Artykuły w czasopismach na temat „Neurodynamic optimization”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Neurodynamic optimization.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Neurodynamic optimization”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Ji, Zheng, Xu Cai i Xuyang Lou. "A Quantum-Behaved Neurodynamic Approach for Nonconvex Optimization with Constraints". Algorithms 12, nr 7 (5.07.2019): 138. http://dx.doi.org/10.3390/a12070138.

Pełny tekst źródła
Streszczenie:
This paper presents a quantum-behaved neurodynamic swarm optimization approach to solve the nonconvex optimization problems with inequality constraints. Firstly, the general constrained optimization problem is addressed and a high-performance feedback neural network for solving convex nonlinear programming problems is introduced. The convergence of the proposed neural network is also proved. Then, combined with the quantum-behaved particle swarm method, a quantum-behaved neurodynamic swarm optimization (QNSO) approach is presented. Finally, the performance of the proposed QNSO algorithm is evaluated through two function tests and three applications including the hollow transmission shaft, heat exchangers and crank–rocker mechanism. Numerical simulations are also provided to verify the advantages of our method.
Style APA, Harvard, Vancouver, ISO itp.
2

Le, Xinyi, Sijie Chen, Fei Li, Zheng Yan i Juntong Xi. "Distributed Neurodynamic Optimization for Energy Internet Management". IEEE Transactions on Systems, Man, and Cybernetics: Systems 49, nr 8 (sierpień 2019): 1624–33. http://dx.doi.org/10.1109/tsmc.2019.2898551.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Li, Guocheng, i Zheng Yan. "Reconstruction of sparse signals via neurodynamic optimization". International Journal of Machine Learning and Cybernetics 10, nr 1 (18.05.2017): 15–26. http://dx.doi.org/10.1007/s13042-017-0694-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Leung, Man-Fai, i Jun Wang. "A Collaborative Neurodynamic Approach to Multiobjective Optimization". IEEE Transactions on Neural Networks and Learning Systems 29, nr 11 (listopad 2018): 5738–48. http://dx.doi.org/10.1109/tnnls.2018.2806481.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Ma, Litao, Jiqiang Chen, Sitian Qin, Lina Zhang i Feng Zhang. "An Efficient Neurodynamic Approach to Fuzzy Chance-constrained Programming". International Journal on Artificial Intelligence Tools 30, nr 01 (29.01.2021): 2140001. http://dx.doi.org/10.1142/s0218213021400017.

Pełny tekst źródła
Streszczenie:
In both practical applications and theoretical analysis, there are many fuzzy chance-constrained optimization problems. Currently, there is short of real-time algorithms for solving such problems. Therefore, in this paper, a continuous-time neurodynamic approach is proposed for solving a class of fuzzy chance-constrained optimization problems. Firstly, an equivalent deterministic problem with inequality constraint is discussed, and then a continuous-time neurodynamic approach is proposed. Secondly, a sufficient and necessary optimality condition of the considered optimization problem is obtained. Thirdly, the boundedness, global existence and Lyapunov stability of the state solution to the proposed approach are proved. Moreover, the convergence to the optimal solution of considered problem is studied. Finally, several experiments are provided to show the performance of proposed approach.
Style APA, Harvard, Vancouver, ISO itp.
6

Yan, Zheng, Jun Wang i Guocheng Li. "A collective neurodynamic optimization approach to bound-constrained nonconvex optimization". Neural Networks 55 (lipiec 2014): 20–29. http://dx.doi.org/10.1016/j.neunet.2014.03.006.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Wang, Tong, Hao Cui, Zhongyi Zhang i Jian Wei. "A Neurodynamic Approach for SWIPT Power Splitting Optimization". Journal of Physics: Conference Series 2517, nr 1 (1.06.2023): 012010. http://dx.doi.org/10.1088/1742-6596/2517/1/012010.

Pełny tekst źródła
Streszczenie:
Abstract Simultaneous wireless information and power transfer (SWIPT) systems using energy from RF signals can effectively solve the energy shortage of wireless devices. However, the existing SWIPT optimization methods using numerical algorithms are difficult to solve the non-convex problem and to adapt to the dynamic communication circumstances. In this paper, a duplex neurodynamic optimization method is used to address the SWIPT system’s power partitioning issue. The information rate maximization problem of the SWIPT system is framed as a biconvex problem. A duplex recurrent neural network is used to concurrently execute local search and update the initial state of the neural network by a particle swarm optimization method to get the global optimum. The experimental results demonstrate that the duplex neurodynamic-based SWIPT system maximizes information rate while satisfying the minimal harvesting energy requirement in a variety of channel states.
Style APA, Harvard, Vancouver, ISO itp.
8

Liu, Bao, Xuehui Mei, Haijun Jiang i Lijun Wu. "A Nonpenalty Neurodynamic Model for Complex-Variable Optimization". Discrete Dynamics in Nature and Society 2021 (16.02.2021): 1–10. http://dx.doi.org/10.1155/2021/6632257.

Pełny tekst źródła
Streszczenie:
In this paper, a complex-variable neural network model is obtained for solving complex-variable optimization problems described by differential inclusion. Based on the nonpenalty idea, the constructed algorithm does not need to design penalty parameters, that is, it is easier to be designed in practical applications. And some theorems for the convergence of the proposed model are given under suitable conditions. Finally, two numerical examples are shown to illustrate the correctness and effectiveness of the proposed optimization model.
Style APA, Harvard, Vancouver, ISO itp.
9

Zhao, You, Xiaofeng Liao i Xing He. "Novel projection neurodynamic approaches for constrained convex optimization". Neural Networks 150 (czerwiec 2022): 336–49. http://dx.doi.org/10.1016/j.neunet.2022.03.011.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Yan, Zheng, Jianchao Fan i Jun Wang. "A Collective Neurodynamic Approach to Constrained Global Optimization". IEEE Transactions on Neural Networks and Learning Systems 28, nr 5 (maj 2017): 1206–15. http://dx.doi.org/10.1109/tnnls.2016.2524619.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Liu, Qingshan, Shaofu Yang i Jun Wang. "A Collective Neurodynamic Approach to Distributed Constrained Optimization". IEEE Transactions on Neural Networks and Learning Systems 28, nr 8 (sierpień 2017): 1747–58. http://dx.doi.org/10.1109/tnnls.2016.2549566.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Qin, Sitian, Xinyi Le i Jun Wang. "A Neurodynamic Optimization Approach to Bilevel Quadratic Programming". IEEE Transactions on Neural Networks and Learning Systems 28, nr 11 (listopad 2017): 2580–91. http://dx.doi.org/10.1109/tnnls.2016.2595489.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Wu, Dawen, i Abdel Lisser. "Solving Constrained Pseudoconvex Optimization Problems with deep learning-based neurodynamic optimization". Mathematics and Computers in Simulation 219 (maj 2024): 424–34. http://dx.doi.org/10.1016/j.matcom.2023.12.032.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Leung, Man-Fai, i Jun Wang. "Cardinality-constrained portfolio selection based on collaborative neurodynamic optimization". Neural Networks 145 (styczeń 2022): 68–79. http://dx.doi.org/10.1016/j.neunet.2021.10.007.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Xu, Chen, Yiyuan Chai, Sitian Qin, Zhenkun Wang i Jiqiang Feng. "A neurodynamic approach to nonsmooth constrained pseudoconvex optimization problem". Neural Networks 124 (kwiecień 2020): 180–92. http://dx.doi.org/10.1016/j.neunet.2019.12.015.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Liu, Shuxin, Haijun Jiang, Liwei Zhang i Xuehui Mei. "A neurodynamic optimization approach for complex-variables programming problem". Neural Networks 129 (wrzesień 2020): 280–87. http://dx.doi.org/10.1016/j.neunet.2020.06.012.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Che, Hangjun, i Jun Wang. "A collaborative neurodynamic approach to global and combinatorial optimization". Neural Networks 114 (czerwiec 2019): 15–27. http://dx.doi.org/10.1016/j.neunet.2019.02.002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Yan, Zheng, i Jun Wang. "Nonlinear Model Predictive Control Based on Collective Neurodynamic Optimization". IEEE Transactions on Neural Networks and Learning Systems 26, nr 4 (kwiecień 2015): 840–50. http://dx.doi.org/10.1109/tnnls.2014.2387862.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Fan, Jianchao, i Jun Wang. "A Collective Neurodynamic Optimization Approach to Nonnegative Matrix Factorization". IEEE Transactions on Neural Networks and Learning Systems 28, nr 10 (październik 2017): 2344–56. http://dx.doi.org/10.1109/tnnls.2016.2582381.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Yang, Shaofu, Qingshan Liu i Jun Wang. "A Collaborative Neurodynamic Approach to Multiple-Objective Distributed Optimization". IEEE Transactions on Neural Networks and Learning Systems 29, nr 4 (kwiecień 2018): 981–92. http://dx.doi.org/10.1109/tnnls.2017.2652478.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Che, Hangjun, i Jun Wang. "A Two-Timescale Duplex Neurodynamic Approach to Biconvex Optimization". IEEE Transactions on Neural Networks and Learning Systems 30, nr 8 (sierpień 2019): 2503–14. http://dx.doi.org/10.1109/tnnls.2018.2884788.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Dai, Chengchen, Hangjun Che i Man-Fai Leung. "A Neurodynamic Optimization Approach for L1 Minimization with Application to Compressed Image Reconstruction". International Journal on Artificial Intelligence Tools 30, nr 01 (29.01.2021): 2140007. http://dx.doi.org/10.1142/s0218213021400078.

Pełny tekst źródła
Streszczenie:
This paper presents a neurodynamic optimization approach for l1 minimization based on an augmented Lagrangian function. By using the threshold function in locally competitive algorithm (LCA), subgradient at a nondifferential point is equivalently replaced with the difference of the neuronal state and its mapping. The efficacy of the proposed approach is substantiated by reconstructing three compressed images.
Style APA, Harvard, Vancouver, ISO itp.
23

Jiang, Xinrui, Sitian Qin, Xiaoping Xue i Xinzhi Liu. "A second-order accelerated neurodynamic approach for distributed convex optimization". Neural Networks 146 (luty 2022): 161–73. http://dx.doi.org/10.1016/j.neunet.2021.11.013.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Qin, Sitian, Yadong Liu, Xiaoping Xue i Fuqiang Wang. "A neurodynamic approach to convex optimization problems with general constraint". Neural Networks 84 (grudzień 2016): 113–24. http://dx.doi.org/10.1016/j.neunet.2016.08.014.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Le, Xinyi, i Jun Wang. "A Two-Time-Scale Neurodynamic Approach to Constrained Minimax Optimization". IEEE Transactions on Neural Networks and Learning Systems 28, nr 3 (marzec 2017): 620–29. http://dx.doi.org/10.1109/tnnls.2016.2538288.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Wang, Jiasen, Jun Wang i Hangjun Che. "Task Assignment for Multivehicle Systems Based on Collaborative Neurodynamic Optimization". IEEE Transactions on Neural Networks and Learning Systems 31, nr 4 (kwiecień 2020): 1145–54. http://dx.doi.org/10.1109/tnnls.2019.2918984.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Che, Hangjun, i Jun Wang. "A Two-Timescale Duplex Neurodynamic Approach to Mixed-Integer Optimization". IEEE Transactions on Neural Networks and Learning Systems 32, nr 1 (styczeń 2021): 36–48. http://dx.doi.org/10.1109/tnnls.2020.2973760.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Le, Xinyi, Sijie Chen, Zheng Yan i Juntong Xi. "A Neurodynamic Approach to Distributed Optimization With Globally Coupled Constraints". IEEE Transactions on Cybernetics 48, nr 11 (listopad 2018): 3149–58. http://dx.doi.org/10.1109/tcyb.2017.2760908.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Liu, Na, i Sitian Qin. "A Novel Neurodynamic Approach to Constrained Complex-Variable Pseudoconvex Optimization". IEEE Transactions on Cybernetics 49, nr 11 (listopad 2019): 3946–56. http://dx.doi.org/10.1109/tcyb.2018.2855724.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Jia, Wenwen, Tingwen Huang i Sitian Qin. "A collective neurodynamic penalty approach to nonconvex distributed constrained optimization". Neural Networks 171 (marzec 2024): 145–58. http://dx.doi.org/10.1016/j.neunet.2023.12.011.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Drozdovski, A. K., A. A. Banayan i L. G. Ulyaeva. "Psycho-physiological approach to the problem of giftedness and high-quality sports selection". Current Issues of Sports Psychology and Pedagogy 1, nr 1-2 (2021): 100–114. http://dx.doi.org/10.15826/spp.2021.1-2.11.

Pełny tekst źródła
Streszczenie:
The article notes that the problem of giftedness (talent) and highquality sports selection cannot be solved only by measuring anthropometric indicators, or only by tests-questionnaires, conversations, interviews, observations, which are dominate in the sports psychologists arsenal of nowadays. Meanwhile, the scientific developments of the national differential psychophysiology, that expand the possibilities for solving the problems indicated in the article, are ignored. The psychophysiological approach proposed by the authors is based on the method for assessing the natural predisposition of the subject to the definite sports specializations that presupposes the algorithm of actions: instrumental measurement of the nervous system’s properties (NSP, or otherwise, – neurodynamic characteristics) by E.P. Ilyin’s motor techniques; determination of the individual neurodynamic characteristics of the subject and their comparison with the known, experimentally identified “model” neurodynamic characteristics, which dominate, in terms of frequency of occurrence, among representatives of high-performance sports. The authors note a well-known scientific fact – the human’s NSP are rather conservative to changes in the growing-up process, which is essential to justification for the proposed psychophysiological approach to the problem of giftedness and selection in sports. The indications of scientific data are also significant, which are confirming the trend that with many possible combinations measuring by NSP, as a part of typological complexes (TC), the number of the latest is steeply reduced to several or even to one, dominating among athletes who have reached a high level of skill. The article states that the knowledge of the model neurodynamic characteristics dominating among representatives of different specializations in high-performance sports is the experimental basis, considering which it becomes possible early (6 years and older) identification of potentially gifted athletes, which is quite practicable if the neurodynamic characteristics of the subject for whom the choice of sports specialization is made are also known. The article notes that the optimization of training programs in the chosen sports specialization is impossible without knowing the severity of natural psychological abilities, peculiarities, and an example is given of such a forecast for athletes with different playing positions (forward, goaltender, defender), where the forecast is based on individual neurodynamic characteristics.
Style APA, Harvard, Vancouver, ISO itp.
32

Demin, D. B., L. V. Poskotinova i Ye V. Krivonogova. "EEG CHARACTERISTICS AND THYROID PROFILE RATIO IN ADOLESCENTS OF SUBPOLAR AND POLAR EUROPEAN NORTH AREAS". Bulletin of Siberian Medicine 12, nr 1 (28.02.2013): 24–29. http://dx.doi.org/10.20538/1682-0363-2013-1-24-29.

Pełny tekst źródła
Streszczenie:
Features of brain bioelectric activity and thyroid system in adolescents living in Subpolar andPolar regionsof the North are considered. Hyperactivity of subcortical diencephalic brain structures in adolescents of the Polar region is revealed. Adolescents of Subpolar region have more intensive age optimization of neurodynamic processes. There are noted latitude distinctions of thyroid hormones role for age formation of brain bioelectric activity in adolescents.
Style APA, Harvard, Vancouver, ISO itp.
33

Wang, Yadi, Xiaoping Li i Jun Wang. "A neurodynamic optimization approach to supervised feature selection via fractional programming". Neural Networks 136 (kwiecień 2021): 194–206. http://dx.doi.org/10.1016/j.neunet.2021.01.004.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Chang, Xinyue, Yinliang Xu i Hongbin Sun. "Online distributed neurodynamic optimization for energy management of renewable energy grids". International Journal of Electrical Power & Energy Systems 130 (wrzesień 2021): 106996. http://dx.doi.org/10.1016/j.ijepes.2021.106996.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Fang, Xiaomeng, Dong Pang, Juntong Xi i Xinyi Le. "Distributed optimization for the multi-robot system using a neurodynamic approach". Neurocomputing 367 (listopad 2019): 103–13. http://dx.doi.org/10.1016/j.neucom.2019.08.032.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Jiang, Xinrui, Sitian Qin i Xiaoping Xue. "A penalty-like neurodynamic approach to constrained nonsmooth distributed convex optimization". Neurocomputing 377 (luty 2020): 225–33. http://dx.doi.org/10.1016/j.neucom.2019.10.050.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

He, Shengzhan, Junjian Huang i Xing He. "Collective Neurodynamic Optimization for Image Segmentation by Binary Model with Constraints". Cognitive Computation 12, nr 6 (27.10.2020): 1265–75. http://dx.doi.org/10.1007/s12559-020-09762-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Zeng, Zhigang, Andrzej Cichocki, Long Cheng, Youshen Xia i Xiaolin Hu. "Guest Editorial Special Issue on Neurodynamic Systems for Optimization and Applications". IEEE Transactions on Neural Networks and Learning Systems 27, nr 2 (luty 2016): 210–13. http://dx.doi.org/10.1109/tnnls.2016.2515458.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Nazemi, Alireza. "Solving general convex nonlinear optimization problems by an efficient neurodynamic model". Engineering Applications of Artificial Intelligence 26, nr 2 (luty 2013): 685–96. http://dx.doi.org/10.1016/j.engappai.2012.09.011.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Huang, Banghua, Yang Liu, Yun-Liang Jiang i Jun Wang. "Two-timescale projection neural networks in collaborative neurodynamic approaches to global optimization and distributed optimization". Neural Networks 169 (styczeń 2024): 83–91. http://dx.doi.org/10.1016/j.neunet.2023.10.011.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Demin, D. B. "THE ASSESSMENT OF REACTIONS OF POLYGRAPHIC PARAMETERS AT HRV-BIOFEEDBACK TRAINING IN ADOLESCENTS WITH DIFFERENT VARIANTS OF CARDIAC AUTONOMIC NERVOUS SYSTEM TONE". Annals of the Russian academy of medical sciences 67, nr 2 (22.02.2012): 11–15. http://dx.doi.org/10.15690/vramn.v67i2.117.

Pełny tekst źródła
Streszczenie:
There is examine a character of change of brain bioelectric activity and polygraphic indicators at sessions of biofeedback by heart rhythm variability parameters (HRV-biofeedback) in 15–17 years adolescents who have different variants of cardiac autonomic nervous system tone. It is taped, that adolescents with cardiac balanced tone have more intensive optimization of functional brain activity in comparison with adolescents who have cardiac sympathetic tone — increase on alpha-activity and theta-activity depression in electroencephalogram structure. There were optimization of neurodynamic processes and most expressed stabilization of the hemodynamics indicators in adolescents with cardiac sympathetic tone after HRVbiofeedback training.
Style APA, Harvard, Vancouver, ISO itp.
42

Berga, David, i Xavier Otazu. "A Neurodynamic Model of Saliency Prediction in V1". Neural Computation 34, nr 2 (14.01.2022): 378–414. http://dx.doi.org/10.1162/neco_a_01464.

Pełny tekst źródła
Streszczenie:
Abstract Lateral connections in the primary visual cortex (V1) have long been hypothesized to be responsible for several visual processing mechanisms such as brightness induction, chromatic induction, visual discomfort, and bottom-up visual attention (also named saliency). Many computational models have been developed to independently predict these and other visual processes, but no computational model has been able to reproduce all of them simultaneously. In this work, we show that a biologically plausible computational model of lateral interactions of V1 is able to simultaneously predict saliency and all the aforementioned visual processes. Our model's architecture (NSWAM) is based on Penacchio's neurodynamic model of lateral connections of V1. It is defined as a network of firing rate neurons, sensitive to visual features such as brightness, color, orientation, and scale. We tested NSWAM saliency predictions using images from several eye tracking data sets. We show that the accuracy of predictions obtained by our architecture, using shuffled metrics, is similar to other state-of-the-art computational methods, particularly with synthetic images (CAT2000-Pattern and SID4VAM) that mainly contain low-level features. Moreover, we outperform other biologically inspired saliency models that are specifically designed to exclusively reproduce saliency. We show that our biologically plausible model of lateral connections can simultaneously explain different visual processes present in V1 (without applying any type of training or optimization and keeping the same parameterization for all the visual processes). This can be useful for the definition of a unified architecture of the primary visual cortex.
Style APA, Harvard, Vancouver, ISO itp.
43

Peng, Zhouhua, Jun Wang i Dan Wang. "Distributed Maneuvering of Autonomous Surface Vehicles Based on Neurodynamic Optimization and Fuzzy Approximation". IEEE Transactions on Control Systems Technology 26, nr 3 (maj 2018): 1083–90. http://dx.doi.org/10.1109/tcst.2017.2699167.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Le, Xinyi, Zheng Yan i Juntong Xi. "A Collective Neurodynamic System for Distributed Optimization with Applications in Model Predictive Control". IEEE Transactions on Emerging Topics in Computational Intelligence 1, nr 4 (sierpień 2017): 305–14. http://dx.doi.org/10.1109/tetci.2017.2716377.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Yan, Zheng, Xinyi Le i Jun Wang. "Tube-Based Robust Model Predictive Control of Nonlinear Systems via Collective Neurodynamic Optimization". IEEE Transactions on Industrial Electronics 63, nr 7 (lipiec 2016): 4377–86. http://dx.doi.org/10.1109/tie.2016.2544718.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Xiong, Wenxin, Christian Schindelhauer, Hing Cheung So, Joan Bordoy, Andrea Gabbrielli i Junli Liang. "TDOA-based localization with NLOS mitigation via robust model transformation and neurodynamic optimization". Signal Processing 178 (styczeń 2021): 107774. http://dx.doi.org/10.1016/j.sigpro.2020.107774.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Yu, Yang, Wei Wang i Kang-Hyun Jo. "Adaptive consensus control of output-constrained second-order nonlinear systems via neurodynamic optimization". Neurocomputing 295 (czerwiec 2018): 1–7. http://dx.doi.org/10.1016/j.neucom.2017.12.052.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Li, Xinqi, Jun Wang i Sam Kwong. "A Discrete-Time Neurodynamic Approach to Sparsity-Constrained Nonnegative Matrix Factorization". Neural Computation 32, nr 8 (sierpień 2020): 1531–62. http://dx.doi.org/10.1162/neco_a_01294.

Pełny tekst źródła
Streszczenie:
Sparsity is a desirable property in many nonnegative matrix factorization (NMF) applications. Although some level of sparseness of NMF solutions can be achieved by using regularization, the resulting sparsity depends highly on the regularization parameter to be valued in an ad hoc way. In this letter we formulate sparse NMF as a mixed-integer optimization problem with sparsity as binary constraints. A discrete-time projection neural network is developed for solving the formulated problem. Sufficient conditions for its stability and convergence are analytically characterized by using Lyapunov's method. Experimental results on sparse feature extraction are discussed to substantiate the superiority of this approach to extracting highly sparse features.
Style APA, Harvard, Vancouver, ISO itp.
49

Wang, Tiancai, Xing He, Tingwen Huang, Chuandong Li i Wei Zhang. "Collective neurodynamic optimization for economic emission dispatch problem considering valve point effect in microgrid". Neural Networks 93 (wrzesień 2017): 126–36. http://dx.doi.org/10.1016/j.neunet.2017.05.004.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Liu, Na, i Sitian Qin. "A neurodynamic approach to nonlinear optimization problems with affine equality and convex inequality constraints". Neural Networks 109 (styczeń 2019): 147–58. http://dx.doi.org/10.1016/j.neunet.2018.10.010.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii