Gotowa bibliografia na temat „Nanostructures - Surfaces”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Nanostructures - Surfaces”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Nanostructures - Surfaces"
Reddy, G. S., Mallikarjuna N. Nadagouda i Jainagesh A. Sekhar. "Nanostructured Surfaces that Show Antimicrobial, Anticorrosive, and Antibiofilm Properties". Key Engineering Materials 521 (sierpień 2012): 1–33. http://dx.doi.org/10.4028/www.scientific.net/kem.521.1.
Pełny tekst źródłaCho, Seong J., Se Yeong Seok, Jin Young Kim, Geunbae Lim i Hoon Lim. "One-Step Fabrication of Hierarchically Structured Silicon Surfaces and Modification of Their Morphologies Using Sacrificial Layers". Journal of Nanomaterials 2013 (2013): 1–8. http://dx.doi.org/10.1155/2013/289256.
Pełny tekst źródłaHariharalakshmanan, Ranjitha K., Fumiya Watanabe i Tansel Karabacak. "In Situ Growth and UV Photocatalytic Effect of ZnO Nanostructures on a Zn Plate Immersed in Methylene Blue". Catalysts 12, nr 12 (16.12.2022): 1657. http://dx.doi.org/10.3390/catal12121657.
Pełny tekst źródłaWang, Yuliang, Xiaolai Li, Shuai Ren, Hadush Tedros Alem, Lijun Yang i Detlef Lohse. "Entrapment of interfacial nanobubbles on nano-structured surfaces". Soft Matter 13, nr 32 (2017): 5381–88. http://dx.doi.org/10.1039/c7sm01205e.
Pełny tekst źródłaMansurov, Z. A., M. Nazhipkyzy, B. T. Lesbayev, N. G. Prikhodko, M. Auyelkhankyzy i I. K. Puri. "Synthesis of Superhydrophobic Carbon Surface during Combustion Propane". Eurasian Chemico-Technological Journal 14, nr 1 (15.12.2011): 19. http://dx.doi.org/10.18321/ectj94.
Pełny tekst źródłaSpiecker, Erdmann, Stefan Hollensteiner, Wolfgang Jäger, Hans Haselier i Herbert Schroeder. "Self-Assembled Nanostructures on VSe2Surfaces Induced by Cu Deposition". Microscopy and Microanalysis 11, nr 5 (28.09.2005): 456–71. http://dx.doi.org/10.1017/s1431927605050373.
Pełny tekst źródłaLi, Xin, Yiming Guo i Hai Cao. "Nanostructured surfaces from ligand-protected metal nanoparticles". Dalton Transactions 49, nr 41 (2020): 14314–19. http://dx.doi.org/10.1039/d0dt02822c.
Pełny tekst źródłaRanjan, A., N. Pothayee, M. N. Seleem, N. Sriranganathan, R. Kasimanickam, M. Makris i J. S. Riffle. "In Vitro Trafficking and Efficacy of Core-Shell Nanostructures for Treating Intracellular Salmonella Infections". Antimicrobial Agents and Chemotherapy 53, nr 9 (13.07.2009): 3985–88. http://dx.doi.org/10.1128/aac.00009-09.
Pełny tekst źródłaMills, Christopher A., Elena Martinez, Abdelhamid Errachid, Elisabeth Engel, Miriam Funes, Christian Moormann, Thorsten Wahlbrink, Gabriel Gomila, Josep Planell i Josep Samitier. "Nanoembossed Polymer Substrates for Biomedical Surface Interaction Studies". Journal of Nanoscience and Nanotechnology 7, nr 12 (1.12.2007): 4588–94. http://dx.doi.org/10.1166/jnn.2007.18110.
Pełny tekst źródłaChen, Cheng-Ying, Ming-Wei Chen, Jr-Jian Ke, Chin-An Lin, José R. D. Retamal i Jr-Hau He. "Surface effects on optical and electrical properties of ZnO nanostructures". Pure and Applied Chemistry 82, nr 11 (6.08.2010): 2055–73. http://dx.doi.org/10.1351/pac-con-09-12-05.
Pełny tekst źródłaRozprawy doktorskie na temat "Nanostructures - Surfaces"
Jackson, Richard James. "Engineering nanostructures for biological sensor surfaces". Thesis, University of Newcastle Upon Tyne, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.430773.
Pełny tekst źródłaNemitz, Ian R. "Liquid Crystals: Surfaces, Nanostructures, and Chirality". Case Western Reserve University School of Graduate Studies / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=case1480686661255562.
Pełny tekst źródłaNemitz, Ian Robert. "Cristaux liquides : surfaces, nanostructures et chiralité". Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066586/document.
Pełny tekst źródłaThis dissertation focuses on liquid crystals (LCs), specifically their chiral properties and interactions with surfaces and nanostructures. Nematic twist cells were filled with a LC doped with the chiral molecule CB15, which compensates for the imposed twist. Using the electroclinic effect (ECE), results indicate that an ECE always exists near the surface in twist cells containing conformationally deracemizable molecules. ECE measurements were also performed to determine the source of the ECE response in a LC doped with chiral periodic mesoporous organosilica (PMO). The data show that the main source of the signal emanates from outside the PMO, and not inside the PMO pores. An ECE also is reported for chiral LCs above their bulk chiral isotropic–nematic phase transition, and is observable in the paranematic layers induced by the planar-aligning substrates. Optical microscopy measurements were performed on smectic-A oily streaks doped with CB15. When chirally doped, the stripe orientation rotated by a temperature dependent angle: This angle increased with concentration, was largest just below the nematic – smectic-A transition, and stabilized to near zero within ~1C below TNA. This is explained as a manifestation of a surface ECE. Finally, a novel structure in a hybrid aligned system was observed below the Smectic-A – Smectic-C transition. The structure appeared as periodic dark and light streaks running perpendicular to the oily streaks, and formed by extending discretely from one oily streak to the next, eliminating optical evidence of the oily streaks. At lower temperatures the streaks undulated in a 2D chiral pattern. A possible origin of these streaks is presented
Nolan, John William. "Contacting and imaging nanostructures on silicon surfaces". Thesis, University of Nottingham, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.275970.
Pełny tekst źródłaBergman, Kathryn N. "Biomineralization of inorganic nanostructures using protein surfaces". Thesis, Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/22674.
Pełny tekst źródłaCommittee Chair: Tsukruk, Vladimir; Committee Member: Kalaitzidou, Kyriaki; Committee Member: Valeria Milam.
Ramasubramaniam, Ashwin. "Dynamics and stability of nanostructures on crystal surfaces /". View online version; access limited to Brown University users, 2005. http://wwwlib.umi.com/dissertations/fullcit/3174661.
Pełny tekst źródłaWieland, Maria B. "Formation and deposition of polymer nanostructures on surfaces". Thesis, University of Nottingham, 2015. http://eprints.nottingham.ac.uk/30689/.
Pełny tekst źródłaHamid, Firas Abdel. "Surfaces d’alliages métalliques complexes : nanostructures et croissance moléculaire". Electronic Thesis or Diss., Université de Lorraine, 2019. http://www.theses.fr/2019LORR0155.
Pełny tekst źródłaComplex metallic alloys (CMAs) are intermetallics with a unit cell characterized by a large number of atoms and a substructure of atomic clusters of high symmetry. Quasicrystals and their periodic approximants are part of this class of materials. Here, we have investigated the atomic and electronic structure of the (100) surface of a cage compound Ce3Pd20Si6 which can be also considered as a CMA. The assembly of Pd12Si6 and Pd16 cages in which guest Ce atoms are located describes its structure. The surface is analyzed using experimental methods under ultrahigh vacuum as well as atomistic simulations based on density functional theory (DFT). The surface forms at corrugated planes of the bulk structure that preserve intact the Pd12Si6 cages, with additional Pd surface atoms. It is concluded that despite this Pd-based cage compound being clearly metallic, stronger interactions between Pd and Si atoms on the host cage structure significantly influence its surface structure. Due to the cage preservation, the surface presents an intrinsic nanostructuration with a periodicity slightly less than one nanometer. This surface is further used as a pattern in an attempt to form self-organized molecular films. First results are presented concerning the self-assembly of C60 and its derivative (PTBC) on different substrates, including Ce3Pd20Si6(100) but also 5-fold surfaces of icosahedral phases i-AlCuFe and i-AgInYb and simple Cu (111) and Au (111) surfaces. Simple models are proposed to describe the structures formed by PTBC on Cu (111) and Au (111). C60 deposited on Ce3Pd20Si6(100) leads to the formation of hexagonal nanodomains,while PTBC leads to amorphous films. For PTBC deposited on quasicrystalline surfaces, preferential adsorption occurs at low coverage at 5-fold symmetric sites, dictated by symmetry matching between molecules and substrates. When the monolayer is saturated however, the film is either amorphous on i-AlCuFe or quasiperiodic on i-AgInYb, but with a large amount of disorder
Rohart, Stanislas. "Croissance et magnétisme de nanostructures organisées sur surfaces cristallines". Phd thesis, Université Paris-Diderot - Paris VII, 2005. http://tel.archives-ouvertes.fr/tel-00010738.
Pełny tekst źródłaBasagni, Andrea. "Covalent stabilization of 2D self-assembled nanostructures on surfaces". Doctoral thesis, Università degli studi di Padova, 2016. http://hdl.handle.net/11577/3424495.
Pełny tekst źródłaLa scoperta del grafene ha suscitato grande interesse verso i materiali a bassa dimensionalità (0D, 1D e 2D) e uno sforzo congiunto tra i diversi rami della scienza è orientato verso la produzione di nuovi materiali con proprietà analoghe a quelle del grafene, ma controllabili. La sintesi su superficie in condizioni di ultra-alto vuoto (UHV) sembra essere promettente per la produzione di nanostrutture organiche. Infatti, in queste condizioni, è possibile avere un’ampia varietà di materiali, un perfetto controllo delle condizioni di reazione, della simmetria della superficie e della sua corrugazione. Questi sono solo alcuni dei vantaggi che l’UHV offre. Sebbene varie reazioni siano state testate negli ultimi anni, sembra chiaro che per realizzare monostrati polimerici ordinati siano necessiari approcci più complessi. In questo lavoro di Tesi, la sintesi di nanostrutture polimeriche su superficie è stata studiata per diverse reazioni, substrati e condizioni di reazione. La microscopia ad effetto tunnel e la spettroscopia di fotoemissione a raggi X sono state utilizzate per la caratterizzazione dei diversi sistemi permettendo un'analisi complementare delle strutture molecolari e dei loro stati chimici. In particolare, le reazioni attivate termicamente sono state utilizzate per polimerizzare gradualmente il 4,4"-dibromo-terfenile e ottenere, in un primo step di reazione, per mezzo della reazione di Ullmann su Au (111), il poli-parafenilene, ,e poi nanoribbons di grafene dopo l'attivazione del legami C-H. Un delicato equilibrio tra l'attività catalitica della superficie, la mobilità molecolare e l’organizzazione molecolare ha permesso di ottenere strutture ordinate estese. Inoltre, sfruttando questa metodica, sono stati ottenuti tre differenti polimeri 1D, caratterizzati da un crescente contenuto di azoto. Campioni macroscopicamente anisotropici sono stati preparati sfruttando l'effetto templante delle superfici vicinali e, grazie alla spettroscopia di fotoemizzione risolta in angolo, è stato rivelato che la struttura elettronica dei polimeri drogati è rigidamente spostata verso energie minori rispetto al livello di Fermi del metallo all'aumentare del contenuto di azoto. Infine, è stata esplorata l'attivazione fotochimica di diversi gruppi funzionali. Questi studi rappresentano un passo avanti verso l’applicazione della fotochimica alla sintesi su superficie, che attualmente sfrutta solo gruppi diacetilenici, e apre nuove opportunità per l'utilizzo di diversi gruppi funzionali organici come centri fotoattivi.
Książki na temat "Nanostructures - Surfaces"
Vancso, G. Julius, red. Ordered Polymeric Nanostructures at Surfaces. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11605294.
Pełny tekst źródłaShchukin, Vitaly A. Epitaxy of Nanostructures. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004.
Znajdź pełny tekst źródłaH, Fendler Janos, Dékány Imre, North Atlantic Treaty Organization. Scientific Affairs Division. i NATO Advanced Research Workshop on Nanoparticles in Solids and Solutions--an Integrated Approach to Their Preparation and Characterization (1996 : Szeged, Hungary), red. Nanoparticles in solids and solutions. Dordrecht: Kluwer Academic Publishers, 1996.
Znajdź pełny tekst źródłaDieter, Bimberg, red. Semiconductor nanostructures. Berlin: Springer, 2008.
Znajdź pełny tekst źródłaNanostructured thin films and surfaces. Weinheim: Wiley-VCH, 2010.
Znajdź pełny tekst źródłaCiobanu, Cristian V., Cai-Zhuang Wang i Kai-Ming Ho. Atomic Structure Prediction of Nanostructures, Clusters and Surfaces. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527655021.
Pełny tekst źródła1964-, Berakdar J., i Kirschner Jürgen, red. Correlation spectroscopy of surfaces, thin films, and nanostructures. Weinheim: Wiley-VCH, 2004.
Znajdź pełny tekst źródłaKalt, Heinz. Optics of Semiconductors and Their Nanostructures. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004.
Znajdź pełny tekst źródłaTopical Meeting Microphysics of Surfaces: Nanoscale Processing (1995 Santa Fe, N.M.). Microphysics of surfaces: Nanoscale processing : summaries of the papers presented at the topical meeting Microphysics of Surfaces: Nanoscale Processing, February 9-11, 1995, Santa Fe, New Mexico. Washington, DC: Optical Society of America, 1995.
Znajdź pełny tekst źródła1943-, Schwarz James A., i Contescu Cristian I. 1948-, red. Surfaces of nanoparticles and porous materials. New York: Marcel Dekker, 1999.
Znajdź pełny tekst źródłaCzęści książek na temat "Nanostructures - Surfaces"
Jiang, Hong. "Theoretical Models for Bimetallic Surfaces and Nanoalloys". W Bimetallic Nanostructures, 23–60. Chichester, UK: John Wiley & Sons, Ltd, 2018. http://dx.doi.org/10.1002/9781119214618.ch2.
Pełny tekst źródłaSydorenko, Alexander. "Nanostructures in Thin Films from Nanostructured Polymeric Templates: Self-Assembly". W Polymer Surfaces and Interfaces, 261–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-73865-7_13.
Pełny tekst źródłaJärrendahl, Kenneth, i Hans Arwin. "Polarizing Natural Nanostructures". W Ellipsometry of Functional Organic Surfaces and Films, 155–69. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-40128-2_8.
Pełny tekst źródłaJärrendahl, Kenneth, i Hans Arwin. "Polarizing Natural Nanostructures". W Ellipsometry of Functional Organic Surfaces and Films, 247–68. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-75895-4_11.
Pełny tekst źródłaSauvage-Simkin, M. "4.2.3 Semiconductor surfaces, interfaces, and nanostructures". W Physics of Solid Surfaces, 123–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-47736-6_46.
Pełny tekst źródłaHossain, Md Zakir, i Maki Kawai. "Formation of Organic Nanostructures on Semiconductor Surfaces". W Functionalization of Semiconductor Surfaces, 277–300. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118199770.ch10.
Pełny tekst źródłade Jeu, Wim H., Yaëlle Séréro i Mahmoud Al-Hussein. "Liquid Crystallinity in Block Copolymer Films for Controlling Polymeric Nanopatterns". W Ordered Polymeric Nanostructures at Surfaces, 71–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/12_006.
Pełny tekst źródłaAlbrecht, Krystyna, Ahmed Mourran i Martin Moeller. "Surface Micelles and Surface-Induced Nanopatterns Formed by Block Copolymers". W Ordered Polymeric Nanostructures at Surfaces, 57–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/12_007.
Pełny tekst źródłaSchönherr, Holger, Geerten H. Degenhart, Barbara Dordi, Chuan Liang Feng, Dorota I. Rozkiewicz, Alexander Shovsky i G. Julius Vancso. "Organic and Macromolecular Films and Assemblies as (Bio)reactive Platforms: From Model Studies on Structure–Reactivity Relationships to Submicrometer Patterning". W Ordered Polymeric Nanostructures at Surfaces, 169–208. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/12_014.
Pełny tekst źródłaSommer, Jens-Uwe, i Günter Reiter. "The Formation of Ordered Polymer Structures at Interfaces: A Few Intriguing Aspects". W Ordered Polymeric Nanostructures at Surfaces, 1–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/12_015.
Pełny tekst źródłaStreszczenia konferencji na temat "Nanostructures - Surfaces"
Ignácio, Isabela, Elaine Maria Cardoso, José Luiz Gasche i Gherhardt Ribatski. "A State-of-the-Art Review on Pool Boiling on Nanostructure Surfaces". W ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels collocated with the ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/icnmm2015-48120.
Pełny tekst źródłaChen, Min, Bing-Yang Cao i Zeng-Yuan Guo. "Micro/Nano-Scale Fluid Flows on Structured Surfaces". W ASME 2008 6th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2008. http://dx.doi.org/10.1115/icnmm2008-62023.
Pełny tekst źródłaWarren, A. W., i Y. B. Guo. "The Influence of Residual Stress and Tip Geometry on the Measurement of Surface Property Using Nanoindentation: Experimental Study and Numerical Analysis". W 2008 Second International Conference on Integration and Commercialization of Micro and Nanosystems. ASMEDC, 2008. http://dx.doi.org/10.1115/micronano2008-70156.
Pełny tekst źródłaEnright, Ryan, Nicholas Dou, Nenad Miljkovic, Youngsuk Nam i Evelyn N. Wang. "Condensation on Superhydrophobic Copper Oxide Nanostructures". W ASME 2012 Third International Conference on Micro/Nanoscale Heat and Mass Transfer. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/mnhmt2012-75277.
Pełny tekst źródłaKing, S. M., Md M. Rahman, A. K. Krick, L. D. Branco, E. Olceroglu i M. McCarthy. "Biotemplated Nanostructured Surfaces for Enhanced Phase Change Heat Transfer". W ASME 2012 10th International Conference on Nanochannels, Microchannels, and Minichannels collocated with the ASME 2012 Heat Transfer Summer Conference and the ASME 2012 Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/icnmm2012-73190.
Pełny tekst źródłaSu, Junwei, Hamed Esmaeilzadeh, Chefu Su, Majid Charmchi, Marina Ruths i Hongwei Sun. "Characterization of Jumping-Droplet Condensation on Nanostructured Surfaces With Quartz Crystal Microbalance". W ASME 2017 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/imece2017-72315.
Pełny tekst źródłaNolan, Eric, Russell Rioux i Calvin Hong Li. "Experimental Study of Critical Heat Flux and Heat Transfer Coefficient Enhancements in Pool Boiling Heat Transfer With Nanostructure Modified Active Nucleation Site and Contact Angle". W ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-89903.
Pełny tekst źródłaHerman, Irving P. "Optical Diagnostics during Film Processing of Micro- and Nanostructures". W Microphysics of Surfaces: Nanoscale Processing. Washington, D.C.: Optica Publishing Group, 1995. http://dx.doi.org/10.1364/msnp.1995.mfa1.
Pełny tekst źródłaWang, Evelyn N., Rong Xiao, Kuang-Han Chu i Ryan Enright. "Nanoengineered Surfaces for Efficient Energy Systems". W ASME 2011 9th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2011. http://dx.doi.org/10.1115/icnmm2011-58300.
Pełny tekst źródłaDemir, Ebru, Muhsincan Sesen, Turker Izci, Wisam Khudhayer, Tansel Karabacak i Ali Kosar. "Subcooled Flow Boiling Over Nanostructured Plate Integrated Into a Rectangular Channel". W ASME 2013 11th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/icnmm2013-73154.
Pełny tekst źródłaRaporty organizacyjne na temat "Nanostructures - Surfaces"
Zewail, Ahmed H. Imaging Surfaces and Nanostructures. Fort Belvoir, VA: Defense Technical Information Center, luty 2011. http://dx.doi.org/10.21236/ada564109.
Pełny tekst źródłaBozhko, S. I., A. N. Chaika i A. M. Ionov. Vicinal Si(hhm) surfaces: templates for nanostructures fabrication. Redaktorzy Lotfia Elnai i Ramy Mawad. Journal of Modern trends in physics research, grudzień 2014. http://dx.doi.org/10.19138/mtpr/(14)58-64.
Pełny tekst źródłaYnzunza, R. X., E. D. Tober, Z. Wang, F. J. Palomares, J. Morais, R. Denecke, S. Ryce i in. Advanced photoelectron spectrometer/diffractometer for studies of the atomic, electronic, and magnetic structure of surfaces, interfaces, and nanostructures. Office of Scientific and Technical Information (OSTI), kwiecień 1997. http://dx.doi.org/10.2172/603637.
Pełny tekst źródłaPicraux, Samuel Thomas, Marcin Piech, John F. Schneider, Sean Vail, Mark A. Hayes, Anthony A. Garcia, Nelson Simmons Bell, D. Gust i Dongqing Yang. Nanostructured surfaces for microfluidics and sensing applications. Office of Scientific and Technical Information (OSTI), styczeń 2007. http://dx.doi.org/10.2172/902205.
Pełny tekst źródłaBenderskii, Alexander V. Nonlinear Spectroscopies of Nanostructured Surfaces and Interfaces. Fort Belvoir, VA: Defense Technical Information Center, listopad 2009. http://dx.doi.org/10.21236/ada563142.
Pełny tekst źródłaMurphy, Catherine J. Nanoparticles and Nanostructured Surfaces: Novel Reporters with Biological Applications. Fort Belvoir, VA: Defense Technical Information Center, styczeń 2001. http://dx.doi.org/10.21236/ada409010.
Pełny tekst źródłaVoter, A. F., i N. Stanciu. Decay of surface nanostructures via long-time-scale dynamics. Office of Scientific and Technical Information (OSTI), listopad 1998. http://dx.doi.org/10.2172/674862.
Pełny tekst źródłaArmstrong, Robert. (Theme 2 Quantum Computing) Nanostructured Surface Plasmon Resonators. Fort Belvoir, VA: Defense Technical Information Center, kwiecień 2008. http://dx.doi.org/10.21236/ada481080.
Pełny tekst źródłaDavids, P. S., F. Intravia i Diego A. Dalvit. Geometrically induced surface polaritons in planar nanostructured metallic cavities. Office of Scientific and Technical Information (OSTI), styczeń 2014. http://dx.doi.org/10.2172/1114411.
Pełny tekst źródłaOsgood, Jr., Richard. Dynamic Studies of Photo- and Electron-Induced Reactions on Nanostructured Surfaces. Office of Scientific and Technical Information (OSTI), sierpień 2018. http://dx.doi.org/10.2172/1467566.
Pełny tekst źródła