Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Negative electron affinity (NEA).

Artykuły w czasopismach na temat „Negative electron affinity (NEA)”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Negative electron affinity (NEA)”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Malta, D. P., J. B. Posthill, T. P. Humphreys i R. J. Markunas. "Interpretation of secondary electron contrast from negative electron affinity diamond surfaces". Proceedings, annual meeting, Electron Microscopy Society of America 53 (13.08.1995): 120–21. http://dx.doi.org/10.1017/s0424820100136970.

Pełny tekst źródła
Streszczenie:
Diamond is a wide band-gap semiconductor with many unique physical properties that make it an attractive technological material. One such property is the negative electron affinity (NEA) behavior of the surface when properly terminated with hydrogen or a thin metal layer. The NEA diamond surface exhibits an unusually large secondary electron (SE) yield which is desirable for applications in cold cathode electron emitters of flat panel displays. Examination of NEA diamond surfaces by scanning electron microscopy (SEM) has indicated that a unique mechanism appears to be responsible for the SE contrast in which sub-surface microstructural information is contained. This paper provides a brief interpretation of the origin of SE contrast from the NEA diamond surface.The electron affinity of a semiconductor surface, χ, is defined by the position of the vacuum energy level, E0, relative to the conduction band minimum, Ec (Fig. la). If χ>0, excited conduction band electrons must migrate to the surface and arrive with sufficient kinetic energy to overcome the surface energy barrier in order to escape into vacuum.
Style APA, Harvard, Vancouver, ISO itp.
2

XIE, AI-GEN, YANG YU, YA-YI CHEN, YU-QING XIA i HAO-YU LIU. "THEORETICAL RESEARCH OF SECONDARY ELECTRON EMISSION FROM NEGATIVE ELECTRON AFFINITY SEMICONDUCTORS". Surface Review and Letters 26, nr 04 (maj 2019): 1850181. http://dx.doi.org/10.1142/s0218625x18501810.

Pełny tekst źródła
Streszczenie:
Based on primary range [Formula: see text], relationships among parameters of secondary electron yield [Formula: see text] and the processes and characteristics of secondary electron emission (SEE) from negative electron affinity (NEA) semiconductors, the universal formulas for [Formula: see text] at [Formula: see text] and at [Formula: see text] for NEA semiconductors were deduced, respectively; where [Formula: see text] is incident energy of primary electron. According to the characteristics of SEE from NEA semiconductors with [Formula: see text], [Formula: see text], deduced universal formulas for [Formula: see text] at [Formula: see text] and at [Formula: see text] for NEA semiconductors and experimental data, special formulas for [Formula: see text] at 0.5[Formula: see text] of several NEA semiconductors with [Formula: see text] were deduced and proved to be true experimentally, respectively; where [Formula: see text] is the [Formula: see text] at which [Formula: see text] reaches maximum secondary electron yield. It can be concluded that the formula for [Formula: see text] of NEA semiconductors with [Formula: see text] was deduced and could be used to calculate [Formula: see text], and that the method of calculating the 1/[Formula: see text] of NEA semiconductors with [Formula: see text] is plausible; where [Formula: see text] is the probability that an internal secondary electron escapes into vacuum upon reaching the surface of emitter, and 1/[Formula: see text] is mean escape depth of secondary electron.
Style APA, Harvard, Vancouver, ISO itp.
3

Kashima, M., S. Ishiyama, D. Sato, A. Koizumi, H. Iijima, T. Nishitani, Y. Honda, H. Amano i T. Meguro. "Adsorption structure deteriorating negative electron affinity under the H2O environment". Applied Physics Letters 121, nr 18 (31.10.2022): 181601. http://dx.doi.org/10.1063/5.0125344.

Pełny tekst źródła
Streszczenie:
Photocathodes with negative electron affinity (NEA) characteristics have various advantages, such as small energy spread, high spin polarization, and ultrashort pulsing. Nitride semiconductors, such as GaN and InGaN, are promising materials for NEA photocathodes because their lifetimes are longer than those of other materials. In order to further prolong the lifetime, it is important to better understand the deterioration of NEA characteristics. The adsorption of residual gases and back-bombardment by ionized residual gases shorten the lifetime. Among the adsorbed residual gases, H2O has a significant influence. However, the adsorption structures produced by the reaction with H2O are not comprehensively studied so far. In this study, we investigated adsorption structures that deteriorated the NEA characteristics by exposing InGaN and GaAs to an H2O environment and discussed the differences in their lifetimes. By comparing the temperature-programmed desorption curves with and without H2O exposure, the generation of CsOH was confirmed. The desorption of CsOH demonstrated different photoemission behaviors between InGaN and GaAs results. InGaN recovered its NEA characteristics, whereas GaAs did not. Considering the Cs desorption spectra, it is difficult for an NEA surface on InGaN to change chemically, whereas that for GaAs changes easily. The chemical reactivity of the NEA surface is different for InGaN and GaAs, which contributes to the duration of photoemission. We have attempted to prolong the lifetime of InGaN by recovering its NEA characteristics. We found that InGaN with NEA characteristics can be reused easily without thermal treatment at high temperatures.
Style APA, Harvard, Vancouver, ISO itp.
4

Yasuda, Hidehiro, Tomohiro Nishitani, Shuhei Ichikawa, Shuhei Hatanaka, Yoshio Honda i Hiroshi Amano. "Development of Pulsed TEM Equipped with Nitride Semiconductor Photocathode for High-Speed Observation and Material Nanofabrication". Quantum Beam Science 5, nr 1 (1.02.2021): 5. http://dx.doi.org/10.3390/qubs5010005.

Pełny tekst źródła
Streszczenie:
The development of pulsed electron sources is applied to electron microscopes or electron beam lithography and is effective in expanding the functions of such devices. The laser photocathode can generate short pulsed electrons with high emittance, and the emittance can be increased by changing the cathode substrate from a metal to compound semiconductor. Among the substrates, nitride-based semiconductors with a negative electron affinity (NEA) have good advantages in terms of vacuum environment and cathode lifetime. In the present study, we report the development of a photocathode electron gun that utilizes photoelectron emission from a NEA-InGaN substrate by pulsed laser excitation, and the purpose is to apply it to material nanofabrication and high-speed observation using a pulsed transmission electron microscope (TEM) equipped with it.
Style APA, Harvard, Vancouver, ISO itp.
5

Feigl, C. A., B. Motevalli, A. J. Parker, B. Sun i A. S. Barnard. "Classifying and predicting the electron affinity of diamond nanoparticles using machine learning". Nanoscale Horizons 4, nr 4 (2019): 983–90. http://dx.doi.org/10.1039/c9nh00060g.

Pełny tekst źródła
Streszczenie:
Using a combination of electronic structure simulations and machine learning we have shown that the characteristic negative electron affinity (NEA) of hydrogenated diamond nanoparticles exhibits a class-dependent structure/property relationship.
Style APA, Harvard, Vancouver, ISO itp.
6

Koizumi, Atsushi, Daiki Sato, Haruka Shikano, Hokuto Iijima i Tomohiro Nishitani. "Dependence of electron emission current density on excitation power density from Cs/O-activated negative electron affinity InGaN photocathode". Journal of Vacuum Science & Technology B 40, nr 6 (grudzień 2022): 062202. http://dx.doi.org/10.1116/6.0002124.

Pełny tekst źródła
Streszczenie:
The dependence of the electron emission current density on the excitation power density of a Cs/O-activated negative electron affinity (NEA) InGaN photocathode was investigated. The emission current density of the NEA-InGaN photocathode increased monotonically with the excitation power density in the measured range. The emission current density reached 5.6 × 103 A/cm2 at an excitation power density of 2.6 × 106 W/cm2. Using the electron thermal energy estimated by comparing simulation and experimental results [D. Sato, H. Shikano, A. Koizumi, T. Nishitani, Y. Honda, and H. Amano, J. Vac. Sci. Technol. B 39, 062209 (2021)], the reduced brightness of 4 × 108 A/m2 sr V was derived.
Style APA, Harvard, Vancouver, ISO itp.
7

INAGAKI, Yuta, Kazuya HAYASE, Ryosuke CHIBA, Hokuto IIJIMA i Takashi MEGURO. "Contribution of Treatment Temperature on Quantum Efficiency of Negative Electron Affinity (NEA)-GaAs". IEICE Transactions on Electronics E99.C, nr 3 (2016): 371–75. http://dx.doi.org/10.1587/transele.e99.c.371.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Cai, Zhi Peng, Wen Zheng Yang, Wei Dong Tang i Xun Hou. "Theoretical Energy Distributions of Electrons from a Large Exponential-Doping GaAs Photocathode". Advanced Materials Research 415-417 (grudzień 2011): 1302–5. http://dx.doi.org/10.4028/www.scientific.net/amr.415-417.1302.

Pełny tekst źródła
Streszczenie:
Theoretical calculation indicates that the large exponential-doping GaAs photocathodes have a much narrower electron energy distribution than traditional GaAs NEA cathodes, and the excellent performance attributes to the special structure characters of the band-bending region and lower negative electron affinity of the new-type GaAs photocathodes. The effects of surface doping concentration and work function on the energy distribution are discussed in details, and the FWHM of the energy distribution is less than 100meV. The simulation results indicate that the large exponential-doping mode further improves the features of the electron energy spreads for GaAs photocathodes, which may meet the further demand of next generation of electron guns.
Style APA, Harvard, Vancouver, ISO itp.
9

Yater, J. E. "Secondary electron emission and vacuum electronics". Journal of Applied Physics 133, nr 5 (7.02.2023): 050901. http://dx.doi.org/10.1063/5.0130972.

Pełny tekst źródła
Streszczenie:
Secondary electron emission serves as the foundation for a broad range of vacuum electronic devices and instrumentation, from particle detectors and multipliers to high-power amplifiers. While secondary yields of at least 3–4 are required in practical applications, the emitter stability can be compromised by surface dynamics during operation. As a result, the range of practical emitter materials is limited. The development of new emitter materials with high yield and robust operation would advance the state-of-the-art and enable new device concepts and applications. In this Perspective article, I first present an analysis of the secondary emission process, with an emphasis on the influence of material properties. From this analysis, ultra-wide bandgap (UWBG) semiconductors and oxides emerge as superior emitter candidates owing to exceptional surface and transport properties that enable a very high yield of low-energy electrons with narrow energy spread. Importantly, exciting advances are being made in the development of promising UWBG semiconductors such as diamond, cubic boron nitride (c-BN), and aluminum nitride (AlN), as well as UWBG oxides with improved conductivity and crystallinity. These advances are enabled by epitaxial growth techniques that provide control over the electronic properties critical to secondary electron emission, while advanced theoretical tools provide guidance to optimize these properties. Presently, H-terminated diamond offers the greatest opportunity because of its thermally stable negative electron affinity (NEA). In fact, an electron amplifier under development exploits the high yield from this NEA surface, while more robust NEA diamond surfaces are demonstrated with potential for high yields in a range of device applications. Although c-BN and AlN are less mature, they provide opportunities to design novel heterostructures that can enhance the yield further.
Style APA, Harvard, Vancouver, ISO itp.
10

Bae, Jai Kwan, Matthew Andorf, Adam Bartnik, Alice Galdi, Luca Cultrera, Jared Maxson i Ivan Bazarov. "Operation of Cs–Sb–O activated GaAs in a high voltage DC electron gun at high average current". AIP Advances 12, nr 9 (1.09.2022): 095017. http://dx.doi.org/10.1063/5.0100794.

Pełny tekst źródła
Streszczenie:
Negative Electron Affinity (NEA) activated GaAs photocathodes are the most popular option for generating a high current ([Formula: see text]1 mA) spin-polarized electron beam. Despite its popularity, a short operational lifetime is the main drawback of this material. Recent works have shown that the lifetime can be improved by using a robust Cs–Sb–O NEA layer with minimal adverse effects. In this work, we operate GaAs photocathodes with this new activation method in a high voltage environment to extract a high current. We demonstrate that improved chemical resistance of Cs–Sb–O activated GaAs photocathodes allowed them to survive a day-long transport process from a separate vacuum system using a vacuum suitcase. During beam running, we observed spectral dependence on lifetime improvement. In particular, we saw a 45% increase in the lifetime at 780 nm on average for Cs–Sb–O activated GaAs compared to Cs–O activated GaAs.
Style APA, Harvard, Vancouver, ISO itp.
11

Guo, Jing, Ming Zhu Yang i Mei Shan Wang. "Theoretical Study on Absorption Properties of InxGa1-xAs with Different in Component". Applied Mechanics and Materials 423-426 (wrzesień 2013): 439–42. http://dx.doi.org/10.4028/www.scientific.net/amm.423-426.439.

Pełny tekst źródła
Streszczenie:
The band gaps and the absorption properties of InxGa1-xAs used as the infrared-extension negative electron affinity (NEA) photocathode are discussed based on first principle. The analysis about the band gaps of the InxGa1-xAs with different In component proves that the models and the computational accuracy are reliable. It is found that the absorption peak P1 moves to the high energy region and the absorption coefficient becomes smaller with the increase of the In component x when the photon energy is less than 4 eV. Absorption peak P3 moves to the high energy region and the absorption coefficient becomes bigger with the increase of the In component x when the photon energy is more than 6 eV. The analysis about the absorption property offers a theoretical foundation for the design of the NEA InxGa1-xAs photocathode according to the photoelectric emission mechanism.
Style APA, Harvard, Vancouver, ISO itp.
12

Tereshchenko, Oleg E., Vladimir A. Golyashov, Vadim S. Rusetsky, Andrey V. Mironov, Alexander Yu Demin i Vladimir V. Aksenov. "A new imaging concept in spin polarimetry based on the spin-filter effect". Journal of Synchrotron Radiation 28, nr 3 (30.03.2021): 864–75. http://dx.doi.org/10.1107/s1600577521002307.

Pełny tekst źródła
Streszczenie:
The concept of an imaging-type 3D spin detector, based on the combination of spin-exchange interactions in the ferromagnetic (FM) film and spin selectivity of the electron–photon conversion effect in a semiconductor heterostructure, is proposed and demonstrated on a model system. This novel multichannel concept is based on the idea of direct transfer of a 2D spin-polarized electron distribution to image cathodoluminescence (CL). The detector is a hybrid structure consisting of a thin magnetic layer deposited on a semiconductor structure allowing measurement of the spatial and polarization-dependent CL intensity from injected spin-polarized free electrons. The idea is to use spin-dependent electron transmission through in-plane magnetized FM film for in-plane spin detection by measuring the CL intensity from recombined electrons transmitted in the semiconductor. For the incoming electrons with out-of-plane spin polarization, the intensity of circularly polarized CL light can be detected from recombined polarized electrons with holes in the semiconductor. In order to demonstrate the ability of the solid-state spin detector in the image-type mode operation, a spin detector prototype was developed, which consists of a compact proximity focused vacuum tube with a spin-polarized electron source [p-GaAs(Cs,O)], a negative electron affinity (NEA) photocathode and the target [semiconductor heterostructure with quantum wells also with NEA]. The injection of polarized low-energy electrons into the target by varying the kinetic energy in the range 0.5–3.0 eV and up to 1.3 keV was studied in image-type mode. The figure of merit as a function of electron kinetic energy and the target temperature is determined. The spin asymmetry of the CL intensity in a ferromagnetic/semiconductor (FM-SC) junction provides a compact optical method for measuring spin polarization of free-electron beams in image-type mode. The FM-SC detector has the potential for realizing multichannel 3D vectorial reconstruction of spin polarization in momentum microscope and angle-resolved photoelectron spectroscopy systems.
Style APA, Harvard, Vancouver, ISO itp.
13

Tereshchenko, Oleg E., Vladimir A. Golyashov, Vadim S. Rusetsky, Danil A. Kustov, Andrey V. Mironov i Alexander Yu Demin. "Vacuum Spin LED: First Step towards Vacuum Semiconductor Spintronics". Nanomaterials 13, nr 3 (19.01.2023): 422. http://dx.doi.org/10.3390/nano13030422.

Pełny tekst źródła
Streszczenie:
Improving the efficiency of spin generation, injection, and detection remains a key challenge for semiconductor spintronics. Electrical injection and optical orientation are two methods of creating spin polarization in semiconductors, which traditionally require specially tailored p-n junctions, tunnel or Schottky barriers. Alternatively, we introduce here a novel concept for spin-polarized electron emission/injection combining the optocoupler principle based on vacuum spin-polarized light-emitting diode (spin VLED) making it possible to measure the free electron beam polarization injected into the III-V heterostructure with quantum wells (QWs) based on the detection of polarized cathodoluminescence (CL). To study the spin-dependent emission/injection, we developed spin VLEDs, which consist of a compact proximity-focused vacuum tube with a spin-polarized electron source (p-GaAs(Cs,O) or Na2KSb) and the spin detector (III-V heterostructure), both activated to a negative electron affinity (NEA) state. The coupling between the photon helicity and the spin angular momentum of the electrons in the photoemission and injection/detection processes is realized without using either magnetic material or a magnetic field. Spin-current detection efficiency in spin VLED is found to be 27% at room temperature. The created vacuum spin LED paves the way for optical generation and spin manipulation in the developing vacuum semiconductor spintronics.
Style APA, Harvard, Vancouver, ISO itp.
14

Xia, Sihao, Lei Liu, Honggang Wang, Meishan Wang i Yike Kong. "Theoretical study for heterojunction surface of NEA GaN photocathode dispensed with Cs activation". Modern Physics Letters B 30, nr 26 (30.09.2016): 1650339. http://dx.doi.org/10.1142/s0217984916503395.

Pełny tekst źródła
Streszczenie:
For the disadvantages of conventional negative electron affinity (NEA) GaN photocathodes activated by Cs or Cs/O, new-type NEA GaN photocathodes with heterojunction surface dispensed with Cs activation are investigated based on first-principle study with density functional theory. Through the growth of an ultrathin [Formula: see text]-type GaN cap layer on [Formula: see text]-type GaN emission layer, a [Formula: see text]–[Formula: see text] heterojunction is formed on the surface. According to the calculation results, it is found that Si atoms tend to replace Ga atoms to result in an [Formula: see text]-type doped cap layer which contributes to the decreasing of work function. After the growth of [Formula: see text]-type GaN cap layer, the atom structure near the [Formula: see text]-type emission layer is changed while that away from the surface has no obvious variations. By analyzing the E-Mulliken charge distribution of emission surface with and without cap layer, it is found that the positive charge of Ga and Mg atoms in the emission layer decrease caused by the cap layer, while the negative charge of N atom increases. The conduction band moves downwards after the growth of cap layer. Si atom produces donor levels around the valence band maximum. The absorption coefficient of GaN emission layer decreases and the reflectivity increases caused by [Formula: see text]-type GaN cap layer.
Style APA, Harvard, Vancouver, ISO itp.
15

Wang, Huan, Jiajun Linghu, Pengfei Zou, Xuezhi Wang, Hao Shen i Bingru Hai. "Theoretical Study on the Photoemission Performance of a Transmission Mode In0.15Ga0.85As Photocathode in the Near-Infrared Region". Molecules 28, nr 13 (7.07.2023): 5262. http://dx.doi.org/10.3390/molecules28135262.

Pełny tekst źródła
Streszczenie:
Benefiting from a high quantum efficiency, low thermal emittance, and large absorption coefficient, InxGa1−xAs is an excellent group III–V compound for negative electron affinity (NEA) photocathodes. As the emission layer, InxGa1−xAs, where x = 0.15, has the optimal performance for detection in the near-infrared (NIR) region. Herein, an NEA In0.15Ga0.85As photocathode with Al0.63Ga0.37As as the buffer layer is designed in the form of a transmission mode module. The electronic band structures and optical properties of In0.15Ga0.85As and Al0.63Ga0.37As are calculated based on density functional theory. The time response characteristics of the In0.15Ga0.85As photocathode have been fully investigated by changing the photoelectron diffusion coefficient, the interface recombination velocity, and the thickness of the emission layer. Our results demonstrate that the response time of the In0.15Ga0.85As photocathode can be reduced to 6.1 ps with an incident wavelength of 1064 nm. The quantum efficiency of the In0.15Ga0.85As photocathode is simulated by taking into account multilayer optical thin film theory. The results indicate that a high quantum efficiency can be obtained by parameter optimization of the emission layer. This paper provides significant theoretical support for the applications of semiconductor photocathodes in the near-infrared region, especially for the study of ultrafast responses in the photoemission process.
Style APA, Harvard, Vancouver, ISO itp.
16

Schaber, Jana, Rong Xiang, Jochen Teichert, André Arnold, Petr Murcek, Paul Zwartek, Anton Ryzhov i in. "Influence of Surface Cleaning on Quantum Efficiency, Lifetime and Surface Morphology of p-GaN:Cs Photocathodes". Micromachines 13, nr 6 (29.05.2022): 849. http://dx.doi.org/10.3390/mi13060849.

Pełny tekst źródła
Streszczenie:
Accelerator scientists have high demands on photocathodes possessing high quantum efficiency (QE) and long operational lifetime. p-GaN, as a new photocathode type, has recently gained more and more interest because of its ability to form a negative electron affinity (NEA) surface. Being activated with a thin layer of cesium, p-GaN:Cs photocathodes promise higher QE and better stability than the known photocathodes. In our study, p-GaN samples grown on sapphire or silicon were wet chemically cleaned and transferred into an ultra-high vacuum (UHV) chamber, where they underwent a subsequent thermal cleaning. The cleaned p-GaN samples were activated with cesium to obtain p-GaN:Cs photocathodes, and their performance was monitored with respect to their quality, especially their QE and storage lifetime. The surface topography and morphology were examined by atomic force microscopy (AFM) and scanning electron microscopy (SEM) in combination with energy dispersive X-ray (EDX) spectroscopy. We have shown that p-GaN could be efficiently reactivated with cesium several times. This paper systematically compares the influence of wet chemical cleaning as well as thermal cleaning at various temperatures on the QE, storage lifetime and surface morphology of p-GaN. As expected, the cleaning strongly influences the cathodes’ quality. We show that high QE and long storage lifetime are achievable at lower cleaning temperatures in our UHV chamber.
Style APA, Harvard, Vancouver, ISO itp.
17

Sanford, Colin A. "Electron optical characteristics of negative electron affinity cathodes". Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 6, nr 6 (listopad 1988): 2005. http://dx.doi.org/10.1116/1.584118.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

McKenna, Keith P., i Alexander L. Shluger. "Electron-trapping polycrystalline materials with negative electron affinity". Nature Materials 7, nr 11 (12.10.2008): 859–62. http://dx.doi.org/10.1038/nmat2289.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Yamada, Takatoshi, Kap-soon Chang, Ken Okano i Akio Hiraki. "Electron emission from diamond having negative electron affinity". Electronics and Communications in Japan (Part II: Electronics) 81, nr 11 (listopad 1998): 54–64. http://dx.doi.org/10.1002/(sici)1520-6432(199811)81:11<54::aid-ecjb7>3.0.co;2-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Yamada, Takatoshi, Kap-soon Chang, Ken Okano i Akio Hiraki. "Electron emission from diamond having negative electron affinity". Electronics and Communications in Japan (Part II: Electronics) 82, nr 8 (sierpień 1999): 42–52. http://dx.doi.org/10.1002/(sici)1520-6432(199908)82:8<42::aid-ecjb6>3.0.co;2-k.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Bakin, V. V., A. A. Pakhnevich, A. G. Zhuravlev, A. N. Shornikov, I. O. Akhundov, O. E. Tereshechenko, V. L. Alperovich, H. E. Scheibler i A. S. Terekhov. "Semiconductor surfaces with negative electron affinity". e-Journal of Surface Science and Nanotechnology 5 (2007): 80–88. http://dx.doi.org/10.1380/ejssnt.2007.80.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Guo, Tailiang, i Huairong Gao. "Negative electron affinity multi-alkali photocathodes". Applied Surface Science 70-71 (czerwiec 1993): 355–58. http://dx.doi.org/10.1016/0169-4332(93)90457-m.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Vergara, G., A. Herrera-Gómez i W. E. Spicer. "Calculated electron energy distribution of negative electron affinity cathodes". Surface Science 436, nr 1-3 (sierpień 1999): 83–90. http://dx.doi.org/10.1016/s0039-6028(99)00612-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Chang, Benkang. "Gradient-doping negative electron affinity GaAs photocathodes". Optical Engineering 45, nr 5 (1.05.2006): 054001. http://dx.doi.org/10.1117/1.2205171.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Zou, Jijun, Xiaowan Ge, Yijun Zhang, Wenjuan Deng, Zhifu Zhu, Weilu Wang, Xincun Peng, Zhaoping Chen i Benkang Chang. "Negative electron affinity GaAs wire-array photocathodes". Optics Express 24, nr 5 (24.02.2016): 4632. http://dx.doi.org/10.1364/oe.24.004632.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Krainsky, I. L., i V. M. Asnin. "Negative electron affinity mechanism for diamond surfaces". Applied Physics Letters 72, nr 20 (18.05.1998): 2574–76. http://dx.doi.org/10.1063/1.121422.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Williams, M. D., M. D. Feuer, S. C. Shunk, N. J. Sauer i T. Y. Chang. "Negative electron affinity based vacuum collector transistor". Journal of Applied Physics 71, nr 6 (15.03.1992): 3042–44. http://dx.doi.org/10.1063/1.350990.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Loh, Kian Ping, Isao Sakaguchi, Mikka Nishitani-Gamo, Takashi Taniguchi i Toshihiro Ando. "Negative electron affinity of cubic boron nitride". Diamond and Related Materials 8, nr 2-5 (marzec 1999): 781–84. http://dx.doi.org/10.1016/s0925-9635(98)00293-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Takeuchi, D., S. G. Ri, H. Kato, C. E. Nebel i S. Yamasaki. "Negative electron affinity on hydrogen terminated diamond". physica status solidi (a) 202, nr 11 (wrzesień 2005): 2098–103. http://dx.doi.org/10.1002/pssa.200561927.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Ghani, Muhammad Usman, M. Imran Jamil, Afaq Ahmad i Saad Tariq. "Electron affinity measurement of hydrogen negative ion". Pakistan Journal of Emerging Science and Technologies (PJEST) 4, nr 2 (15.05.2023): 1–8. http://dx.doi.org/10.58619/pjest.v4i2.101.

Pełny tekst źródła
Streszczenie:
Photodetachment Microscopy experiment was first carried out in the presence of an electric field by Blondel et al in 1996 for Bromine negative ion. It measures the spatial distribution of ejected electrons on the detector screen which is a direct view of the spatial structure of the wave function of an atomic electron in the form of a ring pattern. From a semi-classical point of view, this ring pattern is formed because of the interference between two electron waves; one is direct while the other is reflected from an electric field. Following Blondel's photodetachment microscopy experiment, a formula that displays the Newton Rings is derived using a theoretical imaging technique or hydrogen negative ion near a plane interface. The interface means an elastic plane in the vicinity of the source of photoelectrons. The direct and reflected electron waves in this formula generate quantum interference in the form of Newton Rings. It is found that the number of rings increases as we increase the photon energy of the laser light. This finding is in accordance with the very well-known Einstein photoelectric effect which finally provides help to find the electron affinity of the hydrogen negative ion very accurately.
Style APA, Harvard, Vancouver, ISO itp.
31

Santos, Edval J. P. "Integration of microstructures onto negative electron affinity cathodes: Fabrication and operation of an addressable negative electron affinity cathode". Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 11, nr 6 (listopad 1993): 2362. http://dx.doi.org/10.1116/1.586987.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Schneider, J. E. "Patterned negative electron affinity photocathodes for maskless electron beam lithography". Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 16, nr 6 (listopad 1998): 3192. http://dx.doi.org/10.1116/1.590349.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Xie, Ai-Gen, Zheng Pan, Hong-Jie Dong i Chen-Nan Song. "Secondary electron emission from insulators and negative electron affinity semiconductors". Results in Physics 20 (styczeń 2021): 103745. http://dx.doi.org/10.1016/j.rinp.2020.103745.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Gao, Huairong, i Qing-Bin Lu. "Investigation of electron emission stability of negative electron affinity cathodes". Vacuum 41, nr 7-9 (styczeń 1990): 1753–55. http://dx.doi.org/10.1016/0042-207x(90)94076-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Li, Jieru, Daniel Niesner i Thomas Fauster. "Negative electron affinity of adamantane on Cu(111)". Journal of Physics: Condensed Matter 33, nr 13 (25.01.2021): 135001. http://dx.doi.org/10.1088/1361-648x/abd99a.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Qiao Jian-Liang, Tian Si, Chang Ben-Kang, Du Xiao-Qing i Gao Pin. "Activation mechanism of negative electron affinity GaN photocathode". Acta Physica Sinica 58, nr 8 (2009): 5847. http://dx.doi.org/10.7498/aps.58.5847.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Du Xiaoqing, 杜晓晴, 常本康 Chang Benkang, 钱芸生 Qian Yunsheng, 富容国 Fu Rongguo, 高频 Gao Pin i 乔建良 Qiao Jianliang. "Activation Technique of GaN Negative Electron Affinity Photocathode". Chinese Journal of Lasers 37, nr 2 (2010): 385–88. http://dx.doi.org/10.3788/cjl20103702.0385.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Guo Xiangyang, 郭向阳, 王晓晖 Wang Xiaohui, 常本康 Chang Benkang, 张益军 Zhang Yijun i 乔建良 Qiao Jianliang. "Preparation Technique of Negative-Electron-Affinity GaN Photocathode". Acta Optica Sinica 31, nr 2 (2011): 0219003. http://dx.doi.org/10.3788/aos201131.0219003.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Sedlacek, J. A., E. Kim, S. T. Rittenhouse, P. F. Weck, H. R. Sadeghpour i J. P. Shaffer. "Rb adsorbate-induced negative electron affinity on quartz". Journal of Physics: Conference Series 875 (lipiec 2017): 112014. http://dx.doi.org/10.1088/1742-6596/875/12/112014.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Gao, Xingyu, Lei Liu, Dongchen Qi, Shi Chen, A. T. S. Wee, Ti Ouyang, Kian Ping Loh, Xiaojiang Yu i Herbert O. Moser. "Water-Induced Negative Electron Affinity on Diamond (100)". Journal of Physical Chemistry C 112, nr 7 (luty 2008): 2487–91. http://dx.doi.org/10.1021/jp0726337.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Liu, Zhi, Yun Sun, P. Pianetta i R. F. W. Pease. "Narrow cone emission from negative electron affinity photocathodes". Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 23, nr 6 (2005): 2758. http://dx.doi.org/10.1116/1.2101726.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Sanford, Colin A. "Electron emission properties of laser pulsed GaAs negative electron affinity photocathodes". Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 8, nr 6 (listopad 1990): 1853. http://dx.doi.org/10.1116/1.585172.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Bandis, C., i B. B. Pate. "Electron Emission Due to Exciton Breakup from Negative Electron Affinity Diamond". Physical Review Letters 74, nr 5 (30.01.1995): 777–80. http://dx.doi.org/10.1103/physrevlett.74.777.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Ohshima, Takashi, i Makoto Kudo. "Electron Beam Brightness from Negative-Electron-Affinity Photocathodes for Scanning Electron Microscopy Application". Japanese Journal of Applied Physics 43, nr 12 (9.12.2004): 8335–40. http://dx.doi.org/10.1143/jjap.43.8335.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

QIAO Jian-liang, 乔建良, 徐源 XU Yuan, 高有堂 GAO You-tang, 牛军 NIU Jun i 常本康 CHANG Ben-kang. "Cs Adsorption Mechanism for Negative Electron Affinity GaN Photocathode". ACTA PHOTONICA SINICA 45, nr 4 (2016): 425001. http://dx.doi.org/10.3788/gzxb20164504.0425001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Wu, C. I., i A. Kahn. "Negative electron affinity at the Cs/AlN(0001) surface". Applied Physics Letters 74, nr 10 (8.03.1999): 1433–35. http://dx.doi.org/10.1063/1.123573.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Eyckeler, M. "Negative electron affinity of cesiated p-GaN(0001) surfaces". Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 16, nr 4 (lipiec 1998): 2224. http://dx.doi.org/10.1116/1.590152.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Powers, M. J., M. C. Benjamin, L. M. Porter, R. J. Nemanich, R. F. Davis, J. J. Cuomo, G. L. Doll i Stephen J. Harris. "Observation of a negative electron affinity for boron nitride". Applied Physics Letters 67, nr 26 (25.12.1995): 3912–14. http://dx.doi.org/10.1063/1.115315.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

van der Weide, J., Z. Zhang, P. K. Baumann, M. G. Wensell, J. Bernholc i R. J. Nemanich. "Negative-electron-affinity effects on the diamond (100) surface". Physical Review B 50, nr 8 (15.08.1994): 5803–6. http://dx.doi.org/10.1103/physrevb.50.5803.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Guo-xin, Chen, P. P. Ong i Lin Ting. "DFT approach for electron affinity of negative atomic ions". Chemical Physics Letters 290, nr 1-3 (czerwiec 1998): 211–15. http://dx.doi.org/10.1016/s0009-2614(98)00552-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii