Artykuły w czasopismach na temat „Neuro inspired”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Neuro inspired”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Zhang, Wenqiang, Bin Gao, Jianshi Tang, et al. "Neuro-inspired computing chips." Nature Electronics 3, no. 7 (2020): 371–82. http://dx.doi.org/10.1038/s41928-020-0435-7.
Pełny tekst źródłaGhani, Arfan, Thomas Dowrick, and Liam J. McDaid. "OSPEN: an open source platform for emulating neuromorphic hardware." International Journal of Reconfigurable and Embedded Systems (IJRES) 12, no. 1 (2023): 1. http://dx.doi.org/10.11591/ijres.v12.i1.pp1-8.
Pełny tekst źródłaHarkhoe, Krishan, Guy Verschaffelt, and Guy Van der Sande. "Neuro-Inspired Computing with Spin-VCSELs." Applied Sciences 11, no. 9 (2021): 4232. http://dx.doi.org/10.3390/app11094232.
Pełny tekst źródłaZhong, Xiaopin, and Lin Ma. "A Neuro-inspired Adaptive Motion Detector." Optics and Photonics Journal 03, no. 02 (2013): 94–98. http://dx.doi.org/10.4236/opj.2013.32b024.
Pełny tekst źródłaHuang, Ping-Chen, and Jan M. Rabaey. "A Neuro-Inspired Spike Pattern Classifier." IEEE Journal on Emerging and Selected Topics in Circuits and Systems 8, no. 3 (2018): 555–65. http://dx.doi.org/10.1109/jetcas.2018.2842035.
Pełny tekst źródłaKahol, Kanav, and Sethuraman Panchanathan. "Neuro-cognitively inspired haptic user interfaces." Multimedia Tools and Applications 37, no. 1 (2007): 15–38. http://dx.doi.org/10.1007/s11042-007-0167-y.
Pełny tekst źródłaGINGL, ZOLTAN, LASZLO B. KISH, and SUNIL P. KHATRI. "TOWARDS BRAIN-INSPIRED COMPUTING." Fluctuation and Noise Letters 09, no. 04 (2010): 403–12. http://dx.doi.org/10.1142/s0219477510000332.
Pełny tekst źródłaBlachowicz, Tomasz, Jacek Grzybowski, Pawel Steblinski, and Andrea Ehrmann. "Neuro-Inspired Signal Processing in Ferromagnetic Nanofibers." Biomimetics 6, no. 2 (2021): 32. http://dx.doi.org/10.3390/biomimetics6020032.
Pełny tekst źródłaYu, Shimeng. "Neuro-Inspired Computing With Emerging Nonvolatile Memorys." Proceedings of the IEEE 106, no. 2 (2018): 260–85. http://dx.doi.org/10.1109/jproc.2018.2790840.
Pełny tekst źródłaDumitrache, Ioan, Simona Iuliana Caramihai, Mihnea Alexandru Moisescu, and Ioan Stefan Sacala. "Neuro-inspired Framework for cognitive manufacturing control." IFAC-PapersOnLine 52, no. 13 (2019): 910–15. http://dx.doi.org/10.1016/j.ifacol.2019.11.311.
Pełny tekst źródłaMarco-Detchart, Cedric, Giancarlo Lucca, Carlos Lopez-Molina, Laura De Miguel, Graçaliz Pereira Dimuro, and Humberto Bustince. "Neuro-inspired edge feature fusion using Choquet integrals." Information Sciences 581 (December 2021): 740–54. http://dx.doi.org/10.1016/j.ins.2021.10.016.
Pełny tekst źródłaWang, Panni, and Shimeng Yu. "Ferroelectric devices and circuits for neuro-inspired computing." MRS Communications 10, no. 4 (2020): 538–48. http://dx.doi.org/10.1557/mrc.2020.71.
Pełny tekst źródłaShi, Yuanhong, Qilin Hua, Zilong Dong, et al. "Neuro-inspired thermoresponsive nociceptor for intelligent sensory systems." Nano Energy 113 (August 2023): 108549. http://dx.doi.org/10.1016/j.nanoen.2023.108549.
Pełny tekst źródłaHe, Yongli, Yixin Zhu, and Qing Wan. "Oxide Ionic Neuro-Transistors for Bio-inspired Computing." Nanomaterials 14, no. 7 (2024): 584. http://dx.doi.org/10.3390/nano14070584.
Pełny tekst źródłaBirzhanova, Aigerim, Aliya Nurgaliyeva, Azhar Nurmagambetova, Hasan Dinçer, and Serhat Yüksel. "Neuro quantum-inspired decision-making for investor perception in green and conventional bond investments." Investment Management and Financial Innovations 21, no. 1 (2024): 168–84. http://dx.doi.org/10.21511/imfi.21(1).2024.14.
Pełny tekst źródłaWang, Qiang, Gang Niu, Wei Ren, et al. "Phase Change Random Access Memory for Neuro‐Inspired Computing." Advanced Electronic Materials 7, no. 6 (2021): 2001241. http://dx.doi.org/10.1002/aelm.202001241.
Pełny tekst źródłaKuzum, Duygu. "Neuro-Inspired Computing with Resistive Switching Devices [Guest Editorial]." IEEE Nanotechnology Magazine 12, no. 3 (2018): 4. http://dx.doi.org/10.1109/mnano.2018.2849799.
Pełny tekst źródłaChabi, Djaafar, Damien Querlioz, Weisheng Zhao, and Jacques-Olivier Klein. "Robust learning approach for neuro-inspired nanoscale crossbar architecture." ACM Journal on Emerging Technologies in Computing Systems 10, no. 1 (2014): 1–20. http://dx.doi.org/10.1145/2539123.
Pełny tekst źródłaShoureshi, Rahmat A., Tracy Schantz, and Sun W. Lim. "Bio-inspired neuro-symbolic approach to diagnostics of structures." Smart Structures and Systems 7, no. 3 (2011): 229–40. http://dx.doi.org/10.12989/sss.2011.7.3.229.
Pełny tekst źródłaMoghaddam, Mohsen, Qiliang Chen, and Abhijit V. Deshmukh. "A neuro-inspired computational model for adaptive fault diagnosis." Expert Systems with Applications 140 (February 2020): 112879. http://dx.doi.org/10.1016/j.eswa.2019.112879.
Pełny tekst źródłaMozaffari, Ahmad, Alireza Fathi, and Saeed Behzadipour. "An evolvable self-organizing neuro-fuzzy multilayered classifier with group method data handling and grammar-based bio-inspired supervisors for fault diagnosis of hydraulic systems." International Journal of Intelligent Computing and Cybernetics 7, no. 1 (2014): 38–78. http://dx.doi.org/10.1108/ijicc-06-2013-0034.
Pełny tekst źródłaHafsi, Bilel, Rabii Elmissaoui, and Adel Kalboussi. "Neural Network Based on SET Inverter Structures: Neuro-Inspired Memory." World Journal of Nano Science and Engineering 04, no. 04 (2014): 134–42. http://dx.doi.org/10.4236/wjnse.2014.44017.
Pełny tekst źródłaMahmoudi, Maryam Tayefeh, Fattaneh Taghiyareh, and Babak N. Araabi. "A neuro-fuzzy immune inspired classifier for task-oriented texts." Journal of Intelligent & Fuzzy Systems 25, no. 3 (2013): 673–83. http://dx.doi.org/10.3233/ifs-120674.
Pełny tekst źródłaHamilton, Tara Julia, Saeed Afshar, Andre van Schaik, and Jonathan Tapson. "Stochastic Electronics: A Neuro-Inspired Design Paradigm for Integrated Circuits." Proceedings of the IEEE 102, no. 5 (2014): 843–59. http://dx.doi.org/10.1109/jproc.2014.2310713.
Pełny tekst źródłaCorchado, E., and M. Wozniak. "Editorial: Neuro-symbolic Algorithms and Models for Bio-inspired Systems." Logic Journal of IGPL 19, no. 2 (2010): 289–92. http://dx.doi.org/10.1093/jigpal/jzq026.
Pełny tekst źródłaGalluccio, Laura, Sergio Palazzo, and G. Enrico Santagati. "Characterization of molecular communications among implantable biomedical neuro-inspired nanodevices." Nano Communication Networks 4, no. 2 (2013): 53–64. http://dx.doi.org/10.1016/j.nancom.2013.03.001.
Pełny tekst źródłaTang, Huajin, Rui Yan, and Kay Chen Tan. "Cognitive Navigation by Neuro-Inspired Localization, Mapping, and Episodic Memory." IEEE Transactions on Cognitive and Developmental Systems 10, no. 3 (2018): 751–61. http://dx.doi.org/10.1109/tcds.2017.2776965.
Pełny tekst źródłaGuglielmelli, E. "S6.2 Neurorobotics: understanding the brain by building neuro-inspired robots." Clinical Neurophysiology 122 (June 2011): S14. http://dx.doi.org/10.1016/s1388-2457(11)60045-x.
Pełny tekst źródłaZhang, Wenbin, Peng Yao, Bin Gao, et al. "Edge learning using a fully integrated neuro-inspired memristor chip." Science 381, no. 6663 (2023): 1205–11. http://dx.doi.org/10.1126/science.ade3483.
Pełny tekst źródłaSoures, Nicholas, Vedant Karia, and Dhireesha Kudithipudi. "Advancing Neuro-Inspired Lifelong Learning for Edge with Co-Design." Proceedings of the AAAI Symposium Series 3, no. 1 (2024): 317. http://dx.doi.org/10.1609/aaaiss.v3i1.31226.
Pełny tekst źródłaDing, Keyuan, Jiangjing Wang, Yuxing Zhou, et al. "Phase-change heterostructure enables ultralow noise and drift for memory operation." Science 366, no. 6462 (2019): 210–15. http://dx.doi.org/10.1126/science.aay0291.
Pełny tekst źródłaPruthi, Dimple, and Rashmi Bhardwaj. "Modeling air quality index using optimized neuronal networks inspired by swarms." Environmental Engineering Research 26, no. 6 (2020): 200469–0. http://dx.doi.org/10.4491/eer.2020.469.
Pełny tekst źródłaDjahafi, Fatiha, and Abdelkader Gafour. "Neuro-Immune Model Based on Bio-Inspired Methods for Medical Diagnosis." International Journal of Ambient Computing and Intelligence 13, no. 1 (2022): 1–18. http://dx.doi.org/10.4018/ijaci.293176.
Pełny tekst źródłaLuo, Yuan-Chun, Jae Hur, and Shimeng Yu. "Ferroelectric Tunnel Junction Based Crossbar Array Design for Neuro-Inspired Computing." IEEE Transactions on Nanotechnology 20 (2021): 243–47. http://dx.doi.org/10.1109/tnano.2021.3066319.
Pełny tekst źródłaSusi, Gianluca, Simone Acciarito, Teodoro Pascual, Alessandro Cristini, and Fernando Maestú. "Towards Neuro-Inspired Electronic Oscillators Based on The Dynamical Relaying Mechanism." International Journal on Advanced Science, Engineering and Information Technology 9, no. 2 (2019): 569. http://dx.doi.org/10.18517/ijaseit.9.2.8347.
Pełny tekst źródłaWang, Fu-Cheng, Yu-You Lin, You-Chi Li, Po-Yin Chen, and Chung-Huang Yu. "Development of an Automated Assistive Trainer Inspired by Neuro-developmental Treatment." Sensors and Materials 32, no. 9 (2020): 3019. http://dx.doi.org/10.18494/sam.2020.2708.
Pełny tekst źródłaLee, Wang Wei, Yu Jun Tan, Haicheng Yao, et al. "A neuro-inspired artificial peripheral nervous system for scalable electronic skins." Science Robotics 4, no. 32 (2019): eaax2198. http://dx.doi.org/10.1126/scirobotics.aax2198.
Pełny tekst źródłaFellous, Jean-Marc, Peter Dominey, and Alfredo Weitzenfeld. "Complex spatial navigation in animals, computational models and neuro-inspired robots." Biological Cybernetics 114, no. 2 (2020): 137–38. http://dx.doi.org/10.1007/s00422-020-00832-y.
Pełny tekst źródłaNebti, Salima, and Abdellah Boukerram. "Handwritten characters recognition based on nature-inspired computing and neuro-evolution." Applied Intelligence 38, no. 2 (2012): 146–59. http://dx.doi.org/10.1007/s10489-012-0362-z.
Pełny tekst źródłaPagkalos, Michalis, Roman Makarov, and Panayiota Poirazi. "Leveraging dendritic properties to advance machine learning and neuro-inspired computing." Current Opinion in Neurobiology 85 (April 2024): 102853. http://dx.doi.org/10.1016/j.conb.2024.102853.
Pełny tekst źródłaPrashanth, Basutkar Umamaheshwar Venkata, and Mohammed Riyaz Ahmed. "Design and Implementation of Reconfigurable Neuro-Inspired Computing Model on a FPGA." Advances in Science, Technology and Engineering Systems Journal 5, no. 5 (2020): 332–41. http://dx.doi.org/10.25046/aj050541.
Pełny tekst źródłaGorzalczany, Marian B., and Zdzislaw Piasta. "Neuro-fuzzy approach versus rough-set inspired methodology for intelligent decision support." Information Sciences 120, no. 1-4 (1999): 45–68. http://dx.doi.org/10.1016/s0020-0255(99)00070-5.
Pełny tekst źródłaBennett, Christopher H., Jean-Etienne Lorival, Francois Marc, et al. "Multiscaled Simulation Methodology for Neuro-Inspired Circuits Demonstrated with an Organic Memristor." IEEE Transactions on Multi-Scale Computing Systems 4, no. 4 (2018): 822–32. http://dx.doi.org/10.1109/tmscs.2017.2773523.
Pełny tekst źródłaNg, G. S., F. Liu, T. F. Loh, and C. Quek. "A novel brain-inspired neuro-fuzzy hybrid system for artificial ventilation modeling." Expert Systems with Applications 39, no. 15 (2012): 11808–17. http://dx.doi.org/10.1016/j.eswa.2012.01.028.
Pełny tekst źródłaYan, Yan, Kamen Ivanov, Olatunji Mumini Omisore, et al. "Gait Rhythm Dynamics for Neuro-Degenerative Disease Classification via Persistence Landscape- Based Topological Representation." Sensors 20, no. 7 (2020): 2006. http://dx.doi.org/10.3390/s20072006.
Pełny tekst źródłaYousefi, Bardia, and Chu Kiong Loo. "Biologically-Inspired Computational Neural Mechanism for Human Action/activity Recognition: A Review." Electronics 8, no. 10 (2019): 1169. http://dx.doi.org/10.3390/electronics8101169.
Pełny tekst źródłaArena, Paolo, Luca Patanè, and Salvatore Taffara. "Energy Efficiency of a Quadruped Robot with Neuro-Inspired Control in Complex Environments." Energies 14, no. 2 (2021): 433. http://dx.doi.org/10.3390/en14020433.
Pełny tekst źródłaKuncic, Zdenka, and Tomonobu Nakayama. "Neuromorphic nanowire networks: principles, progress and future prospects for neuro-inspired information processing." Advances in Physics: X 6, no. 1 (2021): 1894234. http://dx.doi.org/10.1080/23746149.2021.1894234.
Pełny tekst źródłaMunawar, Asim. "How a shopping mall trip inspired me to work in neuro-symbolic AI." Communications of the ACM 65, no. 5 (2022): 11. http://dx.doi.org/10.1145/3528571.
Pełny tekst źródłaYmaji, Yuuki, Eisaku Horiguchi, and Hirotsugu OKUNO. "FPGA implementation of a neuro-inspired algorithm for spatio-temporal visual feature extraction." Proceedings of JSME annual Conference on Robotics and Mechatronics (Robomec) 2021 (2021): 2P2—H08. http://dx.doi.org/10.1299/jsmermd.2021.2p2-h08.
Pełny tekst źródła