Gotowa bibliografia na temat „NANOWIRE RECONFIGURABLE”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „NANOWIRE RECONFIGURABLE”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "NANOWIRE RECONFIGURABLE"
Heinzig, André, Stefan Slesazeck, Franz Kreupl, Thomas Mikolajick i Walter M. Weber. "Reconfigurable Silicon Nanowire Transistors". Nano Letters 12, nr 1 (grudzień 2011): 119–24. http://dx.doi.org/10.1021/nl203094h.
Pełny tekst źródłaWeber, W. M., A. Heinzig, J. Trommer, D. Martin, M. Grube i T. Mikolajick. "Reconfigurable nanowire electronics – A review". Solid-State Electronics 102 (grudzień 2014): 12–24. http://dx.doi.org/10.1016/j.sse.2014.06.010.
Pełny tekst źródłaBaldauf, Tim, Andre Heinzig, Thomas Mikolajick i Walter M. Weber. "Vertically Integrated Reconfigurable Nanowire Arrays". IEEE Electron Device Letters 39, nr 8 (sierpień 2018): 1242–45. http://dx.doi.org/10.1109/led.2018.2847902.
Pełny tekst źródłaPark, So Jeong, Dae-Young Jeon, Sabrina Piontek, Matthias Grube, Johannes Ocker, Violetta Sessi, André Heinzig i in. "Reconfigurable Si Nanowire Nonvolatile Transistors". Advanced Electronic Materials 4, nr 1 (11.12.2017): 1700399. http://dx.doi.org/10.1002/aelm.201700399.
Pełny tekst źródłaTrommer, Jens, André Heinzig, Anett Heinrich, Paul Jordan, Matthias Grube, Stefan Slesazeck, Thomas Mikolajick i Walter M. Weber. "Material Prospects of Reconfigurable Transistor (RFETs) – From Silicon to Germanium Nanowires". MRS Proceedings 1659 (2014): 225–30. http://dx.doi.org/10.1557/opl.2014.110.
Pełny tekst źródłaHashim, Uda, Tijjani Adam, M. N. Afnan Uda i M. N. A. Uda. "Determination of Silicon Electrical Properties Using First Principles Approach". Journal of Physics: Conference Series 2129, nr 1 (1.12.2021): 012056. http://dx.doi.org/10.1088/1742-6596/2129/1/012056.
Pełny tekst źródłaLi, Xianglong, Xiaoqiao Yang, Zhe Zhang, Teng Wang, Yabin Sun, Ziyu Liu, Xiaojin Li, Yanling Shi i Jun Xu. "Impact of Process Fluctuations on Reconfigurable Silicon Nanowire Transistor". IEEE Transactions on Electron Devices 68, nr 2 (luty 2021): 885–91. http://dx.doi.org/10.1109/ted.2020.3045689.
Pełny tekst źródłaWeber, Walter M., Andre Heinzig, Jens Trommer, Matthias Grube, Franz Kreupl i Thomas Mikolajick. "Reconfigurable Nanowire Electronics-Enabling a Single CMOS Circuit Technology". IEEE Transactions on Nanotechnology 13, nr 6 (listopad 2014): 1020–28. http://dx.doi.org/10.1109/tnano.2014.2362112.
Pełny tekst źródłaBetz, A. C., M. L. V. Tagliaferri, M. Vinet, M. Broström, M. Sanquer, A. J. Ferguson i M. F. Gonzalez-Zalba. "Reconfigurable quadruple quantum dots in a silicon nanowire transistor". Applied Physics Letters 108, nr 20 (16.05.2016): 203108. http://dx.doi.org/10.1063/1.4950976.
Pełny tekst źródłaTrommer, Jens, Andre Heinzig, Stefan Slesazeck, Thomas Mikolajick i Walter Michael Weber. "Elementary Aspects for Circuit Implementation of Reconfigurable Nanowire Transistors". IEEE Electron Device Letters 35, nr 1 (styczeń 2014): 141–43. http://dx.doi.org/10.1109/led.2013.2290555.
Pełny tekst źródłaRozprawy doktorskie na temat "NANOWIRE RECONFIGURABLE"
Bukovsky, Sayanti [Verfasser], Thomas [Gutachter] Mikolajick, Gianaurelio [Gutachter] Cuniberti i Hans-Georg [Gutachter] Braun. "Nanoscale Material Characterization of Silicon Nanowires for Application in Reconfigurable Nanowire Transistors / Sayanti Bukovsky ; Gutachter: Thomas Mikolajick, Gianaurelio Cuniberti, Hans-Georg Braun". Dresden : Technische Universität Dresden, 2021. http://d-nb.info/1237748305/34.
Pełny tekst źródłaPregl, Sebastian. "Fabrication and characterization of a silicon nanowire based Schottky-barrier field effect transistor platform for functional electronics and biosensor applications". Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-171112.
Pełny tekst źródłaDiese Dissertation ist der Bewertung von Silizium (Si) Nanodraht basierten Parallelschaltungen von Schottky-Barrieren-Feld-Effekt-Transistoren (SB-FETs) als Wandler für potentiometrische Biosensoren und deren generelle Leistungsfähigkeit als Bauelement neuartiger funktioneller Elektronik gewidmet. In dieser Arbeit wurden Parallelschaltungen von Nanodraht SB-FETs hergestellt und elektrisch charakterisiert. Nominell undotierte Si Nanodrähte mit durchschnittlichem Durchmesser von 20nm wurden mittels chemischer Dampfphasenabscheidung (CVD) synthetisiert und anschließend durch einen Druckprozess auf ein Si/SiO2 Chip-Substrat transferiert. Damit wurden dicht gepackte, parallel ausgerichtete Nanodraht Schichten erzeugt. Nach Trockenoxidation der Nanodrähte wurden diese mit Standard Lithographie und Abscheidungsmethoden mit interdigitalen Nickel (Ni) Elektroden als Parallelschaltung kontaktiert. Durch einen Temperprozess bilden sich axial eindiffundierte metallische Ni-Silizid-Phasen, mit einer sehr abrupten Grenzfläche zum halbleitenden Si Segments des Nanodrahts. Die Chipoberfläche wird vollständig mit einer Al2O3-Schicht bedeckt, welche als Frontgate-Dielektrikum oder als elektrische Isolation und Korrosionsschutzschicht für Elektroden in Elektrolytlösungen im Falle der Sensoranwendungen dient. Die hier gezeigten Bauelemente sind Teil der SOI (Si on insulator) Transistoren-Familie mit Top- (Front) und Backgate und zeigen ein ambipolares Schaltverhalten. Die Topgates besitzen eine Omega-Geometrie mit 20nm dickem Al2O3 Dielektrikum, das Backgate eine planare Geometrie mit 400nm dickem SiO2 Dielektrikum. Der Einfluss beider Gates auf den Ladungstransport ist in einer statistischen Analyse der Transfer- und Output-Charaktersitiken für 7 unterschiedliche Si-Leitungskanallängen zusammengefasst. Eine nichtlineare Skalierung von Strom und Transkonduktanz mit Leitungskanallänge wurde aufgedeckt. Die Ströme im Aus-Zustand des Transistors sind durch das Vorhandensein gleichzeitiger p- als auch n-Typ Leitung bestimmt. Die Zunahme lateraler elektrischer Felder (LEF) führt zu einem Verlust des gleichzeitigen Ausschaltvermögens von p- und n-Strömen bei Ansteuerung mit einem einzelnen Gate. Dies äußert sich durch einen graduell verschlechterten Swing und höheren Strom im Aus-Zustand bei verringerter Leitungskanallänge (gleichbedeutend mit erhöhten LEF). Durch eine getrennte Ansteuerung von Schottky-Kontakt und Leitungskanal lassen sich p- and n-Leitung jedoch unabhängig voneinander kontrollieren. Beide Ladungsträgertypen können so simultan effizient unterdrückt werden, was zu einem geringen Strom im Aus-Zustand und einem hohen An/Aus- Stromverhältnis für alle untersuchten Kanallängen führt. Dies wird durch eine Gatearchitektur mit kombiniertem Top- und Backgate erreicht, bei der das Backgate den Ladungstransport durch den Schottky-Kontakt und dessen Serienwiderstand kontrolliert. Es wird gezeigt, dass ein konstant hoher Schottky-Kontakt bedingter Serienwiderstand die Transkonduktanz erheblich vermindert. Jedoch kann die Transkonduktanz im höchsten Maße durch eine Herabsetzung des Serienwiderstandes durch das Backgate gesteigert werden. Dies erhöht die Leistungsfähigkeit des SB-FET als Wandler deutlich. Al2O3 oberflächenbeschichtete SB-FETs wurden als pH-Sensoren erprobt, um deren Tauglichkeit und Signal-zu-Rausch-Verhältnis (SNR) zu evaluieren. Die Strommodulation pro pH-Wert konnte als direkt proportional zur Transkonduktanz bestätigt werden. Das Transistor bedingte SNR ist daher proportional zum Verhältnis von Transkonduktanz und Stromrauschen. Bei der Analyse des Transistorrauschens wurde festgestellt, dass dieses das SNR bereits bei einer niedrigeren Transkonduktanz als der maximal Möglichen limitiert. Eine statistische Auswertung zeigte, dass sowohl SB-FET Transkonduktanz als auch Stromrauschen proportional zu dem Transistorstrom skalieren. Somit ist deren Verhältnis unabhängig von der Nanodraht-Leitungskanallänge, im hier untersuchten Rahmen. Die geringe Ausschuss bei der Fabrikation der Nanodraht SB-FET-Parallelschaltungen ermöglicht eine Nutzung dieser Plattform für simple Logik und Biosensorelemente. Durch die geringen Prozesstemperaturen wurde die Grundlage geschaffen, komplementäre Logik mit undotiertem Si auf flexiblen Substraten zu fertigen. Vorangegangene Resultate zeigte eine verminderte Transkonduktanz durch die Präsenz von Schottky-Barrieren, was die Anwendbarkeit von SB-FETs als Wandler einschränkt. Diese Arbeit zeigt, dass eine elekrtische Entkopplung der Schottky-Kontakte zu einer Aufhebung dieser Beschränkung führen kann und somit den Einsatz von SB-FETs als praktikable Wandler für Sensoranwendungen zulässt
Heinzig, André. "Entwicklung und Herstellung rekonfigurierbarer Nanodraht-Transistoren und Schaltungen". Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-202082.
Pełny tekst źródłaThe enormous increase in performance of integrated circuits has been driven for more than 50 years, mainly by reducing the device dimensions. This trend cannot continue in the long term due to physical limits being reached. The scope of this thesis is the development and fabrication of novel kinds of transistors and circuits that provide higher functionality compared to the classical devices, thus introducing an alternative approach to scaling. The fabrication of Schottky barrier field effect transistors (SBFETs) based on nominally undoped grown silicon nanowires using established and developed techniques is described. Further the charge carrier injection in the fabricated metal to semiconductor interfaces is analyzed under the influence of electrical fields. Structural modifications are used to optimize the charge injection resulting in increased ambipolar currents and negligible hysteresis of the SBFETs. Moreover, a device has been developed called the reconfigurable field-effect transistor (RFET), in which the electron and hole injection can be independently controlled by up to nine orders of magnitude. This device can be reversibly configured from unipolar electron conducting (ntype) to hole conducting (p-type) by the application of a program voltage to the two individual top gate electrodes at the Schottky junctions. So the RFET merges the functionality of classical FETs into one universal device. Measurements and 3D finite element method simulations are used to analyze the electrical transport and to describe the operation principle. Systematic investigations of changes in the device structure, dimensions and material composition show enhanced characteristics in scaled and low bandgap semiconductor RFET devices. For the realization of novel circuits, a concept is described to use the enhanced functionality of the transistors in order to realize energy efficient complementary circuits (CMOS). The required equal electron and hole current densities are achieved by the modification of charge carrier tunneling due to mechanical stress and are shown for the first time ever on a transistor. An electrically symmetric RFET based on a compressive strained nanowire in <110> crystal direction and 12 nm silicon core diameter exhibits unique electrical symmetry. The circuit concept is demonstrated by the integration of two RFETs on a single nanowire, thus realizing a dopant free CMOS inverter which can be programmed flexibly. The reconfigurable NAND/NOR shows that the RFET technology can lead to a reduction of the transistor count and can increase the system functionality. Additionally, further circuit examples and the challenges of an industrial implementation of the concept are discussed.The enhanced functionality and dopant free RFET technology describes a novel approach to maintain the technological progress in electronics after the expected end of classical device scaling
Bukovsky, Sayanti. "Nanoscale Material Characterization of Silicon Nanowires for Application in Reconfigurable Nanowire Transistors". 2020. https://tud.qucosa.de/id/qucosa%3A75531.
Pełny tekst źródłaSINGH, DIVYANSH. "IMPLEMENTATION OF NANOWIRE RECONFIGURABLE FET AS A BIOSENSOR WITH IMPROVED SENSITIVITY". Thesis, 2023. http://dspace.dtu.ac.in:8080/jspui/handle/repository/19878.
Pełny tekst źródłaPregl, Sebastian. "Fabrication and characterization of a silicon nanowire based Schottky-barrier field effect transistor platform for functional electronics and biosensor applications". Doctoral thesis, 2014. https://tud.qucosa.de/id/qucosa%3A28755.
Pełny tekst źródłaDiese Dissertation ist der Bewertung von Silizium (Si) Nanodraht basierten Parallelschaltungen von Schottky-Barrieren-Feld-Effekt-Transistoren (SB-FETs) als Wandler für potentiometrische Biosensoren und deren generelle Leistungsfähigkeit als Bauelement neuartiger funktioneller Elektronik gewidmet. In dieser Arbeit wurden Parallelschaltungen von Nanodraht SB-FETs hergestellt und elektrisch charakterisiert. Nominell undotierte Si Nanodrähte mit durchschnittlichem Durchmesser von 20nm wurden mittels chemischer Dampfphasenabscheidung (CVD) synthetisiert und anschließend durch einen Druckprozess auf ein Si/SiO2 Chip-Substrat transferiert. Damit wurden dicht gepackte, parallel ausgerichtete Nanodraht Schichten erzeugt. Nach Trockenoxidation der Nanodrähte wurden diese mit Standard Lithographie und Abscheidungsmethoden mit interdigitalen Nickel (Ni) Elektroden als Parallelschaltung kontaktiert. Durch einen Temperprozess bilden sich axial eindiffundierte metallische Ni-Silizid-Phasen, mit einer sehr abrupten Grenzfläche zum halbleitenden Si Segments des Nanodrahts. Die Chipoberfläche wird vollständig mit einer Al2O3-Schicht bedeckt, welche als Frontgate-Dielektrikum oder als elektrische Isolation und Korrosionsschutzschicht für Elektroden in Elektrolytlösungen im Falle der Sensoranwendungen dient. Die hier gezeigten Bauelemente sind Teil der SOI (Si on insulator) Transistoren-Familie mit Top- (Front) und Backgate und zeigen ein ambipolares Schaltverhalten. Die Topgates besitzen eine Omega-Geometrie mit 20nm dickem Al2O3 Dielektrikum, das Backgate eine planare Geometrie mit 400nm dickem SiO2 Dielektrikum. Der Einfluss beider Gates auf den Ladungstransport ist in einer statistischen Analyse der Transfer- und Output-Charaktersitiken für 7 unterschiedliche Si-Leitungskanallängen zusammengefasst. Eine nichtlineare Skalierung von Strom und Transkonduktanz mit Leitungskanallänge wurde aufgedeckt. Die Ströme im Aus-Zustand des Transistors sind durch das Vorhandensein gleichzeitiger p- als auch n-Typ Leitung bestimmt. Die Zunahme lateraler elektrischer Felder (LEF) führt zu einem Verlust des gleichzeitigen Ausschaltvermögens von p- und n-Strömen bei Ansteuerung mit einem einzelnen Gate. Dies äußert sich durch einen graduell verschlechterten Swing und höheren Strom im Aus-Zustand bei verringerter Leitungskanallänge (gleichbedeutend mit erhöhten LEF). Durch eine getrennte Ansteuerung von Schottky-Kontakt und Leitungskanal lassen sich p- and n-Leitung jedoch unabhängig voneinander kontrollieren. Beide Ladungsträgertypen können so simultan effizient unterdrückt werden, was zu einem geringen Strom im Aus-Zustand und einem hohen An/Aus- Stromverhältnis für alle untersuchten Kanallängen führt. Dies wird durch eine Gatearchitektur mit kombiniertem Top- und Backgate erreicht, bei der das Backgate den Ladungstransport durch den Schottky-Kontakt und dessen Serienwiderstand kontrolliert. Es wird gezeigt, dass ein konstant hoher Schottky-Kontakt bedingter Serienwiderstand die Transkonduktanz erheblich vermindert. Jedoch kann die Transkonduktanz im höchsten Maße durch eine Herabsetzung des Serienwiderstandes durch das Backgate gesteigert werden. Dies erhöht die Leistungsfähigkeit des SB-FET als Wandler deutlich. Al2O3 oberflächenbeschichtete SB-FETs wurden als pH-Sensoren erprobt, um deren Tauglichkeit und Signal-zu-Rausch-Verhältnis (SNR) zu evaluieren. Die Strommodulation pro pH-Wert konnte als direkt proportional zur Transkonduktanz bestätigt werden. Das Transistor bedingte SNR ist daher proportional zum Verhältnis von Transkonduktanz und Stromrauschen. Bei der Analyse des Transistorrauschens wurde festgestellt, dass dieses das SNR bereits bei einer niedrigeren Transkonduktanz als der maximal Möglichen limitiert. Eine statistische Auswertung zeigte, dass sowohl SB-FET Transkonduktanz als auch Stromrauschen proportional zu dem Transistorstrom skalieren. Somit ist deren Verhältnis unabhängig von der Nanodraht-Leitungskanallänge, im hier untersuchten Rahmen. Die geringe Ausschuss bei der Fabrikation der Nanodraht SB-FET-Parallelschaltungen ermöglicht eine Nutzung dieser Plattform für simple Logik und Biosensorelemente. Durch die geringen Prozesstemperaturen wurde die Grundlage geschaffen, komplementäre Logik mit undotiertem Si auf flexiblen Substraten zu fertigen. Vorangegangene Resultate zeigte eine verminderte Transkonduktanz durch die Präsenz von Schottky-Barrieren, was die Anwendbarkeit von SB-FETs als Wandler einschränkt. Diese Arbeit zeigt, dass eine elekrtische Entkopplung der Schottky-Kontakte zu einer Aufhebung dieser Beschränkung führen kann und somit den Einsatz von SB-FETs als praktikable Wandler für Sensoranwendungen zulässt.:Table of contents 11 List of figures 14 Abbreviations 15 Introduction 17 1 Fundamentals 23 1.1 Bottom up growth of Si nanowires 23 1.2 MOS and Schottky barrier transistor theory 25 1.2.1 MOSFET: Metal Oxide Semiconductor Field Effect Transistor 25 1.2.2 Gate coupling 27 1.2.3 Oxide charges and flatband voltage 29 1.2.4 Charge trapping and charge-voltage hysteresis 30 1.2.5 Schottky barrier 32 1.2.6 SB-FETs 34 1.3 ISFET and BioFET technology 36 1.3.1 ISFET and BioFET working principle 37 1.3.2 Noise in ISFETs 41 2 Fabrication of Schottky barrier FET parallel arrays 43 2.1 Starting point of device fabrication 43 2.2 Parallel array transistor and sensor devices 44 2.2.1 Gold nano particle deposition 45 2.2.2 Bottom-up growth of Si nanowires 46 2.2.3 Nanowire deposition methods 48 Langmuir-Blodgett 48 Adhesion tape transfer 49 Contact printing/ smearing transfer 49 2.2.4 Nanowire oxidation 50 2.2.5 Chip design 51 2.2.6 UV lithography 53 2.2.7 Oxide removal and metal deposition 54 2.2.8 Nanowire silicidation 54 2.2.9 Ionsensitive, top gate dielectric and contact passivation 56 2.2.10 On chip reference electrode 57 3 Electrical characterization 59 3.1 Electrical characterization methods 59 3.2 Transfer characteristics 60 3.2.1 Silicidation: intruded silicide contacts 62 3.2.2 Scaling of the conduction channel length 63 3.2.3 Flatband voltage, built-in potentials, fixed and trapped oxide charge 71 3.2.4 Surface effects on the channel potential of back gated SB-FETs 72 3.3 Charge traps, hysteresis and Vth drifts 73 3.3.1 Screening of back gate fields by water molecules 74 3.3.2 Native oxides: unipolarity by water promoted charge trapping 76 3.3.3 Hysteresis for thermally grown oxide back and top gate devices 78 3.3.4 Hysteresis reduction by post anneal 79 3.4 Output characteristics 80 3.4.1 Unipolar output characteristics of nanowires with native oxide shell 80 3.4.2 Ambipolar output characteristics of nanowires with dry oxidized shell 82 3.5 Temperature dependence 84 3.6 Transistor noise 86 4 pH measurements 91 4.1 Experimental setup and data analysis method 91 4.2 Transfer function in electrolyte with liquid gate 92 4.3 Sensor response on pH 92 4.4 Sensor signal drifts 96 5 Schottky junction impact on sensitivity 97 5.1 Schottky junction electrostatic decoupling in solution 97 5.1.1 Experimental setup in solution 98 5.1.2 SU8/Al2O3 passivated junctions in electrolyte 98 5.2 Meander shaped gates without Schottky junction overlap 101 5.2.1 Separated gating of Schottky junctions and channel 102 5.2.2 Enhanced transducer performance by reduced Schottky junction resistance 104 6 Summary and Outlook 107 List of publications 111 Bibliography 126 Acknowledgements 127
Heinzig, André. "Entwicklung und Herstellung rekonfigurierbarer Nanodraht-Transistoren und Schaltungen". Doctoral thesis, 2014. https://tud.qucosa.de/id/qucosa%3A29458.
Pełny tekst źródłaThe enormous increase in performance of integrated circuits has been driven for more than 50 years, mainly by reducing the device dimensions. This trend cannot continue in the long term due to physical limits being reached. The scope of this thesis is the development and fabrication of novel kinds of transistors and circuits that provide higher functionality compared to the classical devices, thus introducing an alternative approach to scaling. The fabrication of Schottky barrier field effect transistors (SBFETs) based on nominally undoped grown silicon nanowires using established and developed techniques is described. Further the charge carrier injection in the fabricated metal to semiconductor interfaces is analyzed under the influence of electrical fields. Structural modifications are used to optimize the charge injection resulting in increased ambipolar currents and negligible hysteresis of the SBFETs. Moreover, a device has been developed called the reconfigurable field-effect transistor (RFET), in which the electron and hole injection can be independently controlled by up to nine orders of magnitude. This device can be reversibly configured from unipolar electron conducting (ntype) to hole conducting (p-type) by the application of a program voltage to the two individual top gate electrodes at the Schottky junctions. So the RFET merges the functionality of classical FETs into one universal device. Measurements and 3D finite element method simulations are used to analyze the electrical transport and to describe the operation principle. Systematic investigations of changes in the device structure, dimensions and material composition show enhanced characteristics in scaled and low bandgap semiconductor RFET devices. For the realization of novel circuits, a concept is described to use the enhanced functionality of the transistors in order to realize energy efficient complementary circuits (CMOS). The required equal electron and hole current densities are achieved by the modification of charge carrier tunneling due to mechanical stress and are shown for the first time ever on a transistor. An electrically symmetric RFET based on a compressive strained nanowire in <110> crystal direction and 12 nm silicon core diameter exhibits unique electrical symmetry. The circuit concept is demonstrated by the integration of two RFETs on a single nanowire, thus realizing a dopant free CMOS inverter which can be programmed flexibly. The reconfigurable NAND/NOR shows that the RFET technology can lead to a reduction of the transistor count and can increase the system functionality. Additionally, further circuit examples and the challenges of an industrial implementation of the concept are discussed.The enhanced functionality and dopant free RFET technology describes a novel approach to maintain the technological progress in electronics after the expected end of classical device scaling.:Kurzzusammenfassung Abstract 1 Einleitung 2 Nanodrähte als aktivesGebiet fürFeldeffekttransistoren 2.1 Elektrisches Potential und Ladungsträgertransport in Transistoren 2.1.1 Potentialverlauf 2.1.2 Ladungsträgerfluss und Steuerung 2.2 Der Metall-Halbleiter-Kontakt 2.2.1 Ladungsträgertransport über den Schottky-Kontakt 2.2.2 Thermionische Emission 2.2.3 Ladungsträgertunneln 2.2.4 Methoden zur Beschreibung der Gesamtinjektion 2.3 Der Schottkybarrieren-Feldeffekttransistor 2.4 Stand der Technik 2.4.1 Elektronische Bauelemente auf Basis von Nanoröhren und Nanodrähten 2.4.2 Rekonfigurierbare Transistoren und Schaltungen 2.5 Zusammenfassung 3 TechnologienzurHerstellung vonNanodraht-Transistoren 3.1 Herstellung von SB-Nanodraht-Transistoren mit Rückseitengatelektrode 3.1.1 Nanodraht-Strukturbildung durch VLS-Wachstum 3.1.2 Drahttransfer 3.1.3 Herstellung von Kontaktelektroden 3.1.4 Herstellung von Schottky-Kontakten innerhalb eines Nanodrahtes 3.2 Strukturerzeugung mittels Elektronenstrahllithographie 3.2.1 Schichtstrukturierung mittels Elektronenstrahllithographie 3.2.2 Strukturierung mittels ungerichteter Elektronenstrahllithographie 3.2.3 Justierte Strukturierung mittels Elektronenstrahllithographie 3.2.4 Justierte Strukturierung mittels feinangepasster Elektronenstrahllithographie 3.2.5 Justierte Strukturierung mittels kombinierter optischer und Elektronenstrahllithographie 3.3 Zusammenfassung 4 Realisierung und Optimierung siliziumbasierter Schottkybarrieren- Nanodraht-Transistoren 4.1 Nanodraht-Transistor mit einlegierten Silizidkontakten 4.1.1 Transistoren auf Basis von Nanodrähten in <112>-Richtung 4.1.2 Transistoren mit veränderten Abmessungen 4.2 Analyse und Optimierung der Gatepotentialverteilung im Drahtquerschnitt in Kontaktnähe 4.3 Si/SiO2 - Core/Shell Nanodrähte als Basis für elektrisch optimierte Transistoren 4.3.1 Si-Oxidation im Volumenmaterial 4.3.2 Si-Oxidation am Draht 4.3.3 Silizidierung innerhalb der Oxidhülle 4.3.4 Core/Shell-Nanodraht-Transistoren mit Rückseitengate 4.4 Analyse der Gatepotentialwirkung in Abhängigkeit des Abstands zur Barriere 4.5 Zusammenfassung 5 RFET - Der Rekonfigurierbare Feldeffekttransistor 5.1 Realisierung des RFET 5.2 Elektrische Charakteristik 5.2.1 Elektrische Beschaltung und Funktionsprinzip 5.2.2 Elektrische Messungen 5.2.3 Auswertung 5.3 Transporteigenschaften des rekonfigurierbaren Transistors 5.3.1 Tunnel- und thermionische Ströme im RFET 5.3.2 Analyse der Transportvorgänge mit Hilfe der numerischen Simulation 5.3.3 Schaltzustände des RFET 5.3.4 On-zu-Off Verhältnisse des RFET 5.3.5 Einfluss der Bandlücke auf das On- zu Off-Verhältnis 5.3.6 Abhängigkeiten von geometrischen, materialspezifischen und physikalischen Parametern 5.3.7 Skalierung des RFET 5.3.8 Längenskalierung des aktiven Gebietes 5.4 Vergleich verschiedener Konzepte zur Rekonfigurierbarkeit 5.5 Zusammenfassung 6 Schaltungen aus rekonfigurierbaren Bauelementen 6.1 Komplementäre Schaltkreise 6.1.1 Inverter 6.1.2 Universelle Gatter 6.1.3 Anforderungen an komplementäre Bauelemente 6.1.4 Individuelle Symmetrieanpassung statischer Transistoren 6.2 Rekonfigurierbare Transistoren als Bauelemente für komplementäre Elektronik 6.2.1 Analyse des RFET als komplementäres Bauelement 6.2.2 Bauelementbedingungen für eine rekonfigurierbare komplementäre Elektronik 6.3 Erzeugung eines RFETs für rekonfigurierbare komplementäre Schaltkreise 6.3.1 Möglichkeiten der Symmetrieanpassung 6.3.2 Erzeugung eines RFET mit elektrischer Symmetrie 6.3.3 Erzeugung und Aufbau des symmetrischen RFET 6.3.4 Elektrische Eigenschaften des symmetrischen RFET 6.4 Realisierung von komplementären rekonfigurierbaren Schaltungen 6.4.1 Integration identischer RFETs 6.4.2 RFET-basierter komplementärer Inverter 6.4.3 Rekonfigurierbarer CMOS-Inverter 6.4.4 PMOS/NMOS-Inverter 6.4.5 Zusammenfassung zur RFET-Inverterschaltung 6.4.6 Rekonfigurierbarer NAND/NOR-Schaltkreis 6.5 Zusammenfassung und Diskussion 7 Zusammenfassung und Ausblick 7.1 Zusammenfassung 7.2 Ausblick Anhang Symbol- und Abkürzungsverzeichnis Literaturverzeichnis Publikations- und Vortragsliste Danksagung Eidesstattliche Erklärung
Części książek na temat "NANOWIRE RECONFIGURABLE"
Lei Kang, Liu Liu, Sarah J. Boehm, Lan Lin, Theresa S. Mayer, Christine D. Keating i Douglas H. Werner. "Active photonics based on phase-change materials and reconfigurable nanowire systems". W Nanoantennas and Plasmonics: Modelling, design and fabrication, 343–79. Institution of Engineering and Technology, 2020. http://dx.doi.org/10.1049/sbew540e_ch10.
Pełny tekst źródłaStreszczenia konferencji na temat "NANOWIRE RECONFIGURABLE"
Beckett, Paul. "A Nanowire Array for Reconfigurable Computing". W TENCON 2005 - 2005 IEEE Region 10 Conference. IEEE, 2005. http://dx.doi.org/10.1109/tencon.2005.301252.
Pełny tekst źródłaKang, Lei, Taiwei Yue, Qiang Ren, Douglas H. Werner, Sarah J. Boehm i Christine D. Keating. "Reconfigurable nanowire assembly enabled field-switchable broadband polarizers". W 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. IEEE, 2017. http://dx.doi.org/10.1109/apusncursinrsm.2017.8072481.
Pełny tekst źródłaWeber, Walter M., Jens Trommer, Dominik Martin, Matthias Grube, Andre Heinzig i Thomas Mikolajick. "Reconfigurable nanowire electronics — Device principles and circuit prospects". W ESSDERC 2013 - 43rd European Solid State Device Research Conference. IEEE, 2013. http://dx.doi.org/10.1109/essderc.2013.6818865.
Pełny tekst źródłaRai, Shubham, Michael Raitza i Akash Kumar. "Technology mapping flow for emerging reconfigurable silicon nanowire transistors". W 2018 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 2018. http://dx.doi.org/10.23919/date.2018.8342110.
Pełny tekst źródłaWeber, Walter M., Jens Trommer, Matthias Grube, Andre Heinzig, Markus Konig i Thomas Mikolajick. "Reconfigurable silicon nanowire devices and circuits: Opportunities and challenges". W Design Automation and Test in Europe. New Jersey: IEEE Conference Publications, 2014. http://dx.doi.org/10.7873/date.2014.249.
Pełny tekst źródłaWeber, Walter M., Jens Trommer, Matthias Grube, Andre Heinzig, Markus Konig i Thomas Mikolajick. "Reconfigurable silicon nanowire devices and circuits: Opportunities and challenges". W Design Automation and Test in Europe. New Jersey: IEEE Conference Publications, 2014. http://dx.doi.org/10.7873/date2014.249.
Pełny tekst źródłaWang, Juncheng, Gang Du, Zhiyuan Lun, Kangliang Wei, Lang Zeng i Xiaoyan Liu. "Performance investigation on the reconfigurable Si nanowire schottky barrier transistors". W 2012 IEEE 11th International Conference on Solid-State and Integrated Circuit Technology (ICSICT). IEEE, 2012. http://dx.doi.org/10.1109/icsict.2012.6467586.
Pełny tekst źródłaBaldauf, Tim, Andre Heinzig, Thomas Mikolajick, Walter Michael Weber i Jens Trommer. "Strain-engineering for improved tunneling in reconfigurable silicon nanowire transistors". W 2016 Joint International EUROSOI Workshop and International Conference on Ultimate Integration on Silicon (EUROSOI-ULIS). IEEE, 2016. http://dx.doi.org/10.1109/ulis.2016.7440037.
Pełny tekst źródłaBaldauf, Tim, Andre Heinzig, Thomas Mikolajick i Walter Michael Weber. "Scaling Aspects of Nanowire Schottky Junction based Reconfigurable Field Effect Transistors". W 2019 Joint International EUROSOI Workshop and International Conference on Ultimate Integration on Silicon (EUROSOI-ULIS). IEEE, 2019. http://dx.doi.org/10.1109/eurosoi-ulis45800.2019.9041905.
Pełny tekst źródłaSimon, M., A. Heinzig, J. Trommer, T. Baldauf, T. Mikolajick i W. M. Weber. "Bringing reconfigurable nanowire FETs to a logic circuits compatible process platform". W 2016 IEEE Nanotechnology Materials and Devices Conference (NMDC). IEEE, 2016. http://dx.doi.org/10.1109/nmdc.2016.7777085.
Pełny tekst źródła