Artykuły w czasopismach na temat „Neural Cross-Domain Collaborative Filtering”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 48 najlepszych artykułów w czasopismach naukowych na temat „Neural Cross-Domain Collaborative Filtering”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Yang, Dong, i Jian Sun. "BM3D-Net: A Convolutional Neural Network for Transform-Domain Collaborative Filtering". IEEE Signal Processing Letters 25, nr 1 (styczeń 2018): 55–59. http://dx.doi.org/10.1109/lsp.2017.2768660.
Pełny tekst źródłaWang, Jiahao, Hongyan Mei, Kai Li, Xing Zhang i Xin Chen. "Collaborative Filtering Model of Graph Neural Network Based on Random Walk". Applied Sciences 13, nr 3 (30.01.2023): 1786. http://dx.doi.org/10.3390/app13031786.
Pełny tekst źródłaAlaa El-deen Ahmed, Rana, Manuel Fernández-Veiga i Mariam Gawich. "Neural Collaborative Filtering with Ontologies for Integrated Recommendation Systems". Sensors 22, nr 2 (17.01.2022): 700. http://dx.doi.org/10.3390/s22020700.
Pełny tekst źródłaWójcik, Filip, i Michał Górnik. "Improvement of e-commerce recommendation systems with deep hybrid collaborative filtering with content: A case study". Econometrics 24, nr 3 (2020): 37–50. http://dx.doi.org/10.15611/eada.2020.3.03.
Pełny tekst źródłaFeng, Ying, i Guisheng Zhao. "Implementation of Short Video Click-Through Rate Estimation Model Based on Cross-Media Collaborative Filtering Neural Network". Computational Intelligence and Neuroscience 2022 (31.05.2022): 1–13. http://dx.doi.org/10.1155/2022/4951912.
Pełny tekst źródłaWang, Li, i Cheng Zhong. "Prediction of miRNA-Disease Association Using Deep Collaborative Filtering". BioMed Research International 2021 (24.02.2021): 1–16. http://dx.doi.org/10.1155/2021/6652948.
Pełny tekst źródłaSahoo, Abhaya Kumar, Chittaranjan Pradhan, Rabindra Kumar Barik i Harishchandra Dubey. "DeepReco: Deep Learning Based Health Recommender System Using Collaborative Filtering". Computation 7, nr 2 (22.05.2019): 25. http://dx.doi.org/10.3390/computation7020025.
Pełny tekst źródłaSethuraman, Ram, i Akshay Havalgi. "Novel Approach of Neural Collaborative Filter by Pairwise Objective Function with Matrix Factorization". International Journal of Engineering & Technology 7, nr 3.12 (20.07.2018): 1213. http://dx.doi.org/10.14419/ijet.v7i3.12.17840.
Pełny tekst źródłaSyed, Muzamil Hussain, Tran Quoc Bao Huy i Sun-Tae Chung. "Context-Aware Explainable Recommendation Based on Domain Knowledge Graph". Big Data and Cognitive Computing 6, nr 1 (20.01.2022): 11. http://dx.doi.org/10.3390/bdcc6010011.
Pełny tekst źródłaLu, Jing. "Personalized Recommendation Algorithm of Smart Tourism Based on Cross-Media Big Data and Neural Network". Computational Intelligence and Neuroscience 2022 (26.06.2022): 1–11. http://dx.doi.org/10.1155/2022/9566766.
Pełny tekst źródłaBai, Zijian, Yinfeng Huang, Suzhi Zhang, Pu Li, Yuanyuan Chang i Xiang Lin. "Multi-Level Knowledge-Aware Contrastive Learning Network for Personalized Recipe Recommendation". Applied Sciences 12, nr 24 (14.12.2022): 12863. http://dx.doi.org/10.3390/app122412863.
Pełny tekst źródłaJiang, Jian, i Zhiqun Qiu. "Distributed Soccer Training Smart Sensors for Multitarget Localization and Tracking". Journal of Sensors 2022 (5.08.2022): 1–13. http://dx.doi.org/10.1155/2022/4772636.
Pełny tekst źródłaLiu, Taiheng, Xiuqin Deng, Zhaoshui He i Yonghong Long. "TCD-CF: Triple cross-domain collaborative filtering recommendation". Pattern Recognition Letters 149 (wrzesień 2021): 185–92. http://dx.doi.org/10.1016/j.patrec.2021.06.016.
Pełny tekst źródłaBin Li, Xingquan Zhu, Ruijiang Li i Chengqi Zhang. "Rating Knowledge Sharing in Cross-Domain Collaborative Filtering". IEEE Transactions on Cybernetics 45, nr 5 (maj 2015): 1068–82. http://dx.doi.org/10.1109/tcyb.2014.2343982.
Pełny tekst źródłaKhanam, Nazima. "CROSS DOMAIN COLLABORATIVE FILTERING RECOMMENDER USING PROBABILISTIC MATRIX FACTORIZATION". International Journal of Advanced Research in Computer Science 8, nr 9 (30.09.2017): 234–49. http://dx.doi.org/10.26483/ijarcs.v8i9.4897.
Pełny tekst źródłaXia, Haifeng, i Zhengming Ding. "Cross-Domain Collaborative Normalization via Structural Knowledge". Proceedings of the AAAI Conference on Artificial Intelligence 36, nr 3 (28.06.2022): 2777–85. http://dx.doi.org/10.1609/aaai.v36i3.20181.
Pełny tekst źródła姜, 树媛. "A Collaborative Filtering Cross-Domain Recommendation Based on Matrix Blocking Technique". Modeling and Simulation 12, nr 03 (2023): 2091–101. http://dx.doi.org/10.12677/mos.2023.123192.
Pełny tekst źródłaYu, Xu, Jun-yu Lin, Feng Jiang, Jun-wei Du i Ji-zhong Han. "A Cross-Domain Collaborative Filtering Algorithm Based on Feature Construction and Locally Weighted Linear Regression". Computational Intelligence and Neuroscience 2018 (2018): 1–12. http://dx.doi.org/10.1155/2018/1425365.
Pełny tekst źródłaYu, Xu, Qinglong Peng, Lingwei Xu, Feng Jiang, Junwei Du i Dunwei Gong. "A selective ensemble learning based two-sided cross-domain collaborative filtering algorithm". Information Processing & Management 58, nr 6 (listopad 2021): 102691. http://dx.doi.org/10.1016/j.ipm.2021.102691.
Pełny tekst źródłaTaneja, Nikita, i Dr Hardeo K Thakur. "Evaluation of Collaborative Filtering and Knowledge Transfer Based Cross Domain Recommendation Models". Journal of Advanced Research in Dynamical and Control Systems 11, nr 10-SPECIAL ISSUE (31.10.2019): 1146–53. http://dx.doi.org/10.5373/jardcs/v11sp10/20192958.
Pełny tekst źródłaLiu, Huiting, Lingling Guo, Peipei Li, Peng Zhao i Xindong Wu. "Collaborative filtering with a deep adversarial and attention network for cross-domain recommendation". Information Sciences 565 (lipiec 2021): 370–89. http://dx.doi.org/10.1016/j.ins.2021.02.009.
Pełny tekst źródłaNguyen, Luong Vuong, Nam D. Vo i Jason J. Jung. "DaGzang: a synthetic data generator for cross-domain recommendation services". PeerJ Computer Science 9 (2.05.2023): e1360. http://dx.doi.org/10.7717/peerj-cs.1360.
Pełny tekst źródłaArora, Anuja, Vaibhav Taneja, Sonali Parashar i Apurva Mishra. "Cross-domain based Event Recommendation using Tensor Factorization". Open Computer Science 6, nr 1 (14.10.2016): 126–37. http://dx.doi.org/10.1515/comp-2016-0011.
Pełny tekst źródłaHuang, Ling, Chang-Dong Wang, Hong-Yang Chao, Jian-Huang Lai i Philip S. Yu. "A Score Prediction Approach for Optional Course Recommendation via Cross-User-Domain Collaborative Filtering". IEEE Access 7 (2019): 19550–63. http://dx.doi.org/10.1109/access.2019.2897979.
Pełny tekst źródłaYu, Xu, Feng Jiang, Junwei Du i Dunwei Gong. "A User-Based Cross Domain Collaborative Filtering Algorithm Based on a Linear Decomposition Model". IEEE Access 5 (2017): 27582–89. http://dx.doi.org/10.1109/access.2017.2774442.
Pełny tekst źródłaYu, Xu, Yan Chu, Feng Jiang, Ying Guo i Dunwei Gong. "SVMs Classification Based Two-side Cross Domain Collaborative Filtering by inferring intrinsic user and item features". Knowledge-Based Systems 141 (luty 2018): 80–91. http://dx.doi.org/10.1016/j.knosys.2017.11.010.
Pełny tekst źródłaFernández-Tobías, Ignacio, Iván Cantador, Paolo Tomeo, Vito Walter Anelli i Tommaso Di Noia. "Addressing the user cold start with cross-domain collaborative filtering: exploiting item metadata in matrix factorization". User Modeling and User-Adapted Interaction 29, nr 2 (1.01.2019): 443–86. http://dx.doi.org/10.1007/s11257-018-9217-6.
Pełny tekst źródłaZhang, Luxi, i Yongli Gao. "UI Design and Optimization Method for Museum Display Based on User Behavior Recommendation". Wireless Communications and Mobile Computing 2022 (26.07.2022): 1–10. http://dx.doi.org/10.1155/2022/2814216.
Pełny tekst źródłaVo, Nam D., Minsung Hong i Jason J. Jung. "Implicit Stochastic Gradient Descent Method for Cross-Domain Recommendation System". Sensors 20, nr 9 (29.04.2020): 2510. http://dx.doi.org/10.3390/s20092510.
Pełny tekst źródłaXu, Yaoli, Jinjun Zhong, Suzhi Zhang, Chenglin Li, Pu Li, Yanbu Guo, Yuhua Li, Hui Liang i Yazhou Zhang. "A Domain-Oriented Entity Alignment Approach Based on Filtering Multi-Type Graph Neural Networks". Applied Sciences 13, nr 16 (14.08.2023): 9237. http://dx.doi.org/10.3390/app13169237.
Pełny tekst źródłaHwangbo, Hyunwoo, i Yangsok Kim. "An empirical study on the effect of data sparsity and data overlap on cross domain collaborative filtering performance". Expert Systems with Applications 89 (grudzień 2017): 254–65. http://dx.doi.org/10.1016/j.eswa.2017.07.041.
Pełny tekst źródłaYue, Meng, Qingxin Yan, Han Zheng i Zhijun Wu. "Cross-Plane DDoS Attack Defense Architecture Based on Flow Table Features in SDN". Security and Communication Networks 2022 (30.09.2022): 1–16. http://dx.doi.org/10.1155/2022/7409083.
Pełny tekst źródłaYu, Xu, Feng Jiang, Junwei Du i Dunwei Gong. "A cross-domain collaborative filtering algorithm with expanding user and item features via the latent factor space of auxiliary domains". Pattern Recognition 94 (październik 2019): 96–109. http://dx.doi.org/10.1016/j.patcog.2019.05.030.
Pełny tekst źródłaGong, Yichen, Shuhan Kang i Yuxing Song. "Research Advanced in the Recommendation Algorithms". Highlights in Science, Engineering and Technology 49 (21.05.2023): 457–63. http://dx.doi.org/10.54097/hset.v49i.8585.
Pełny tekst źródłaRani, Asha, Kavita Taneja i Harmunish Taneja. "Life Insurance-Based Recommendation System for Effective Information Computing". International Journal of Information Retrieval Research 11, nr 2 (kwiecień 2021): 1–14. http://dx.doi.org/10.4018/ijirr.2021040101.
Pełny tekst źródłaFranzoni, Valentina. "Cross-domain synergy: Leveraging image processing techniques for enhanced sound classification through spectrogram analysis using CNNs". Journal of Autonomous Intelligence 6, nr 3 (28.08.2023): 678. http://dx.doi.org/10.32629/jai.v6i3.678.
Pełny tekst źródłaKuang, Hailan, Haoran Chen, Xiaolin Ma i Xinhua Liu. "A Keyword Detection and Context Filtering Method for Document Level Relation Extraction". Applied Sciences 12, nr 3 (2.02.2022): 1599. http://dx.doi.org/10.3390/app12031599.
Pełny tekst źródłaTorontali, Marianne, Renee Doughman, Brooklyn Chaney, Katie Black, Anthony Asher, Andrew Rupert, Christine Fuller i in. "EPID-15. THE INTERNATIONAL DIFFUSE INTRINSIC PONTINE GLIOMA (DIPG)/DIFFUSE MIDLINE GLIOMA (DMG) REGISTRY AND REPOSITORY (IDIPGR) EXPANSION". Neuro-Oncology 22, Supplement_3 (1.12.2020): iii321—iii322. http://dx.doi.org/10.1093/neuonc/noaa222.201.
Pełny tekst źródłaNayyar, Anand, Pijush Kanti Dutta Pramankit i Rajni Mohana. "Introduction to the Special Issue on Evolving IoT and Cyber-Physical Systems: Advancements, Applications, and Solutions". Scalable Computing: Practice and Experience 21, nr 3 (1.08.2020): 347–48. http://dx.doi.org/10.12694/scpe.v21i3.1568.
Pełny tekst źródłaWang, Chang-Dong, Yan-Hui Chen, Wu-Dong Xi, Ling Huang i Guangqiang Xie. "Cross-Domain Explicit-Implicit-Mixed Collaborative Filtering Neural Network". IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 1–15. http://dx.doi.org/10.1109/tsmc.2021.3129261.
Pełny tekst źródłaYu, Ruiyun, Dezhi Ye, Zhihong Wang, Biyun Zhang, Ann Move Oguti, Jie Li, Bo Jin i Fadi Kurdahi. "CFFNN: Cross Feature Fusion Neural Network for Collaborative Filtering". IEEE Transactions on Knowledge and Data Engineering, 2021, 1. http://dx.doi.org/10.1109/tkde.2020.3048788.
Pełny tekst źródła"A Research on Collaborative Filtering Based Movie Recommendations: From Neighborhood to Deep Learning Based System". International Journal of Recent Technology and Engineering 8, nr 4 (30.11.2019): 10809–14. http://dx.doi.org/10.35940/ijrte.d4362.118419.
Pełny tekst źródłaXu, YuHao, ZhenHai Wang, ZhiRu Wang, YunLong Guo, Rong Fan, HongYu Tian i Xing Wang. "SimDCL: dropout-based simple graph contrastive learning for recommendation". Complex & Intelligent Systems, 10.02.2023. http://dx.doi.org/10.1007/s40747-023-00974-z.
Pełny tekst źródłaZheng, Kai, Xin-Lu Zhang, Lei Wang, Zhu-Hong You, Zhao-Hui Zhan i Hao-Yuan Li. "Line graph attention networks for predicting disease-associated Piwi-interacting RNAs". Briefings in Bioinformatics, 5.10.2022. http://dx.doi.org/10.1093/bib/bbac393.
Pełny tekst źródłaBoppana, Venugopal, i P. Sandhya. "Web crawling based context aware recommender system using optimized deep recurrent neural network". Journal of Big Data 8, nr 1 (20.11.2021). http://dx.doi.org/10.1186/s40537-021-00534-7.
Pełny tekst źródłaAzizifard, Narges, Lodewijk Gelauff, Jean-Olivier Gransard-Desmond, Miriam Redi i Rossano Schifanella. "Wiki Loves Monuments: crowdsourcing the collective image of the worldwide built heritage". Journal on Computing and Cultural Heritage, 2.11.2022. http://dx.doi.org/10.1145/3569092.
Pełny tekst źródłaSingh, Kirti, Indu Saini i Neetu Sood. "ANALYSIS OF CARDIOVASCULAR, CARDIORESPIRATORY, AND VASCULO- RESPIRATORY SIGNALS USING DIFFERENT MACHINE LEARNING TECHNIQUES". Biomedical Engineering: Applications, Basis and Communications, 10.12.2022. http://dx.doi.org/10.4015/s1016237222500454.
Pełny tekst źródłaCarter, Dave, Marta Stojanovic i Berry De Bruijn. "Revitalizing the Global Public Health Intelligence Network (GPHIN)". Online Journal of Public Health Informatics 10, nr 1 (22.05.2018). http://dx.doi.org/10.5210/ojphi.v10i1.8912.
Pełny tekst źródła