Artykuły w czasopismach na temat „Nanozyme activity”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Nanozyme activity”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Luo, Yaying, Haiming Luo, Sijia Zou, Jing Jiang, Demin Duan, Lei Chen i Lizeng Gao. "An In Situ Study on Nanozyme Performance to Optimize Nanozyme-Strip for Aβ Detection". Sensors 23, nr 7 (24.03.2023): 3414. http://dx.doi.org/10.3390/s23073414.
Pełny tekst źródłaZhu, Weisheng, Luyao Wang, Qisi Li, Lizhi Jiao, Xiaokan Yu, Xiangfan Gao, Hao Qiu, Zhijun Zhang i Wei Bing. "Will the Bacteria Survive in the CeO2 Nanozyme-H2O2 System?" Molecules 26, nr 12 (19.06.2021): 3747. http://dx.doi.org/10.3390/molecules26123747.
Pełny tekst źródłaWang, Lijun, Hong Zhou, Haixia Hu, Qin Wang i Xianggui Chen. "Regulation Mechanism of ssDNA Aptamer in Nanozymes and Application of Nanozyme-Based Aptasensors in Food Safety". Foods 11, nr 4 (14.02.2022): 544. http://dx.doi.org/10.3390/foods11040544.
Pełny tekst źródłaLi, Dan, Ling Xia i Gongke Li. "Recent Progress on the Applications of Nanozyme in Surface-Enhanced Raman Scattering". Chemosensors 10, nr 11 (7.11.2022): 462. http://dx.doi.org/10.3390/chemosensors10110462.
Pełny tekst źródłaWang, Xin, Yuancong Xu, Nan Cheng, Xinxian Wang, Kunlun Huang i Yunbo Luo. "Recent Advances in Nucleic Acid Modulation for Functional Nanozyme". Catalysts 11, nr 5 (17.05.2021): 638. http://dx.doi.org/10.3390/catal11050638.
Pełny tekst źródłaSong, Jingfang, Jian He, Lin Yang, Weiguo Wang, Qinqin Bai, Wei Feng i Ranhui Li. "Enhanced Peroxidase-Like and Antibacterial Activity of Ir-CoatedPd-Pt Nanodendrites as Nanozyme". Bioinorganic Chemistry and Applications 2023 (15.02.2023): 1–10. http://dx.doi.org/10.1155/2023/1689455.
Pełny tekst źródłaStasyuk, Nataliya, Oleh Smutok, Olha Demkiv, Tetiana Prokopiv, Galina Gayda, Marina Nisnevitch i Mykhailo Gonchar. "Synthesis, Catalytic Properties and Application in Biosensorics of Nanozymes and Electronanocatalysts: A Review". Sensors 20, nr 16 (12.08.2020): 4509. http://dx.doi.org/10.3390/s20164509.
Pełny tekst źródłaGe, Haoran, i Hailong Zhang. "Fungus-Based MnO/Porous Carbon Nanohybrid as Efficient Laccase Mimic for Oxygen Reduction Catalysis and Hydroquinone Detection". Nanomaterials 12, nr 9 (8.05.2022): 1596. http://dx.doi.org/10.3390/nano12091596.
Pełny tekst źródłaLi, Zhaoshen, Xiaochun Deng, Xiaoping Hong i Shengfa Zhao. "Nanozyme Based on Dispersion of Hemin by Graphene Quantum Dots for Colorimetric Detection of Glutathione". Molecules 27, nr 20 (11.10.2022): 6779. http://dx.doi.org/10.3390/molecules27206779.
Pełny tekst źródłaLei, Yu, Bin He, Shujun Huang, Xinyan Chen i Jian Sun. "Facile Fabrication of 1-Methylimidazole/Cu Nanozyme with Enhanced Laccase Activity for Fast Degradation and Sensitive Detection of Phenol Compounds". Molecules 27, nr 15 (23.07.2022): 4712. http://dx.doi.org/10.3390/molecules27154712.
Pełny tekst źródłaLiyanage, Piyumi Dinusha, Pabudi Weerathunge, Mandeep Singh, Vipul Bansal i Rajesh Ramanathan. "L-Cysteine as an Irreversible Inhibitor of the Peroxidase-Mimic Catalytic Activity of 2-Dimensional Ni-Based Nanozymes". Nanomaterials 11, nr 5 (13.05.2021): 1285. http://dx.doi.org/10.3390/nano11051285.
Pełny tekst źródłaWang, Zhiyi, Ziyuan Li, Zhaoli Sun, Shuren Wang, Zeeshan Ali, Sihao Zhu, Sha Liu i in. "Visualization nanozyme based on tumor microenvironment “unlocking” for intensive combination therapy of breast cancer". Science Advances 6, nr 48 (listopad 2020): eabc8733. http://dx.doi.org/10.1126/sciadv.abc8733.
Pełny tekst źródłaZha, Junqi, Wugao Wu, Peng Xie, Honghua Han, Zheng Fang, Yantao Chen i Zhongfan Jia. "Polymeric Nanocapsule Enhances the Peroxidase-like Activity of Fe3O4 Nanozyme for Removing Organic Dyes". Catalysts 12, nr 6 (3.06.2022): 614. http://dx.doi.org/10.3390/catal12060614.
Pełny tekst źródłaChi, Lili, Yuetong Zhang, Yusheng Hua, Qiqi Xu, Mingzhu Lv, Huan Wang, Jiani Xie, Shengtao Yang i Yuan Yong. "Fe-Based Single-Atom Nanozyme with Superior Peroxidase-Mimicking Activity for Enhanced Ultrasensitive Biosensing". Journal of Nanoscience and Nanotechnology 21, nr 12 (1.12.2021): 6126–34. http://dx.doi.org/10.1166/jnn.2021.19533.
Pełny tekst źródłaHou, Li, Gaoyan Jiang, Ying Sun, Xuanhan Zhang, Juanjuan Huang, Shendong Liu, Tianran Lin, Fanggui Ye i Shulin Zhao. "Progress and Trend on the Regulation Methods for Nanozyme Activity and Its Application". Catalysts 9, nr 12 (12.12.2019): 1057. http://dx.doi.org/10.3390/catal9121057.
Pełny tekst źródłaWANG, Erkang. "(Keynote, Digital Presentation) A Study of Nanozyme-Based Biosensor". ECS Meeting Abstracts MA2022-01, nr 53 (7.07.2022): 2193. http://dx.doi.org/10.1149/ma2022-01532193mtgabs.
Pełny tekst źródłaPu, Fang, Jinsong Ren i Xiaogang Qu. "Recent advances in the construction of nanozyme-based logic gates". Biophysics Reports 6, nr 6 (21.11.2020): 245–55. http://dx.doi.org/10.1007/s41048-020-00124-9.
Pełny tekst źródłaKhramtsov, Pavel, Maria Kropaneva, Maria Bochkova, Valeria Timganova, Dmitriy Kiselkov, Svetlana Zamorina i Mikhail Rayev. "Synthesis and Application of Albumin Nanoparticles Loaded with Prussian Blue Nanozymes". Colloids and Interfaces 6, nr 2 (8.05.2022): 29. http://dx.doi.org/10.3390/colloids6020029.
Pełny tekst źródłaYan, Boyu, Ying Yang, Yinyun Xie, Jinzhao Li i Kun Li. "Fe Doping Enhances the Peroxidase-Like Activity of CuO for Ascorbic Acid Sensing". Chemistry 5, nr 2 (23.05.2023): 1302–16. http://dx.doi.org/10.3390/chemistry5020088.
Pełny tekst źródłaShin, Ho Yun, Tae Jung Park i Moon Il Kim. "Recent Research Trends and Future Prospects in Nanozymes". Journal of Nanomaterials 2015 (2015): 1–11. http://dx.doi.org/10.1155/2015/756278.
Pełny tekst źródłaXu, Shuai, Shiyue Zhang, Yutong Li i Jiyang Liu. "Facile Synthesis of Iron and Nitrogen Co-Doped Carbon Dot Nanozyme as Highly Efficient Peroxidase Mimics for Visualized Detection of Metabolites". Molecules 28, nr 16 (15.08.2023): 6064. http://dx.doi.org/10.3390/molecules28166064.
Pełny tekst źródłaZhang, Bin, Xiaoming Wang, Wei Hu, Yiquan Liao, Yichang He, Bohua Dong, Minggang Zhao i Ye Ma. "SPR-Enhanced Au@Fe3O4 Nanozyme for the Detection of Hydroquinone". Chemosensors 11, nr 7 (14.07.2023): 392. http://dx.doi.org/10.3390/chemosensors11070392.
Pełny tekst źródłaHuang, Liang, Jinxing Chen, Linfeng Gan, Jin Wang i Shaojun Dong. "Single-atom nanozymes". Science Advances 5, nr 5 (maj 2019): eaav5490. http://dx.doi.org/10.1126/sciadv.aav5490.
Pełny tekst źródłaHuang, Shihui, Shuqi Jiang, Hong Liu, Jiali Cai, Gengjia Chen, Junyao Xu, Dan Kai, Pengli Bai, Ruiping Zhou i Zhiyong Wang. "Facile Synthesis of Iron Oxide Nanozymes for Synergistically Colorimetric and Magnetic Resonance Detection Strategy". Journal of Biomedical Nanotechnology 17, nr 4 (1.04.2021): 582–94. http://dx.doi.org/10.1166/jbn.2021.3049.
Pełny tekst źródłaShen, Bowen, Molan Qing, Liying Zhu, Yuxian Wang i Ling Jiang. "Dual-Enzyme Cascade Composed of Chitosan Coated FeS2 Nanozyme and Glucose Oxidase for Sensitive Glucose Detection". Molecules 28, nr 3 (31.01.2023): 1357. http://dx.doi.org/10.3390/molecules28031357.
Pełny tekst źródłaMa, Tianyi, Kunlun Huang i Nan Cheng. "Recent Advances in Nanozyme-Mediated Strategies for Pathogen Detection and Control". International Journal of Molecular Sciences 24, nr 17 (28.08.2023): 13342. http://dx.doi.org/10.3390/ijms241713342.
Pełny tekst źródłaNiu, Xiangheng, Bangxiang Liu, Panwang Hu, Hengjia Zhu i Mengzhu Wang. "Nanozymes with Multiple Activities: Prospects in Analytical Sensing". Biosensors 12, nr 4 (16.04.2022): 251. http://dx.doi.org/10.3390/bios12040251.
Pełny tekst źródłaLe, Phan Gia, i Moon Il Kim. "Research Progress and Prospects of Nanozyme-Based Glucose Biofuel Cells". Nanomaterials 11, nr 8 (19.08.2021): 2116. http://dx.doi.org/10.3390/nano11082116.
Pełny tekst źródłaTripathi, Anuja, Kenneth D. Harris i Anastasia L. Elias. "High surface area nitrogen-functionalized Ni nanozymes for efficient peroxidase-like catalytic activity". PLOS ONE 16, nr 10 (12.10.2021): e0257777. http://dx.doi.org/10.1371/journal.pone.0257777.
Pełny tekst źródłaQingzhi, Wu, Sijia Zou, Qian Wang, Lei Chen, Xiyun Yan i Lizeng Gao. "Catalytic defense against fungal pathogens using nanozymes". Nanotechnology Reviews 10, nr 1 (1.01.2021): 1277–92. http://dx.doi.org/10.1515/ntrev-2021-0084.
Pełny tekst źródłaZhu, Hongshuai, Bingfeng Wang i Yingju Liu. "Coordinating Etching Inspired Synthesis of Fe(OH)3 Nanocages as Mimetic Peroxidase for Fluorescent and Colorimetric Self-Tuning Detection of Ochratoxin A". Biosensors 13, nr 6 (19.06.2023): 665. http://dx.doi.org/10.3390/bios13060665.
Pełny tekst źródłaMyrzagaliyeva, Arailym, Guldan Nazarbek, Sandugash Myrzagali, Amr Amin i Yingqiu Xie. "Abstract 2556: Phosphatase nanozyme combination with kinase inhibitor for decreasing prostate cancer cell viability". Cancer Research 83, nr 7_Supplement (4.04.2023): 2556. http://dx.doi.org/10.1158/1538-7445.am2023-2556.
Pełny tekst źródłaWang, Heng, Beilei Wang, Jie Jiang, Yi Wu, Anning Song, Xiaoyu Wang, Chenlu Yao i in. "SnSe Nanosheets Mimic Lactate Dehydrogenase to Reverse Tumor Acid Microenvironment Metabolism for Enhancement of Tumor Therapy". Molecules 27, nr 23 (5.12.2022): 8552. http://dx.doi.org/10.3390/molecules27238552.
Pełny tekst źródłaCao-Milán, Roberto, Luke D. He, Spencer Shorkey, Gulen Y. Tonga, Li-Sheng Wang, Xianzhi Zhang, Imad Uddin, Riddha Das, Mine Sulak i Vincent M. Rotello. "Modulating the catalytic activity of enzyme-like nanoparticles through their surface functionalization". Molecular Systems Design & Engineering 2, nr 5 (2017): 624–28. http://dx.doi.org/10.1039/c7me00055c.
Pełny tekst źródłaMansur, Alexandra A. P., Sandhra M. Carvalho, Luiz Carlos A. Oliveira, Elaine Maria Souza-Fagundes, Zelia I. P. Lobato, Maria F. Leite i Herman S. Mansur. "Bioengineered Carboxymethylcellulose–Peptide Hybrid Nanozyme Cascade for Targeted Intracellular Biocatalytic–Magnetothermal Therapy of Brain Cancer Cells". Pharmaceutics 14, nr 10 (18.10.2022): 2223. http://dx.doi.org/10.3390/pharmaceutics14102223.
Pełny tekst źródłaLi, Chao, Zichao Guo, Sisi Pu, Chaohui Zhou, Xi Cheng, Ren Zhao i Nengqin Jia. "Molybdenum Disulfide-Integrated Iron Organic Framework Hybrid Nanozyme-Based Aptasensor for Colorimetric Detection of Exosomes". Biosensors 13, nr 8 (9.08.2023): 800. http://dx.doi.org/10.3390/bios13080800.
Pełny tekst źródłaSun, Kai, Qingzhu Liu, Rui Zhu, Qi Liu, Shunyao Li, Youbin Si i Qingguo Huang. "Oxidase-Like Catalytic Performance of Nano-MnO2 and Its Potential Application for Metal Ions Detection in Water". International Journal of Analytical Chemistry 2019 (3.11.2019): 1–11. http://dx.doi.org/10.1155/2019/5416963.
Pełny tekst źródłaZhang, Zijie, Yuqing Li, Xiaohan Zhang i Juewen Liu. "Molecularly imprinted nanozymes with faster catalytic activity and better specificity". Nanoscale 11, nr 11 (2019): 4854–63. http://dx.doi.org/10.1039/c8nr09816f.
Pełny tekst źródłaCarvalho, Sandhra M., Alexandra A. P. Mansur, Izabela B. da Silveira, Thaisa F. S. Pires, Henrique F. V. Victória, Klaus Krambrock, M. Fátima Leite i Herman S. Mansur. "Nanozymes with Peroxidase-like Activity for Ferroptosis-Driven Biocatalytic Nanotherapeutics of Glioblastoma Cancer: 2D and 3D Spheroids Models". Pharmaceutics 15, nr 6 (10.06.2023): 1702. http://dx.doi.org/10.3390/pharmaceutics15061702.
Pełny tekst źródłaZhou, Ya, Yue Wei, Jinsong Ren i Xiaogang Qu. "A chiral covalent organic framework (COF) nanozyme with ultrahigh enzymatic activity". Materials Horizons 7, nr 12 (2020): 3291–97. http://dx.doi.org/10.1039/d0mh01535k.
Pełny tekst źródłaLi, Yutong, Xinhui Gu, Jiayin Zhao i Fengna Xi. "Fabrication of a Ratiometric Fluorescence Sensor Based on Carbon Dots as Both Luminophores and Nanozymes for the Sensitive Detection of Hydrogen Peroxide". Molecules 27, nr 21 (30.10.2022): 7379. http://dx.doi.org/10.3390/molecules27217379.
Pełny tekst źródłaZhang, Dechen, Na Shen, Junrong Zhang, Jinming Zhu, Yi Guo i Li Xu. "A novel nanozyme based on selenopeptide-modified gold nanoparticles with a tunable glutathione peroxidase activity". RSC Advances 10, nr 15 (2020): 8685–91. http://dx.doi.org/10.1039/c9ra10262k.
Pełny tekst źródłaLiu, Yan, Zhen Chen, Zhifang Shao i Rong Guo. "Single gold nanoparticle-driven heme cofactor nanozyme as an unprecedented oxidase mimetic". Chemical Communications 57, nr 27 (2021): 3399–402. http://dx.doi.org/10.1039/d1cc00279a.
Pełny tekst źródłaKost, Olga A., Olga V. Beznos, Nina G. Davydova, Devika S. Manickam, Irina I. Nikolskaya, Anna E. Guller, Petr V. Binevski i in. "Superoxide Dismutase 1 Nanozyme for Treatment of Eye Inflammation". Oxidative Medicine and Cellular Longevity 2016 (2016): 1–13. http://dx.doi.org/10.1155/2016/5194239.
Pełny tekst źródłaHe, Shaobin, Liu Yang, Paramasivam Balasubramanian, Shujun Li, Huaping Peng, Ye Kuang, Haohua Deng i Wei Chen. "Osmium nanozyme as peroxidase mimic with high performance and negligible interference of O2". Journal of Materials Chemistry A 8, nr 47 (2020): 25226–34. http://dx.doi.org/10.1039/d0ta09247a.
Pełny tekst źródłaXiang, Sijin, Zhongxiong Fan, Duo Sun, Tianbao Zhu, Jiang Ming i Xiaolan Chen. "Near-Infrared Light Enhanced Peroxidase-Like Activity of PEGylated Palladium Nanozyme for Highly Efficient Biofilm Eradication". Journal of Biomedical Nanotechnology 17, nr 6 (1.06.2021): 1131–47. http://dx.doi.org/10.1166/jbn.2021.3095.
Pełny tekst źródłaChang, Yangyang, Sheng Gao, Meng Liu i Juewen Liu. "Designing signal-on sensors by regulating nanozyme activity". Analytical Methods 12, nr 39 (2020): 4708–23. http://dx.doi.org/10.1039/d0ay01625j.
Pełny tekst źródłaMa, Yin-Chu, Yan-Hua Zhu, Xin-Feng Tang, Li-Feng Hang, Wei Jiang, Min Li, Malik Ihsanullah Khan, Ye-Zi You i Yu-Cai Wang. "Au nanoparticles with enzyme-mimicking activity-ornamented ZIF-8 for highly efficient photodynamic therapy". Biomaterials Science 7, nr 7 (2019): 2740–48. http://dx.doi.org/10.1039/c9bm00333a.
Pełny tekst źródłaWu, Shihong, Jinyi Zhang i Peng Wu. "Photo-modulated nanozymes for biosensing and biomedical applications". Analytical Methods 11, nr 40 (2019): 5081–88. http://dx.doi.org/10.1039/c9ay01493d.
Pełny tekst źródłaLiu, Yan, Yinping Xiang, Ding Ding i Rong Guo. "Structural effects of amphiphilic protein/gold nanoparticle hybrid based nanozyme on peroxidase-like activity and silver-mediated inhibition". RSC Advances 6, nr 113 (2016): 112435–44. http://dx.doi.org/10.1039/c6ra23773h.
Pełny tekst źródła