Gotowa bibliografia na temat „Navier-Stokes-Cahn-Hilliard model”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Navier-Stokes-Cahn-Hilliard model”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Navier-Stokes-Cahn-Hilliard model"
Li, Xiaoli, i Jie Shen. "On a SAV-MAC scheme for the Cahn–Hilliard–Navier–Stokes phase-field model and its error analysis for the corresponding Cahn–Hilliard–Stokes case". Mathematical Models and Methods in Applied Sciences 30, nr 12 (19.10.2020): 2263–97. http://dx.doi.org/10.1142/s0218202520500438.
Pełny tekst źródłaMedjo, T. Tachim. "A Cahn-Hilliard-Navier-Stokes model with delays". Discrete and Continuous Dynamical Systems - Series B 21, nr 8 (wrzesień 2016): 2663–85. http://dx.doi.org/10.3934/dcdsb.2016067.
Pełny tekst źródłaMedjo, T. "Robust control of a Cahn-Hilliard-Navier-Stokes model". Communications on Pure and Applied Analysis 15, nr 6 (wrzesień 2016): 2075–101. http://dx.doi.org/10.3934/cpaa.2016028.
Pełny tekst źródłaKotschote, Matthias, i Rico Zacher. "Strong solutions in the dynamical theory of compressible fluid mixtures". Mathematical Models and Methods in Applied Sciences 25, nr 07 (14.04.2015): 1217–56. http://dx.doi.org/10.1142/s0218202515500311.
Pełny tekst źródłaBoyer, Franck, i Sebastian Minjeaud. "Hierarchy of consistent n-component Cahn–Hilliard systems". Mathematical Models and Methods in Applied Sciences 24, nr 14 (16.10.2014): 2885–928. http://dx.doi.org/10.1142/s0218202514500407.
Pełny tekst źródłaLAM, KEI FONG, i HAO WU. "Thermodynamically consistent Navier–Stokes–Cahn–Hilliard models with mass transfer and chemotaxis". European Journal of Applied Mathematics 29, nr 4 (9.10.2017): 595–644. http://dx.doi.org/10.1017/s0956792517000298.
Pełny tekst źródłaLi, Xiaoli, i Jie Shen. "On fully decoupled MSAV schemes for the Cahn–Hilliard–Navier–Stokes model of two-phase incompressible flows". Mathematical Models and Methods in Applied Sciences 32, nr 03 (31.01.2022): 457–95. http://dx.doi.org/10.1142/s0218202522500117.
Pełny tekst źródłaLasarzik, Robert. "Analysis of a thermodynamically consistent Navier–Stokes–Cahn–Hilliard model". Nonlinear Analysis 213 (grudzień 2021): 112526. http://dx.doi.org/10.1016/j.na.2021.112526.
Pełny tekst źródłaDeugoue, Gabriel, Boris Jidjou Moghomye i Theodore Tachim Medjo. "Splitting-up scheme for the stochastic Cahn–Hilliard Navier–Stokes model". Stochastics and Dynamics 21, nr 01 (18.03.2020): 2150005. http://dx.doi.org/10.1142/s0219493721500052.
Pełny tekst źródłaChen, Jie, Shuyu Sun i Zhangxin Chen. "Coupling Two-Phase Fluid Flow with Two-Phase Darcy Flow in Anisotropic Porous Media". Advances in Mechanical Engineering 6 (1.01.2014): 871021. http://dx.doi.org/10.1155/2014/871021.
Pełny tekst źródłaRozprawy doktorskie na temat "Navier-Stokes-Cahn-Hilliard model"
Pi, Haohong. "Analyse expérimentale-numérique de l'écoulement diphasique dans des modèles de milieu poreux sur puce microfluidique". Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0126.
Pełny tekst źródłaThe core-flood experiments are the usual method used to study the immiscible biphasic flow. However, beside reproducibility aspects, a significant drawback is that with these black box experiments, we cannot observe and capture key phenomena at the pore scale, including interfacial interactions and details about mobilization of the trapped oil (e.g. size and distribution of residual ganglia). This is why microfluidic micromodel devices are now extensively used in lab EOR experiments. They preserve the structural details of the rock while offering advantages such as easy cleaning and repeatability. Visual tracking of fluids displacement is particularly important as it can provide more details about the behavior of wetting and non-wetting phases in porous media, aiding in targeted strategies to enhance oil recovery rates. This thesis explores the intricate dynamics of immiscible two-phase flows combines microfluidic porous medium models, often referred to as “reservoir-on-a-chip”, with numerical simulations.In our experiments, we used morphological to monitor and record displacement behavior in biphasic flow, systematically studying the effects of different capillary numbers (Ca) and viscosity ratios (M) on the flow mechanisms and the mobilization of residual oil. The results indicated that during waterflooding, displacement exhibited characteristics of viscous fingering at lower Ca and M values. By increasing the flow rate to enhance Ca tenfold, the residual oil showing lateral and even backward invasion of flow paths without significant changes in cluster size. With increasing M, both the cluster size and the maximum cluster size decreased, leading to a more uniform distribution of residual oil and lower Sor. The mobilization mechanism of residual oil manifested as ganglia breakup, with newly formed smaller ganglia being mobilized under higher pressures. The distribution of residual oil clusters is consistent with percolation theory, where the scaling exponent τ is 2.0. All experimental results for Sor and corresponding Ca values collapsed onto the classical Capillary Desaturation Curve (CDC).The experimental findings served as a foundation for developing a numerical model using a phase-field approach. This model, based on the Cahn-Hilliard-Navier-Stokes system of equations, effectively captures the bi-phasic flow behavior of immiscible fluids within confined domains. It incorporates conservation of mass and momentum equations, enhanced by phase separation dynamics and interfacial energy considerations. The numerical simulations, executed on the open-source finite element platform Fenics, align qualitatively and quantitatively with experimental observations, affirming the accuracy of model in predicting fluid behaviors under varied physical conditions, advancing our understanding of pore-scale fluid dynamics. Simulations focus on dissecting the influence of fluid properties and operational conditions on the displacement mechanisms at the pore scale
Sarmiento, Adel. "Structure-Preserving Methods for the Navier-Stokes-Cahn-Hilliard System to Model Immiscible Fluids". Diss., 2017. http://hdl.handle.net/10754/626270.
Pełny tekst źródłaŘehoř, Martin. "Modely s neostrým rozhraním v teorii směsí". Doctoral thesis, 2018. http://www.nusl.cz/ntk/nusl-389829.
Pełny tekst źródłaCzęści książek na temat "Navier-Stokes-Cahn-Hilliard model"
Climent-Ezquerra, Blanca, i Francisco Guillén-González. "Long-Time Behavior of a Cahn-Hilliard-Navier-Stokes Vesicle-Fluid Interaction Model". W SEMA SIMAI Springer Series, 125–45. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-32013-7_8.
Pełny tekst źródłaHinze, Michael, i Christian Kahle. "A Nonlinear Model Predictive Concept for Control of Two-Phase Flows Governed by the Cahn-Hilliard Navier-Stokes System". W IFIP Advances in Information and Communication Technology, 348–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36062-6_35.
Pełny tekst źródłaFeng, Xiaoyu, Jisheng Kou i Shuyu Sun. "A Novel Energy Stable Numerical Scheme for Navier-Stokes-Cahn-Hilliard Two-Phase Flow Model with Variable Densities and Viscosities". W Lecture Notes in Computer Science, 113–28. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-93713-7_9.
Pełny tekst źródłaStreszczenia konferencji na temat "Navier-Stokes-Cahn-Hilliard model"
Park, Keunsoo, Carlos A. Dorao, Ezequiel M. Chiapero i Maria Fernandino. "The Least Squares Spectral Element Method for the Navier-Stokes and Cahn-Hilliard Equations". W ASME/JSME/KSME 2015 Joint Fluids Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/ajkfluids2015-21668.
Pełny tekst źródłaChen, H., Y. Shu, B. Q. Li, P. Mohanty i S. Sengupta. "Phase-Field Modeling of Droplet Movement Using the Discontinuous Finite Element Method". W ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-43368.
Pełny tekst źródłaPark, Keunsoo, Carlos A. Dorao i Maria Fernandino. "Numerical Solution of Coupled Cahn-Hilliard and Navier-Stokes System Using the Least-Squares Spectral Element Method". W ASME 2016 Fluids Engineering Division Summer Meeting collocated with the ASME 2016 Heat Transfer Summer Conference and the ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/fedsm2016-1008.
Pełny tekst źródłaTakada, Naoki. "Application of Interface-Tracking Method Based on Phase-Field Model to Numerical Analysis of Isothermal and Thermal Two-Phase Flows". W ASME/JSME 2007 5th Joint Fluids Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/fedsm2007-37567.
Pełny tekst źródłaDo-Quang, Minh, Go¨ran Stemme, Wouter van der Wijngaart i Gustav Amberg. "Numerical Simulation of the Passage of Small Liquid Droplets Through a Thin Liquid Film". W ASME 2008 6th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2008. http://dx.doi.org/10.1115/icnmm2008-62319.
Pełny tekst źródłaTakada, Naoki, i Akio Tomiyama. "Interface-Tracking Simulation of Two-Phase Flows by Phase-Field Method". W ASME 2006 2nd Joint U.S.-European Fluids Engineering Summer Meeting Collocated With the 14th International Conference on Nuclear Engineering. ASMEDC, 2006. http://dx.doi.org/10.1115/fedsm2006-98536.
Pełny tekst źródłaTakada, Naoki, Masaki Misawa i Akio Tomiyama. "A Phase-Field Method for Interface-Tracking Simulation of Two-Phase Flows". W ASME 2005 Fluids Engineering Division Summer Meeting. ASMEDC, 2005. http://dx.doi.org/10.1115/fedsm2005-77367.
Pełny tekst źródłaWang, Zhicheng, Xiaoning Zheng i George Karniadakis. "A Phase Field Method for Numerical Simulation of Boiling Heat Transfer". W ASME 2020 Fluids Engineering Division Summer Meeting collocated with the ASME 2020 Heat Transfer Summer Conference and the ASME 2020 18th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/fedsm2020-20176.
Pełny tekst źródła