tekst źródłaVitale, Flavia, i Raghav Garg. "Novel materials and fabrication strategies for multimodal neuroelectronics". Brain Stimulation 16, nr 1 (styczeń 2023): 117. http://dx.doi.org/10.1016/j.brs.2023.01.014.
Pełny tekst źródłaDi Palma, Valerio, Andrea Pianalto, Michele Perego, Graziella Tallarida, Davide Codegoni i Marco Fanciulli. "Plasma-Assisted Atomic Layer Deposition of IrO2 for Neuroelectronics". Nanomaterials 13, nr 6 (8.03.2023): 976. http://dx.doi.org/10.3390/nano13060976.
Pełny tekst źródłaBourrier, Antoine, Anna Szarpak-Jankowska, Farida Veliev, Renato Olarte-Hernandez, Polina Shkorbatova, Marco Bonizzato, Elodie Rey i in. "Introducing a biomimetic coating for graphene neuroelectronics: toward in-vivo applications". Biomedical Physics & Engineering Express 7, nr 1 (4.12.2020): 015006. http://dx.doi.org/10.1088/2057-1976/ab42d6.
Pełny tekst źródłaGo, Gyeong‐Tak, Yeongjun Lee, Dae‐Gyo Seo i Tae‐Woo Lee. "Organic Neuroelectronics: From Neural Interfaces to Neuroprosthetics (Adv. Mater. 45/2022)". Advanced Materials 34, nr 45 (listopad 2022): 2270311. http://dx.doi.org/10.1002/adma.202270311.
Pełny tekst źródłaGolabchi, Asiyeh, Kevin M. Woeppel, Xia Li, Carl F. Lagenaur i X. Tracy Cui. "Neuroadhesive protein coating improves the chronic performance of neuroelectronics in mouse brain". Biosensors and Bioelectronics 155 (maj 2020): 112096. http://dx.doi.org/10.1016/j.bios.2020.112096.
Pełny tekst źródłaZhao, Zifang, Claudia Cea, Jennifer N. Gelinas i Dion Khodagholy. "Responsive manipulation of neural circuit pathology by fully implantable, front-end multiplexed embedded neuroelectronics". Proceedings of the National Academy of Sciences 118, nr 20 (10.05.2021): e2022659118. http://dx.doi.org/10.1073/pnas.2022659118.
Pełny tekst źródłaRozprawy doktorskie na temat "NeuroElectronics"
Rapoport, Benjamin Isaac. "Glucose-powered neuroelectronics". Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/66460.
Pełny tekst źródłaCataloged from PDF version of thesis.
Includes bibliographical references (p. 157-164).
A holy grail of bioelectronics is to engineer biologically implantable systems that can be embedded without disturbing their local environments, while harvesting from their surroundings all of the power they require. As implantable electronic devices become increasingly prevalent in scientific research and in the diagnosis, management, and treatment of human disease, there is correspondingly increasing demand for devices with unlimited functional lifetimes that integrate seamlessly with their hosts in these two ways. This thesis presents significant progress toward establishing the feasibility of one such system: A brain-machine interface powered by a bioimplantable fuel cell that harvests energy from extracellular glucose in the cerebrospinal fluid surrounding the brain. The first part of this thesis describes a set of biomimetic algorithms and low-power circuit architectures for decoding electrical signals from ensembles of neurons in the brain. The decoders are intended for use in the context of neural rehabilitation, to provide paralyzed or otherwise disabled patients with instantaneous, natural, thought-based control of robotic prosthetic limbs and other external devices. This thesis presents a detailed discussion of the decoding algorithms, descriptions of the low-power analog and digital circuit architectures used to implement the decoders, and results validating their performance when applied to decode real neural data. A major constraint on brain-implanted electronic devices is the requirement that they consume and dissipate very little power, so as not to damage surrounding brain tissue. The systems described here address that constraint, computing in the style of biological neural networks, and using arithmetic-free, purely logical primitives to establish universal computing architectures for neural decoding. The second part of this thesis describes the development of an implantable fuel cell powered by extracellular glucose at concentrations such as those found in the cerebrospinal fluid surrounding the brain. The theoretical foundations, details of design and fabrication, mechanical and electrochemical characterization, as well as in vitro performance data for the fuel cell are presented.
by Benjamin Isaac Rapoport.
Ph.D.
Naughton, Jeffrey R. "Neuroelectronic and Nanophotonic Devices Based on Nanocoaxial Arrays". Thesis, Boston College, 2017. http://hdl.handle.net/2345/bc-ir:108037.
Pełny tekst źródłaThesis advisor: Michael J. Burns
Recent progress in the study of the brain has been greatly facilitated by the development of new measurement tools capable of minimally-invasive, robust coupling to neuronal assemblies. Two prominent examples are the microelectrode array, which enables electrical signals from large numbers of neurons to be detected and spatiotemporally correlated, and optogenetics, which enables the electrical activity of cells to be controlled with light. In the former case, high spatial density is desirable but, as electrode arrays evolve toward higher density and thus smaller pitch, electrical crosstalk increases. In the latter, finer control over light input is desirable, to enable improved studies of neuroelectronic pathways emanating from specific cell stimulation. Herein, we introduce a coaxial electrode architecture that is uniquely suited to address these issues, as it can simultaneously be utilized as an optical waveguide and a shielded electrode in dense arrays
Thesis (PhD) — Boston College, 2017
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Physics
Yuan, Xiaobo [Verfasser], Roger [Gutachter] Woerdenweber i Berenike [Gutachter] Maier. "Tailoring neuroelectronic interfaces via combinations of oxides and molecular layers / Xiaobo Yuan ; Gutachter: Roger Woerdenweber, Berenike Maier". Köln : Universitäts- und Stadtbibliothek Köln, 2021. http://d-nb.info/1228071829/34.
Pełny tekst źródłaBoehler, Christian [Verfasser]. "Electroactive Coatings as a Strategy to Reduce Tissue Inflammation and Increase the Functional Lifetime of Neuroelectronic Devices / Christian Boehler". München : Verlag Dr. Hut, 2019. http://d-nb.info/1181516196/34.
Pełny tekst źródłaBöhler, Christian [Verfasser]. "Electroactive Coatings as a Strategy to Reduce Tissue Inflammation and Increase the Functional Lifetime of Neuroelectronic Devices / Christian Boehler". München : Verlag Dr. Hut, 2019. http://nbn-resolving.de/urn:nbn:de:101:1-2019032222464092796562.
Pełny tekst źródłaWolf, Nikolaus Radja [Verfasser], Roger [Gutachter] Wördenweber i Thomas [Gutachter] Michely. "Molecular Layer Functionalized Neuroelectronic Interfaces: From Sub-Nanometer Molecular Surface Functionalization to Improved Mechanical and Electronic Cell-Chip Coupling / Nikolaus Radja Wolf ; Gutachter: Roger Wördenweber, Thomas Michely". Köln : Universitäts- und Stadtbibliothek Köln, 2021. http://d-nb.info/122586352X/34.
Pełny tekst źródłaThakore, Vaibhav. "Nonlinear dynamic modeling, simulation and characterization of the mesoscale neuron-electrode interface". Doctoral diss., University of Central Florida, 2012. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/5529.
Pełny tekst źródłaPh.D.
Doctorate
Physics
Sciences
Physics
HUANG, WEI-CHIANG, i 黃韋強. "IrO2 Nanotube Arrays as Stimulation Electrodes for Implantable Neuroelectronics". Thesis, 2018. http://ndltd.ncl.edu.tw/handle/66hfry.
Pełny tekst źródła國立臺北科技大學
材料科學與工程研究所
106
We develop chemical bath deposition processes for conformal IrO2 depositions on TiO2 nanotube arrays. In addition, we develop an anodization process which can control tube diameters and densities of TiO2 nanotube arrays. These IrO2 nanotube arrays undergo electrochemical analysis in charge storage capacity (CSC) and electrochemical impedance to evaluate its potential as stimulation electrodes for implantable devices. Images from electron microscopes confirm the formation of uniform IrO2 on both internal and external surface of nanotubes. In addition, the cycling lifetime of IrO2 nanotube arrays is evaluated by performing CV scans for 1,000 cycles with a scan rate of 0.1 V/s. The IrO2 nanotube arrays reveal large CSC values and low electrochemical impedances which are attributed to hollow tubular nanostructure with IrO2 deposition.
George, Jude Baby. "Neuro-electronic Hybrid Systems". Thesis, 2021. https://etd.iisc.ac.in/handle/2005/5091.
Pełny tekst źródłaKsiążki na temat "NeuroElectronics"
Capadona, Jeffrey R., i Ulrich G. Hofmann, red. Bridging the Gap in Neuroelectronic Interfaces. Frontiers Media SA, 2020. http://dx.doi.org/10.3389/978-2-88963-850-5.
Pełny tekst źródłaCzęści książek na temat "NeuroElectronics"
Samsonovich, A. V. "Molecular-Level Neuroelectronics". W Topics in Molecular Organization and Engineering, 227–66. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3392-0_26.
Pełny tekst źródłaKeiper, Adam. "The Age of Neuroelectronics". W Nanotechnology, the Brain, and the Future, 115–46. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-1787-9_7.
Pełny tekst źródłaRosahl, S. K. "Neuroelectronic interfaces with the central nervous systems – ethical issues". W IFMBE Proceedings, 48–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03889-1_13.
Pełny tekst źródłaYao, Dickson R., i Dion Khodagholy. "Translational Neuroelectronics". W Introduction to Bioelectronics, 1–32. AIP Publishing, 2022. http://dx.doi.org/10.1063/9780735424470_007.
Pełny tekst źródłaKeiper, Adam. "The Age of Neuroelectronics". W Advances in Neurotechnology: Ethical, Legal, and Social Issues, 143–74. CRC Press, 2012. http://dx.doi.org/10.1201/b11861-11.
Pełny tekst źródłaStreszczenia konferencji na temat "NeuroElectronics"
Khodagholy, Dion. "Translational Neuroelectronics". W Neural Interfaces and Artificial Senses. València: Fundació Scito, 2021. http://dx.doi.org/10.29363/nanoge.nias.2021.006.
Pełny tekst źródłaKhodagholy, Dion. "Translational Neuroelectronics". W nanoGe Spring Meeting 2022. València: Fundació Scito, 2022. http://dx.doi.org/10.29363/nanoge.nsm.2022.228.
Pełny tekst źródłaWhitchurch, Ashwin, i Vijay K. Varadan. "Neuroelectronics and neurosurgery". W Smart Structures and Materials, redaktor Vijay K. Varadan. SPIE, 2006. http://dx.doi.org/10.1117/12.668749.
Pełny tekst źródłaKhodagholy, Dion. "Translational neuroelectronics (Conference Presentation)". W Organic and Hybrid Sensors and Bioelectronics XV, redaktorzy Ruth Shinar, Ioannis Kymissis i Emil J. List-Kratochvil. SPIE, 2022. http://dx.doi.org/10.1117/12.2642281.
Pełny tekst źródłaDi Lauro, Michele, Elena Zucchini, Anna De Salvo, Emanuela Delfino, Michele Bianchi, Mauro Murgia, Stefano Carli, Fabio Biscarini i Luciano Fadiga. "Technological Innovations and Translational Perspectives of Organic Neuroelectronics". W Organic Bioelectronics Conference 2022. València: Fundació Scito, 2022. http://dx.doi.org/10.29363/nanoge.obe.2022.014.
Pełny tekst źródłaChintakuntla, Ritesh R., Jose K. Abraham i Vijay K. Varadan. "Neuroelectronics and modeling of electrical signals for monitoring and control of Parkinson's disease". W SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, redaktor Vijay K. Varadan. SPIE, 2009. http://dx.doi.org/10.1117/12.829927.
Pełny tekst źródłaBarille, R., S. Ahmadi Kandjani, S. Dabos-Seignon, J. M. Nunzi, F. Letournel, E. Ortyl i S. Kucharski. "Neuron growth engineering on a photoinduced surface relief grating: a tool for plastic neuroelectronics". W Photonics Europe, redaktorzy Romualda Grzymala i Olivier Haeberle. SPIE, 2006. http://dx.doi.org/10.1117/12.663527.
Pełny tekst źródłaHam, Donhee. "Neuroelectronic interface and neuromorphic engineering". W Neuromorphic Materials, Devices, Circuits and Systems. València: FUNDACIO DE LA COMUNITAT VALENCIANA SCITO, 2023. http://dx.doi.org/10.29363/nanoge.neumatdecas.2023.058.
Pełny tekst źródłaSlaughter, Gymama, Matthew Robinson, Joel Tyson i Chen J. Zhang. "Neuroelectronic device process development and challenge". W SPIE Advanced Lithography, redaktorzy Andreas Erdmann i Jongwook Kye. SPIE, 2017. http://dx.doi.org/10.1117/12.2256297.
Pełny tekst źródłaAbraham, Jose K., Ritesh Chintakuntla, Hargsoon Yoon i Vijay K. Varadan. "Nanowire Integrated Microelectrode Arrays for Neuroelectronic Applications". W 2007 IEEE Region 5 Technical Conference. IEEE, 2007. http://dx.doi.org/10.1109/tpsd.2007.4380378.
Pełny tekst źródła