Gotowa bibliografia na temat „Natural gas-oxidizer; Laminar burning velocity”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Natural gas-oxidizer; Laminar burning velocity”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Natural gas-oxidizer; Laminar burning velocity"

1

Han, Zhiqiang, Zhennan Zhu, Peng Wang, Kun Liang, Zinong Zuo i Dongjian Zeng. "The Effect of Initial Conditions on the Laminar Burning Characteristics of Natural Gas Diluted by CO2". Energies 12, nr 15 (27.07.2019): 2892. http://dx.doi.org/10.3390/en12152892.

Pełny tekst źródła
Streszczenie:
The initial conditions such as temperature, pressure and dilution rate can have an effect on the laminar burning velocity of natural gas. It is acknowledged that there is an equivalent effect on the laminar burning velocity between any two initial conditions. The effects of initial temperatures (323 K–423 K), initial pressures (0.1 MPa–0.3 MPa) and dilution rate (0–16%, CO2 as diluent gas) on the laminar burning velocity and the flame instability were investigated at a series of equivalence ratios (0.7–1.2) in a constant volume chamber. A chemical kinetic simulation was also conducted to calculate the laminar burning velocity and essential radicals’ concentrations under the same initial conditions. The results show that the laminar burning velocity of natural gas increases with initial temperature but decreases with initial pressure and dilution rate. The maximum concentrations of H, O and OH increase with initial temperature but decrease with initial pressure and dilution rate. Laminar burning velocity is highly correlated with the sum of the maximum concentration of H and OH.
Style APA, Harvard, Vancouver, ISO itp.
2

Wu, Xueshun, Peng Wang, Zhennan Zhu, Yunshou Qian, Wenbin Yu i Zhiqiang Han. "The Equivalent Effect of Initial Condition Coupling on the Laminar Burning Velocity of Natural Gas Diluted by CO2". Energies 14, nr 4 (4.02.2021): 809. http://dx.doi.org/10.3390/en14040809.

Pełny tekst źródła
Streszczenie:
Initial temperature has a promoting effect on laminar burning velocity, while initial pressure and dilution rate have an inhibitory effect on laminar burning velocity. Equal laminar burning velocities can be obtained by initial condition coupling with different temperatures, pressures and dilution rates. This paper analysed the equivalent distribution pattern of laminar burning velocity and the variation pattern of an equal weight curve using the coupling effect of the initial pressure (0.1–0.3 MPa), initial temperature (323–423 K) and dilution rate (0–16%). The results show that, as the initial temperature increases, the initial pressure decreases and the dilution rate decreases, the rate of change in laminar burning velocity increases. The equivalent effect of initial condition coupling can obtain equal laminar burning velocity with an dilution rate increase (or decrease) of 2% and an initial temperature increase (or decrease) of 29 K. Moreover, the increase in equivalence ratio leads to the rate of change in laminar burning velocity first increasing and then decreasing, while the increases in dilution rate and initial pressure make the rate of change in laminar burning velocity gradually decrease and the increase in initial temperature makes the rate of change in laminar burning velocity gradually increase. The area of the region, where the initial temperature influence weight is larger, gradually decreases as the dilution rate increases, and the rate of decrease gradually decreases.
Style APA, Harvard, Vancouver, ISO itp.
3

Jones, A. L., i R. L. Evans. "Comparison of Burning Rates in a Natural-Gas-Fueled Spark Ignition Engine". Journal of Engineering for Gas Turbines and Power 107, nr 4 (1.10.1985): 908–13. http://dx.doi.org/10.1115/1.3239835.

Pełny tekst źródła
Streszczenie:
A series of tests was conducted on a Toyota, four-cylinder, spark ignition engine which was modified to run on either gasoline or natural gas. The aim of the experiment was to investigate the performance and combustion behavior of natural gas, with particular emphasis on its low burning velocity. A pressure transducer installed in the cylinder head was used to obtain pressure versus crank angle curves from which mass burn rates and burning velocities were calculated, using a heat release analysis program. Results indicate that the low laminar burning velocity of natural gas extends its ignition delay period (time to 1 percent burned) by up to 100 percent compared with gasoline. This contrasts with the remainder of the combustion period which is dominated by turbulence effects that produce very similar burning velocities for the two fuels.
Style APA, Harvard, Vancouver, ISO itp.
4

Cardona Vargas, Arley, Carlos E. Arrieta, Hernando Alexander Yepes Tumay, Camilo Echeverri-Uribe i Andrés Amell. "Determination of laminar burning velocity of methane/air flames in sub atmospheric environments". EUREKA: Physics and Engineering, nr 4 (23.07.2021): 50–62. http://dx.doi.org/10.21303/2461-4262.2021.001775.

Pełny tekst źródła
Streszczenie:
The global energy demand enhances the environmental and operational benefits of natural gas as an energy alternative, due to its composition, mainly methane (CH4), it has low polluting emissions and benefits in energy and combustion systems. In the present work, the laminar burning velocity of methane was determined numerically and experimentally at two pressure conditions, 0.85 atm and 0.98 atm, corresponding to the city of Medellín and Caucasia, respectively, located in Colombia. The environmental conditions were 0.85 atm, 0.98 atm, and 295±1 K. The simulations and experimental measurements were carried out for different equivalence relations. Experimental laminar burning velocities were determined using the burner method and spontaneous chemiluminescence technique, flames were generated using burners with contoured rectangular ports to maintain laminar Reynolds numbers for the equivalence ratios under study and to reduce the effects of stretch and curvature in the direction of the burner's axis. In general, the laminar burning velocity fits well with the numerical results. With the results obtained, a correlation is proposed that relates the laminar burning velocity with the effects of pressure, in the form SL=aPb, where a and b are model constants. Sensitivity analysis was performed using the GRI-Mech 3.0 mechanism which showed that the most sensitive reaction was H+O2=O+OH (R38). Additionally, it was found that the reactions H+CH3 (+M)=CH4 (+M) (R52), 2CH3 (+M)=C2H6 (+M) (R158), and O+CH3=H+CH2O (R10) dominate the consumption of CH3 which is an important radical in the oxidation of methane, this analysis is carried out for equivalence ratios of 0.8 and 1.0, and atmospheric pressures of 0.85 atm and 0.98 atm
Style APA, Harvard, Vancouver, ISO itp.
5

Zhang, Ziyue, Runfan Zhu, Yanqun Zhu, Wubin Weng, Yong He i Zhihua Wang. "Experimental and Kinetic Study on Laminar Burning Velocities of High Ratio Hydrogen Addition to CH4+O2+N2 and NG+O2+N2 Flames". Energies 16, nr 14 (9.07.2023): 5265. http://dx.doi.org/10.3390/en16145265.

Pełny tekst źródła
Streszczenie:
In 2020, energy-related CO2 emissions reached 31.5 Gt, leading to an unprecedented atmospheric CO2 level of 412.5 ppm. Hydrogen blending in natural gas (NG) is a solution for maximizing clean energy utilization and enabling long-distance H2 transport through pipelines. However, insufficient comprehension concerning the combustion characteristics of NG, specifically when blended with a high proportion of hydrogen up to 80%, particularly with minority species, persists. Utilizing the heat flux method at room temperature and 1 atm, this experiment investigated the laminar burning velocities of CH4/NG/H2/air/He flames incorporating minority species, specifically C2H6 and C3H8, within NG. The results point out the regularity of SL enhancement, reaching its maximum at an equivalence ratio of 1.4. Furthermore, the propensity for the enhancement of laminar burning velocity aligned with the observed thermoacoustic oscillation instability during fuel-rich regimes. The experimental findings were contrasted with kinetic simulations, utilizing the GRI 3.0 and San Diego mechanisms to facilitate analysis. The inclusion of H2 augments the chemical reactions within the preheating zone, while the thermal effect from temperature is negligible. Both experimental and simulated results revealed that CH4 and NG with a large proportion of H2 had no difference, no matter whether from a laminar burning velocity or a kinetic analysis aspect.
Style APA, Harvard, Vancouver, ISO itp.
6

Sanmiguel, Javier E., S. A. (Raj) Mehta i R. Gordon Moore. "An Experimental Study of Controlled Gas-Phase Combustion in Porous Media for Enhanced Recovery of Oil and Gas". Journal of Energy Resources Technology 125, nr 1 (1.03.2003): 64–71. http://dx.doi.org/10.1115/1.1510522.

Pełny tekst źródła
Streszczenie:
This paper describes an experimental study aimed at establishing fundamental information on the various processes and relevant controlling mechanisms associated with gas-phase combustion in porous media, especially at elevated pressures. A novel apparatus has been designed, constructed and commissioned in order to evaluate the effects of controlling parameters such as operating pressure, gas flow rate, type and size of porous media, and equivalence ratio on combustion characteristics. The results of this study, concerned with lean mixtures of natural gas and air and operational pressures from atmospheric (88.5 kPa or 12.8 psia) to 433.0 kPa (62.8 psia), will be presented. It will be shown that the velocity of the combustion front decreases as the operating pressure of the system increases, and during some test operating conditions, the apparent burning velocities are over 40 times higher than the open flame laminar burning velocities.
Style APA, Harvard, Vancouver, ISO itp.
7

Kro¨ner, M., J. Fritz i T. Sattelmayer. "Flashback Limits for Combustion Induced Vortex Breakdown in a Swirl Burner". Journal of Engineering for Gas Turbines and Power 125, nr 3 (1.07.2003): 693–700. http://dx.doi.org/10.1115/1.1582498.

Pełny tekst źródła
Streszczenie:
Flame flashback from the combustion chamber into the mixing zone limits the reliability of swirl stabilized lean premixed combustion in gas turbines. In a former study, the combustion induced vortex breakdown (CIVB) has been identified as a prevailing flashback mechanism of swirl burners. The present study has been performed to determine the flashback limits of a swirl burner with cylindrical premixing tube without centerbody at atmospheric conditions. The flashback limits, herein defined as the upstream flame propagation through the entire mixing tube, have been detected by a special optical flame sensor with a high temporal resolution. In order to study the effect of the relevant parameters on the flashback limits, the burning velocity of the fuel has been varied using four different natural gas-hydrogen-mixtures with a volume fraction of up to 60% hydrogen. A simple approach for the calculation of the laminar flame speeds of these mixtures is proposed which is used in the next step to correlate the experimental results. In the study, the preheat temperature of the fuel mixture was varied from 100°C to 450°C in order to investigate influence of the burning velocity as well as the density ratio over the flame front. Moreover, the mass flow rate has been modified in a wide range as an additional parameter of technical importance. It was found that the quenching of the chemical reaction is the governing factor for the flashback limit. A Peclet number model was successfully applied to correlate the flashback limits as a function of the mixing tube diameter, the flow rate and the laminar burning velocity. Using this model, a quench factor can be determined for the burner, which is a criterion for the flashback resistance of the swirler and which allows to calculate the flashback limit for all operating conditions on the basis of a limited number of flashback tests.
Style APA, Harvard, Vancouver, ISO itp.
8

El-Sherif, A. S. "Effects of natural gas composition on the nitrogen oxide, flame structure and burning velocity under laminar premixed flame conditions". Fuel 77, nr 14 (listopad 1998): 1539–47. http://dx.doi.org/10.1016/s0016-2361(98)00083-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Mehra, Roopesh Kumar, Hao Duan, Sijie Luo i Fanhua Ma. "Laminar burning velocity of hydrogen and carbon-monoxide enriched natural gas (HyCONG): An experimental and artificial neural network study". Fuel 246 (czerwiec 2019): 476–90. http://dx.doi.org/10.1016/j.fuel.2019.03.003.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Mitu, Maria, Domnina Razus i Volkmar Schroeder. "Laminar Burning Velocities of Hydrogen-Blended Methane–Air and Natural Gas–Air Mixtures, Calculated from the Early Stage of p(t) Records in a Spherical Vessel". Energies 14, nr 22 (12.11.2021): 7556. http://dx.doi.org/10.3390/en14227556.

Pełny tekst źródła
Streszczenie:
The flammable hydrogen-blended methane–air and natural gas–air mixtures raise specific safety and environmental issues in the industry and transportation; therefore, their explosion characteristics such as the explosion limits, explosion pressures, and rates of pressure rise have significant importance from a safety point of view. At the same time, the laminar burning velocities are the most useful parameters for practical applications and in basic studies for the validation of reaction mechanisms and modeling turbulent combustion. In the present study, an experimental and numerical study of the effect of hydrogen addition on the laminar burning velocity (LBV) of methane–air and natural gas–air mixtures was conducted, using mixtures with equivalence ratios within 0.90 and 1.30 and various hydrogen fractions rH within 0.0 and 0.5. The experiments were performed in a 14 L spherical vessel with central ignition at ambient initial conditions. The LBVs were calculated from p(t) data, determined in accordance with EN 15967, by using only the early stage of flame propagation. The results show that hydrogen addition determines an increase in LBV for all examined binary flammable mixtures. The LBV variation versus the fraction of added hydrogen, rH, follows a linear trend only at moderate hydrogen fractions. The further increase in rH results in a stronger variation in LBV, as shown by both experimental and computed LBVs. Hydrogen addition significantly changes the thermal diffusivity of flammable CH4–air or NG–air mixtures, the rate of heat release, and the concentration of active radical species in the flame front and contribute, thus, to LBV variation.
Style APA, Harvard, Vancouver, ISO itp.

Rozprawy doktorskie na temat "Natural gas-oxidizer; Laminar burning velocity"

1

Mumby, Christopher. "Predictions of explosions and fires of natural gas/hydrogen mixtures for hazard assessment". Thesis, Loughborough University, 2010. https://dspace.lboro.ac.uk/2134/6354.

Pełny tekst źródła
Streszczenie:
The work presented in this thesis was undertaken as part of the safety work package of the NATURALHY project which was an integrated project funded by the European Commission (EC) within the sixth framework programme. The purpose of the NATURALHY project was to investigate the feasibility of using existing natural gas infrastructure to assist a transition to a hydrogen based economy by transporting hydrogen from its place of production to its place of use as a mixture of natural gas and hydrogen. The hydrogen can then be extracted from the mixture for use in fuel cells or the mixture used directly in conventional combustion devices. The research presented in this thesis focused on predicting the consequences of explosions and fires involving natural gas and hydrogen mixtures, using engineering type mathematical models typical of those used by the gas industry for risk assessment purposes. The first part of the thesis concentrated on modifying existing models that had been developed to predict confined vented and unconfined vapour cloud explosions involving natural gas. Three geometries were studied: a confined vented enclosure, an unconfined cubical region of congestion and an unconfined high aspect ratio region of congestion. The modifications made to the models were aimed at accounting for the different characteristics of a natural gas/hydrogen mixture compared to natural gas. Experimental data for the laminar burning velocity of methane/hydrogen mixtures was obtained within the safety work package. For practical reasons, this experimental work was carried at an elevated temperature. Predictions from kinetic modelling were employed to convert this information for use in models predicting explosions at ambient temperature. For confined vented explosions a model developed by Shell (SCOPE) was used and modified by adding new laminar burning velocity and Markstein number data relevant to the gas compositions studied. For vapour cloud explosions in a cubical region of congestion, two models were used. The first model was developed by Shell (CAM2), and was applied using the new laminar burning velocity and other composition specific properties. The second model was based on a model provided by GL Services and was modified by generalising the flame speed model so that any natural gas/hydrogen mixture could be simulated. For vapour cloud explosions in an unconfined high aspect ratio region of congestion, a model from GL Services was used. Modifications were made to the modelling of flame speed so that it could be applied to different fuel compositions, equivalence ratios and the initial flame speed entering the congested region. Predictions from the modified explosion models were compared with large scale experimental data obtained within the safety work package. Generally, (apart from where continuously accelerating flames were produced), satisfactory agreement was achieved. This demonstrated that the modified models could be used, in many cases, for risk assessment purposes for explosions involving natural gas/hydrogen mixtures. The second part of thesis concentrated on predicting the incident thermal radiation from high pressure jet fires and pipelines fires involving natural gas/hydrogen mixtures. The approach taken was to modify existing models, developed for natural gas. For jet fires three models were used. Fuel specific input parameters were derived and the predictions of flame length and incident radiation compared with large scale experimental data. For pipeline fires a model was developed using a multi-point source approach for the radiation emitted by the fire and a correlation for flame length. Again predictions were compared with large scale experimental data. For both types of fire, satisfactory predictions of the flame length and incident radiation were obtained for natural gas and mixtures of natural gas and hydrogen containing approximately 25% hydrogen.
Style APA, Harvard, Vancouver, ISO itp.

Części książek na temat "Natural gas-oxidizer; Laminar burning velocity"

1

Khan, A. R., M. R. Ravi i Anjan Ray. "Effect of Natural Gas Blend Enrichment with Hydrogen on Laminar Burning Velocity and Flame Stability". W Sustainable Development for Energy, Power, and Propulsion, 135–60. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5667-8_6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "Natural gas-oxidizer; Laminar burning velocity"

1

Dirrenberger, P., P. A. Glaude, H. Le Gall, R. Bounaceur, O. Herbinet, F. Battin-Leclerc i A. A. Konnov. "Laminar Flame Velocity of Components of Natural Gas". W ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/gt2011-46312.

Pełny tekst źródła
Streszczenie:
Laminar burning velocities are important parameters in many areas of combustion science such as the design of burners or engines and for the prediction of explosions. They play an essential role in the combustion in gas turbines for the optimization of the nozzles and of the combustion chamber. Adiabatic laminar flame velocities are usually investigated in three types of apparatus which are currently available for that type of measurements: constant volume bombs in which the propagation of a flame is initiated by two electrodes and followed by shadowgraphy, counterflow-flame burners with axial velocity profiles determined by Particle Imaging Velocimetry, and flat flame adiabatic burners which consist of a heated burner head mounted on a plenum chamber with the radial temperature distribution measurement made by a series of thermocouples (used in this work). This last method is based on a balance between the heat loss from the flame to the burner required for the flame stabilization and the convective heat flux from the burner surface to the flame front. It was demonstrated that this heat flux method is suitable for the determination of the adiabatic flame temperature and flame burning velocity. The main hydrocarbon in natural gas is methane, with smaller amounts of heavier compounds, mainly species from C2 to C4. New experimental measurements have been performed by the heat flux method using a newly built flat flame adiabatic burner at atmospheric pressure. These measurements of laminar flame speeds are presented for components of natural gas, methane, ethane, propane and n-butane, as well as for binary and tertiary mixtures of these compounds representative of different natural gases available in the world. Results for pure alkanes were compared successfully to the literature. The composition of the investigated air/hydrocarbon mixtures covers a wide range of equivalence ratios, from 0.6 to 2.1 when it is possible to sufficiently stabilize the flame. Empirical correlations have been derived in order to predict accurately the flame velocity of a natural gas containing C1 up to C4 alkanes as a function of its composition and the equivalence ratio.
Style APA, Harvard, Vancouver, ISO itp.
2

Kim, Gihun, Ritesh Ghorpade i Subith S. Vasu. "Laminar Flame Speed Measurements of Hydrogen/Natural Gas Mixtures for Gas Turbine Applications". W ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/gt2021-58870.

Pełny tekst źródła
Streszczenie:
Abstract Due to the increasingly challenging carbon emission reduction targets, hydrogen-containing fuel combustion is gaining the energy community’s attention, as highlighted recently in the U.S. Department of Energy’s (DOE) Hydrogen Program Plan [1]. Though fundamental and applied research of hydrogen-containing fuels has been a topic of research for several decades, there are knowledge-gaps and unexplored fuel blend combustion characteristics at conditions relevant to modern gas turbine combustors. Hydrogen will be burned directly or as mixtures with natural gas (NG) and/or ammonia (NH3) in these devices. Fundamental research on the combustion of hydrogen (H2) containing fuels is still essential, especially to overcome or accurately predict challenges such as nitrogen oxides (NOx) reduction and flashback and develop fuel flexible combustors for a prosperous hydrogen economy. We focused our investigation on a natural gas and hydrogen mixture. Measurements of laminar burning velocity (LBV) are necessary for these fuels to understand their applicability in the turbines and other engines. In this study, the maximum rate of pressure rise and LBV of methane (CH4), CH4/H2, natural gas, and natural gas/H2 mixture were measured in synthetic air. The experimental conditions were at an initial pressure of 1 atm and an initial temperature of 300 K. A realistic natural gas composition from the field was used in this study and consisted of CH4 and other alkanes. The experimental data were compared with simulations carried out with detailed chemical kinetic mechanisms.
Style APA, Harvard, Vancouver, ISO itp.
3

Morovatiyan, Mohammadrasool, Martia Shahsavan, Mammadbaghir Baghirzade i J. Hunter Mack. "Effect of Hydrogen and Carbon Monoxide Addition to Methane on Laminar Burning Velocity". W ASME 2019 Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/icef2019-7169.

Pełny tekst źródła
Streszczenie:
Abstract Exhaust gas recirculation (EGR) in spark-ignited engines is a key technique to reduce in-cylinder NOx production by decreasing the combustion temperature. The major species of the exhaust gas in rich combustion of natural gas are hydrogen and carbon monoxide, which can subsequently be recirculated to the cylinders using EGR. In this study, the effect of hydrogen and carbon monoxide addition to methane on laminar burning velocity and flame morphological structure is investigated. Due to the broad flammability limit and high burning velocity of hydrogen compared to methane, this addition to the gaseous mixture leads to an increase in burning velocity, less emissions production, and a boost to the thermal efficiency of internal combustion engines. Premixed CH4-H2-CO-Air flames are experimentally investigated using an optically accessible constant volume combustion chamber (CVCC) accompanied with a high-speed Z-type Schlieren imaging system. Furthermore, a numerical code is applied to quantify the laminar burning velocity based on the pressure rise during flame propagation within the CVCC. According to the empirical and numerical results, the addition of hydrogen and carbon monoxide enhances laminar burning velocity while influencing the flame structure and development.
Style APA, Harvard, Vancouver, ISO itp.
4

Eckart, Sven, Ralph Behrend i Hartmut Krause. "Microwave influenced laminar premixed hydrocarbon flames: Spectroscopic investigations". W Ampere 2019. Valencia: Universitat Politècnica de València, 2019. http://dx.doi.org/10.4995/ampere2019.2019.9834.

Pełny tekst źródła
Streszczenie:
Low laminar burning velocity’s and slow reactions propagation are among a key problem in combustion processes with low calorific gas mixtures. The mixtures have a laminar burning velocity of 10 cm/s to 15 cm/s or even below which is 37% of natural gas. Thermal use of these gases could save considerable amounts of fossil fuel and reduce CO2 emissions. Due to low burning velocities and low enthalpy of combustion, ignition and stable combustion is complex, often preventing utilization of these gases. Microwave-assisted combustion can help to solve these problems. With microwave assistance, these gas mixtures could be burned with a higher burning velocity without preheating or co-firing. Therefore, this effect could be used for flame stabilization processes in industry applications. Microwaves could also change the combustion properties, for example radical formation and flame thickness. In this paper, we explore a possibility of using microwaves to increase the burning velocity of propane as one component in low calorific gas mixtures and also show higher productions of OH* and CH* radicals with an increase of the input microwave power. Different compositions of low calorific fuels were tested within a range of equivalence ratios from φ= 0.8 to φ= 1.3 for initial temperatures of 298 K and atmospheric conditions and microwave powers from 120 W to 600 W. For the experiments, a standard WR340 waveguide was modified with a port for burner installation and filter elements allowing for flue gas exhaust and optical access from the side. A 2.45 GHz CW magnetron was used as microwave source, microwave measurements were carried out with a 6-port- reflectometer with integrated three stub tuner. An axisymmetric premixed burner was designed to generate a steady conical laminar premixed flame stabilized on the outlet of a contoured nozzle under atmospheric pressure. The burner was operated with a propane mass flow of 0.2-0.4 nl/min at an equivalence ratio of φ= 0.8 to φ= 1.3. The optical techniques used in the current study are based on the flame contours detection by using the OH* chemiluminescence image technique. For every experimental case, 150 pictures were taken and averaged. Additionally, spectroscopic analysis of the flames was undertaken. The results suggest that production of OH* radicals in the flame front increases with microwave power. For evaluation, a picture based OH* chemiluminescence and a spectrographic method was used. In addition, a 9.9% increase of the burning velocity was observed in the premixed propane-air mixture for a 66 Watt absorbed microwave power. This effect is attributed to the increased OH* (~310nm) and CH* (~420nm) radical formation, which also reduces the flame thickness. It was found that absorption of microwaves in flames is generally low, but could be improved by a customized applicator design.
Style APA, Harvard, Vancouver, ISO itp.
5

Sahoo, Sridhar, Srinibas Tripathy i Dhananjay Kumar Srivastava. "Performance and Combustion Investigation of a Lean Burn Natural Gas Engine Using CFD". W ASME 2018 Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/icef2018-9613.

Pełny tekst źródła
Streszczenie:
Natural gas is widely used in sequentially port fuel injection engine to meet stringent emission regulation. Lean burn operation is one of the ways to improve spark-ignition engine fuel economy. The instability in the combustion process of the lean burn engine is one of the major challenges for engine research. In this study, the performance and combustion characteristics of a lean burn sequential injection compressed natural gas (CNG) engine were investigated numerically using computational fluid dynamics (CFD) modeling over a wide range of air/fuel equivalence ratio. A detailed chemical kinetic mechanism was used for natural gas combustion along with laminar flame speed model to capture lean burn operating condition within the combustion chamber. Combustion pressure, indicated mean effective pressure (IMEP), and heat release were analyzed for performance analysis, whereas flame development angle (CA 10), combustion duration, thermal efficiency were taken for combustion analysis. The results show that on increasing air/fuel equivalence ratio at a given spark timing, IMEP decreases as the lean burn mixture produces less amount of gross power output due to insufficient available energy. Moreover, lower burning velocity characteristic of natural gas extends the combustion duration, where a substantial amount of total energy released after top dead center. It is also seen that optimum spark timing (MBT) for maximum IMEP advances with an increase in air/fuel equivalence ratio due to late ignition timing under lean burn condition. CFD model successfully captures the effect of dilution to illustrate the considerations to design future combustion engine for spark ignited natural gas engine.
Style APA, Harvard, Vancouver, ISO itp.
6

Kro¨ner, Martin, Jassin Fritz i Thomas Sattelmayer. "Flashback Limits for Combustion Induced Vortex Breakdown in a Swirl Burner". W ASME Turbo Expo 2002: Power for Land, Sea, and Air. ASMEDC, 2002. http://dx.doi.org/10.1115/gt2002-30075.

Pełny tekst źródła
Streszczenie:
Flame flashback from the combustion chamber into the mixing zone limits the reliability of swirl stabilized lean premixed combustion in gas turbines. In a former study, the combustion induced vortex breakdown (CIVB) has been identified as a prevailing flashback mechanism of swirl burners. The present study has been performed to determine the flash-back limits of a swirl burner with cylindrical premixing tube without centerbody at atmospheric conditions. The flashback limits, herein defined as the upstream flame propagation through the entire mixing tube, have been detected by a special optical flame sensor with a high temporal resolution. In order to study the effect of the relevant parameters on the flashback limits, the burning velocity of the fuel has been varied using four different natural gas-hydrogen-mixtures with a volume fraction of up to 60% hydrogen. A simple approach for the calculation of the laminar flame speeds of these mixtures is proposed which is used in the next step to correlate the experimental results. In the study, the preheat temperature of the fuel mixture was varied from 100 °C to 450 °C in order to investigate influence of the burning velocity as well as the density ratio over the flame front. Moreover, the mass flow rate has been modified in a wide range as an additional parameter of technical importance. It was found that the quenching of the chemical reaction is the governing factor for the flashback limit. A Peclet number model was successfully applied to correlate the flashback limits as a function of the mixing tube diameter, the flow rate and the laminar burning velocity. Using this model, a quench factor can be determined for the burner, which is a criterion for the flashback resistance of the swirler and which allows to calculate the flashback limit for all operating conditions on the basis of a limited number of flashback tests.
Style APA, Harvard, Vancouver, ISO itp.
7

Sanmiguel, Javier E., S. A. (Raj) Mehta i R. Gordon Moore. "An Experimental Study of Controlled Gas-Phase Combustion in Porous Media for Enhanced Recovery of Oil and Gas". W ASME 2001 Engineering Technology Conference on Energy. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/etce2001-17182.

Pełny tekst źródła
Streszczenie:
Abstract Gas-phase combustion in porous media has many potential applications in the oil and gas industry. Some of these applications are associated with: air injection based improved oil recovery (IOR) processes, formation heat treatment for remediation of near well-bore formation damage, downhole steam generation for heavy oil recovery, in situ preheating of bitumen for improved pumping, increased temperatures in gas condensate reservoirs, and improved gas production from hydrate reservoirs. The available literature on gas-phase flame propagation in porous media is limited to applications at atmospheric pressure and ambient temperature, where the main application is in designing burners for combustion of gaseous fuels having low calorific value. The effect of pressure on gas-phase combustion in porous media is not well understood. Accordingly, this paper will describe an experimental study aimed at establishing fundamental information on the various processes and relevant controlling mechanisms associated with gas-phase combustion in porous media, especially at elevated pressures. A novel apparatus has been designed, constructed and commissioned in order to evaluate the effects of controlling parameters such as operating pressure, gas flow rate, type and size of porous media, and equivalence ratio on combustion characteristics. The results of this study, concerned with lean mixtures of natural gas and air and operational pressures from atmospheric (88.5 kPa or 12.8 psia) to 433.0 kPa (62.8 psia), will be presented. It will be shown that the velocity of the combustion front decreases as the operating pressure of the system increases, and during some test operating conditions, the apparent burning velocities are over 40 times higher than the open flame laminar burning velocities.
Style APA, Harvard, Vancouver, ISO itp.
8

Eggels, R. L. G. M. "Modelling of the Combustion Process of a Premixed DLE Gas Turbine". W ASME Turbo Expo 2000: Power for Land, Sea, and Air. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/2000-gt-0130.

Pełny tekst źródła
Streszczenie:
To obtain a better understanding of the internal combustion processes of gas turbines, CFD computations of a combustion chamber, based on a Rolls-Royce industrial gas turbine, were performed. Minor simplifications are made to generate a 3-D rotational symmetric geometry. Computations are performed at typical gas turbine conditions and natural gas is used as the fuel. An internal Rolls-Royce CFD code is applied to perform the computations. This paper explains the models used for the CFD computations and describes the advantages and limitations on the applied models. The combustion process has been modelled using a two-step global reaction mechanism and Intrinsic Low Dimensional Manifold (ILDM) reduced reaction mechanisms. The global reaction mechanisms are optimised for the considered operating conditions by modification of the reaction rates so that the same burning velocity and the amplitude CO-peak are obtained as predicted by detailed reaction mechanism (GRI 2.11, Bowman 1995). This optimisation is done considering a one-dimensional laminar flame. Although the global reaction mechanism is optimised for one particular operating condition, it appears that it is suitable for use over the entire range of operating conditions. The ILDM reduced reaction mechanisms are derived from GRI 2.11. Two ILDM tables are used to model two operating conditions, as they are specific for the pressure and inlet temperature. The interaction between turbulence and chemistry is modelled using presumed Probability Density Functions (PDF). The flow field in the combustion chamber is studied at isothermal and combusting conditions. It appeared that the flow field for burning and non-burning circumstances is quite different. There is a lack of experimental data so that it is not possible to verify the CFD results in detail. However, there is knowledge about the mechanisms by which the flame is stabilised and emissions are measured in the exhaust. The predicted flame front position agrees with that which is experimentally observed. The predicted increase of CO at low power is at the same order of magnitude as the measured emissions.
Style APA, Harvard, Vancouver, ISO itp.
9

Subash, Arman Ahamed, Haisol Kim, Sven-Inge Möller, Mattias Richter, Christian Brackmann, Marcus Aldén, Andreas Lantz, Annika Lindholm, Jenny Larfeldt i Daniel Lörstad. "Investigation of Fuel and Load Flexibility in a SGT-600/700/800 Burner Under Atmospheric Pressure Conditions Using High-Speed OH-PLIF and OH Chemiluminescence Imaging". W ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/gt2020-14583.

Pełny tekst źródła
Streszczenie:
Abstract Fuel and load flexibility have been increasingly important features of industrial gas turbines in order to meet the demand for increased utilization of renewable fuels and to provide a way to balance the grid fluctuations due to the unsteady supply of wind and solar power. Experimental investigations were performed using a standard 3rd generation dry low emission (DLE) burner under atmospheric pressure conditions to study the effect of central and pilot fuel addition, load variations and hydrogen (H2) enrichment in a natural gas (NG) flame. High-speed kHz planar laser-induced fluorescence (PLIF) of OH radicals and imaging of OH chemiluminescence were employed to investigate the flame stabilization, flame turbulence interactions, and flame dynamics. Along with the optical measurements, combustion emissions were also recorded to observe the effect of changing operating conditions on NOX level. The burner is used in Siemens industrial gas turbines SGT-600, SGT-700 and SGT-800 with no hardware differences and the study thus is a step to characterize fuel and load flexibility for these turbines. Without pilot and central fuel injections in the current burner configuration, the main flame is stabilized creating a central recirculation zone (CRZ). Addition of the pilot fuel strengthens the outer recirculation zone (ORZ) and moves the flame anchoring position slightly downstream, whereas the flame moves upstream without affecting the ORZ when central fuel injection is added. The flame was investigated utilizing H2/NG fuel mixtures where the H2 amount was changed from 0 to 100%. The results show that the characteristics of the flames are clearly affected by the addition of H2 and by the load variations. The flame becomes more compact, the anchoring position moves closer to the burner exit and the OH signal distribution becomes more distinct for H2 addition due to increased reaction rate, diffusivity, and laminar burning velocity. Changing the load from part to base, similar trends were observed in the flame behavior but in this case due to the higher heat release because of increased turbulence intensity.
Style APA, Harvard, Vancouver, ISO itp.
10

Feng, Yixin, Ryo Yamazaki, Ratnak Sok i Jin Kusaka. "Effects of Pre-Chamber Internal Shape on CH <sub>4</sub> -H <sub>2</sub> Combustion Characteristics Using Rapid-Compression Expansion Machine Experiments and 3D-CFD Analysis". W 16th International Conference on Engines & Vehicles. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2023. http://dx.doi.org/10.4271/2023-24-0043.

Pełny tekst źródła
Streszczenie:
<div class="section abstract"><div class="htmlview paragraph">Pre-chamber (PC) natural gas and hydrogen (CH<sub>4</sub>-H<sub>2</sub>) combustion can improve thermal efficiency and greenhouse gas emissions from decarbonized stationary engines. However, the engine efficiency is worsened by prolonged combustion duration due to PC jet velocity extinction. This work investigates the impact of cylindrical PC internal shapes to increase its jet velocity and shorten combustion duration. A rapid compression and expansion machine (RCEM) is used to investigate the combustion characteristics of premixed CH<sub>4</sub> gas. The combustion images are recorded using a high-speed camera of 10,000 fps. The experiments are conducted using two types of long PC shapes with diameters <i>φ=</i>4 mm (hereafter, long<i>φ</i>4) and 5 mm (hereafter, long <i>φ</i>5), and their combustions are compared against a short PC shape (<i>φ</i>=12 mm). For all designs of the PC shapes, the PC holes are 6 with 2 mm in diameter. Initial recorded results using only CH<sub>4</sub> show that jet extinction does not occur using the short and long 5mm types. The combustion duration of <i>φ</i>=4 mm PC is the shortest compared to the short-type and 5 mm PC. With CH<sub>4</sub>-H<sub>2</sub> blending (0%H<sub>2</sub>, 10%H<sub>2</sub>, 20%H<sub>2</sub>) and 4 mm shape, the combustion durations of 10%H<sub>2</sub> and 20%H<sub>2</sub> can be shortened compared to the CH<sub>4</sub>-only case (0%H<sub>2</sub>). However, the jet extinction probability is not zero.</div><div class="htmlview paragraph">3D-CFD combustion simulations are performed using CONVERGE software, and a 1/6 sector-mesh, GRI-Mech 3.0, G-equation combustion, and law-of-wall models are utilized in conjunction with RNG k-epsilon turbulence model. Simulated in-cylinder pressure and burning rate are validated against the recorded data. PC jet velocity, turbulent kinetic energy (TKE) of the main chamber, PC jet temperature, total heat loss in PC, and PC heat loss rate of 12 mm, 4 mm, and 5 mm are compared. Experimental combustion images and 3D-CFD temperature distribution with and without H<sub>2</sub> blending are also reported. The results show that long PC types can accelerate the jet velocity and shorten combustion duration. The jet extinction can be prevented by designing a small PC diameter area larger than the nozzle’s cross-sectional area. With H<sub>2</sub> blending, laminar burning velocity increases, and the jet ejection timing can be advanced. The result shows that the combustion duration can be shortened by 15 degrees using CH<sub>4</sub>-20%H<sub>2</sub> against CH<sub>4</sub> only.</div></div>
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii