Gotowa bibliografia na temat „Nanostructured Semiconductors Crystals”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Nanostructured Semiconductors Crystals”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Nanostructured Semiconductors Crystals"
Kosach, N. I., V. B. Bolshakov, I. T. Bohdanov i Y. O. Suchikova. "Statistical evaluation of morphological parameters of porous nanostructures on the synthesized indium phosphide surface". Bulletin of the Karaganda University. "Physics" Series 103, nr 3 (30.09.2021): 83–92. http://dx.doi.org/10.31489/2021ph3/83-92.
Pełny tekst źródłaLi, Jing, Wenhua Bi, Wooseok Ki, Xiaoying Huang i Srihari Reddy. "Nanostructured Crystals: Unique Hybrid Semiconductors Exhibiting Nearly Zero and Tunable Uniaxial Thermal Expansion Behavior". Journal of the American Chemical Society 129, nr 46 (listopad 2007): 14140–41. http://dx.doi.org/10.1021/ja075901n.
Pełny tekst źródłaChen, Jihua. "Advanced Electron Microscopy of Nanophased Synthetic Polymers and Soft Complexes for Energy and Medicine Applications". Nanomaterials 11, nr 9 (15.09.2021): 2405. http://dx.doi.org/10.3390/nano11092405.
Pełny tekst źródłaWang, Z. L. "Energy-filtered high-resolution Electron Microscopy of nanostructured materials". Proceedings, annual meeting, Electron Microscopy Society of America 53 (13.08.1995): 176–77. http://dx.doi.org/10.1017/s0424820100137252.
Pełny tekst źródłaShen, Shaohua, i Samuel S. Mao. "Nanostructure designs for effective solar-to-hydrogen conversion". Nanophotonics 1, nr 1 (1.07.2012): 31–50. http://dx.doi.org/10.1515/nanoph-2012-0010.
Pełny tekst źródłaRud, Vasily, Doulbay Melebaev, Viktor Krasnoshchekov, Ilya Ilyin, Eugeny Terukov, Maksim Diuldin, Alexey Andreev, Maral Shamuhammedowa i Vadim Davydov. "Photosensitivity of Nanostructured Schottky Barriers Based on GaP for Solar Energy Applications". Energies 16, nr 5 (28.02.2023): 2319. http://dx.doi.org/10.3390/en16052319.
Pełny tekst źródłaAl-Ahmed, Amir, Bello Mukhtar, Safdar Hossain, S. M. Javaid Zaidi i S. U. Rahman. "Application of Titanium Dioxide (TiO2) Based Photocatalytic Nanomaterials in Solar and Hydrogen Energy: A Short Review". Materials Science Forum 712 (luty 2012): 25–47. http://dx.doi.org/10.4028/www.scientific.net/msf.712.25.
Pełny tekst źródłaGnawali, Guna Nidha, Shankar P. Shrestha, Khem N. Poudyal, Indra B. Karki i Ishwar Koirala. "Study on the effect of growth-time and seed-layers of Zinc Oxide nanostructured thin film prepared by the hydrothermal method for liquefied petroleum gas sensor application". BIBECHANA 16 (22.11.2018): 145–53. http://dx.doi.org/10.3126/bibechana.v16i0.21557.
Pełny tekst źródłaSuchikova, Y. O., S. S. Kovachov, G. O. Shishkin, D. O. Pimenov, A. S. Lazarenko, V. V. Bondarenko i I. T. Bogdanov. "Functional model for the synthesis of nanostructures of the given quality level". Archives of Materials Science and Engineering 2, nr 107 (1.02.2021): 72–84. http://dx.doi.org/10.5604/01.3001.0015.0244.
Pełny tekst źródłaLeach, Gary W., Sasan V. Grayli, Finlay MacNab, Xin Zhang i Saeid Kamal. "Hot Electron Extraction Enabled By Single-Crystal Metal Films and Nanostructures". ECS Meeting Abstracts MA2022-01, nr 13 (7.07.2022): 925. http://dx.doi.org/10.1149/ma2022-0113925mtgabs.
Pełny tekst źródłaRozprawy doktorskie na temat "Nanostructured Semiconductors Crystals"
Xavier, Paulo Adriano. "Estudos espectroscópicos e de dopagem de nanocristais semicondutores de ZnS com íons Co2+ Cu2+". Pós-Graduação em Química, 2013. https://ri.ufs.br/handle/riufs/6110.
Pełny tekst źródłaNo presente trabalho foram estudados nanocristais semicondutores, tambem conhecidos como pontos quanticos ou quantum dots, selecionando-se especificamente o sulfeto de zinco (ZnS). Foram utilizados ois diferentes agentes estabilizantes (glutationa e N-acetil-L-cisteina) na obtencao de nanocristais de ZnS por via aquosa. Buscou-se avaliar, especificamente, a eficiencia dos agentes tiois na estabilizacao das suspensoes de nanocristais frente a agregacao, no controle e distribuicao de tamanhos das particulas, bem como nas propriedades opticas. Estudou-se, alem disto, o efeito da dopagem com ions de metais de transicao (Cu2+ e Co2+) nas propriedades de fluorescencia. Por fim, foi avaliada a possibilidade de transferencia de energia entre os nanocristais semicondutores dopados e o corante safranina. Os nanocristais semicondutores de ZnS estabilizados por glutationa e por N-acetil-L-cisteina foram obtidos com tamanhos abaixo de 5 nm, formas aproximadamente esfericas e livres de agregacao, evidenciando que ambos agentes ii estabilizantes foram eficientes. Ambos agentes estabilizantes levaram a formacao de nanocristais com emissoes na regiao do azul, caracteristicas do envolvimento de estados de defeito de superficie do ZnS. No entanto, as amostras preparadas com glutationa apresentaram maiores intensidades de fluorescencia, quando comparadas com aquelas preparadas com N-acetil-L-cisteina. A dopagem dos nanocristais semicondutores ZnS/Glu com ions cobre e cobalto teve um efeito de diminuir as intensidades de fluorescencia dependente da concentracao nominal dos dopantes em ambos os casos, sugerindo que o cobalto atua de modo analogo ao cobre. Considerando-se tanto o efeito sobre as intensidades de emissao do ZnS quanto a ausencia de transicoes d-d do metal, o estudo sugeriu que a dopagem reduz a concentracao de vacancias de cations, bem como o envolvimento de pelo menos um dos estados eletronicos do cobalto nos processos de transicao. Nao se observou variacoes nos comprimentos de onda para diferentes concentracoes dos dopantes, provavelmente pela ausencia de interferencia no tamanho dos nanocristais semicondutores formados. Por fim, o estudo preliminar da supressao de fluorescencia dos nanocristais semicondutores pelo efeito de diferentes concentracoes do corante safranina mostrou que concentracoes significativamente baixas do corante foram suficientes para diminuir a intensidade de fluorescencia. Diferentes componentes das bandas de emissao dos nanocristais semicondutores foram influenciados de modo distinto. A analise dos dados pelos graficos de Stern-Volmer sugeriu a ocorrencia de mais de um processo de transferencia (energia e/ou eletrons). Este estudo sera aprofundado nos trabalhos futuros.
Ye, Wei. "Nano-epitaxy modeling and design: from atomistic simulations to continuum methods". Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/50304.
Pełny tekst źródłaLi, Fang. "Microstructural properties of semiconductor nanostructures". Thesis, University of Oxford, 2011. http://ora.ox.ac.uk/objects/uuid:396024e1-a646-40ca-8212-cad925b18311.
Pełny tekst źródłaWilson, Daniel W. "Optical waveguiding in photorefractive crystals : photoinduced polarization conversion and electron waveguiding in semiconductor nanostructures : modes, directional coupling, and discontinuities". Diss., Georgia Institute of Technology, 1994. http://hdl.handle.net/1853/14934.
Pełny tekst źródłaMartin, Aude. "Nonlinear Photonic Nanostructures based on Wide Gap Semiconductor Compounds". Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS526/document.
Pełny tekst źródłaThe energy consumption of the whole ICT ecosystem is growing at a fast paceand in a global context of the search for an ever more connected yet sustainable society, a technologicalbreakthrough is desired. Here, integrated nonlinear photonics will help by providingnovel possibilities for energy efficient signal processing. In this PhD thesis, I have been investigatingsub-wavelength semiconductor structures, particularly photonic crystals, which have shownremarkable nonlinear properties. More specifically the strong confinement and slow light propagationenables on-chip ultra-fast all-optical signal processing, either based on four-wave-mixingor self-phase modulation. The main point here is the use of novel semiconductor materials withimproved nonlinear properties with respect to Silicon. In fact, it has now been acknowledgedthat the nonlinear and free-carriers absorption in Silicon integrated photonic structures is anissue hindering the full exploitation of nonlinear effects. In my thesis, wide-gap III-V semiconductorshave been used to develop high quality photonic crystal waveguides and cavities whichare able to sustain extremely high optical power densities as well as large average power levels.I have demonstrated PhC waveguides with much improved thermal conductivity through heterogeneousintegration of GaInP membranes with silicon dioxide. This will allow continuous wave phase-sensitive amplification, which I already demonstrated in the pulsed regime using GaInPself-suspended membranes. In parallel, I have demonstrated high quality PhC in Gallium Phosphide,which is a very promising material because of the large bandgap and the very good thermalconductivity. Preliminar results demonstrate the achievement of extremely large nonlinear regime(mini-comb, soliton compression and fission ...)
Yong, Chaw Keong. "Ultrafast carrier dynamics in organic-inorganic semiconductor nanostructures". Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:b2efdc6a-1531-4d3f-8af1-e3094747434c.
Pełny tekst źródłaGoh, Wui Hean. "Selective area growth and characterization of GaN based nanostructures by metal organic vapor phase epitaxy". Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/47720.
Pełny tekst źródłaEl, Barraj Ali. "Growth and electro-thermomigration on semiconductor surfaces by low energy electron microscopy". Thesis, Aix-Marseille, 2019. http://www.theses.fr/2019AIXM0393.
Pełny tekst źródłaThis thesis is focused on the study of the growth, electromigration and thermomigration of nanostructures on the surface of semiconductors such as Si(100), Si(111) and Ge(111). On an experimental viewpoint, Low Energy Electron Microscopy (LEEM) allows us to access to the dynamics of the phenomena in situ and in real time. We have studied under electromigration and thermomigration the motions of 2D monoatomic holes and islands on the Si (100) surface. We have shown that diffusion anisotropy due to (2x1) and (1x2) surface reconstructions can affect the direction of motion of nanostructures. We have also studied electromigration and thermomigration of Si (111) surface. We show that 2D-(1x1) holes in the (7x7) phase move in the direction opposite to the electric current, while in the direction of the thermal gradient. We have obtained the effective charge and the Soret coefficient of Si atoms in presence of an electric current and a thermal gradient. At last, the nucleation, growth and dynamic coalescence of Au droplets on Au/Ge(111) surface is studied, and the electromigration of 2D Au/Ge(111)-( √3x√3) domains on Au/Ge(111)-(1x1) surface
Wu, Yimin A. "Towards large area single crystalline two dimensional atomic crystals for nanotechnology applications". Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:bdb827e5-f3fd-4806-8085-0206e67c7144.
Pełny tekst źródłaWidmann, Frédéric. "Epitaxie par jets moléculaires de GaN, AlN, InN et leurs alliages : physique de la croissance et réalisation de nanostructures". Université Joseph Fourier (Grenoble), 1998. http://www.theses.fr/1998GRE10234.
Pełny tekst źródłaKsiążki na temat "Nanostructured Semiconductors Crystals"
Optical properties of semiconductor nanocrystals. Cambridge, UK: Cambridge Unviersity Press, 1998.
Znajdź pełny tekst źródła1938-, Ėfros A. L., Lockwood David J i Tsybeskov Leonid, red. Semiconductor nanocrystals: From basic principles to applications. New York: Kluwer Academic / Plenum Publishers, 2003.
Znajdź pełny tekst źródłaM, Salemink H. W., Pashley M. D, North Atlantic Treaty Organization. Scientific Affairs Division. i NATO Advanced Research Workshop on the Physical Properties of Semiconductor Interfaces at the Subnanometer Scale (1992 : Riva del Garda, Italy), red. Semiconductor interfaces at the sub-nanometer scale. Dordrecht: Kluwer Academic Publishers, 1993.
Znajdź pełny tekst źródłaLi, Jing, i Xiao-Ying Huang. Nanostructured crystals: An unprecedented class of hybrid semiconductors exhibiting structure-induced quantum confinement effect and systematically tunable properties. Redaktorzy A. V. Narlikar i Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533053.013.16.
Pełny tekst źródłaFauchet, Philippe M., Jillian M. Buriak, Leigh T. Canham, Nobuyoshi Koshida i White Bruce E. Jr. Microcrystalline and Nanocrystalline Semiconductors - 2000. University of Cambridge ESOL Examinations, 2014.
Znajdź pełny tekst źródłaTanaka, Kazunobu, Michael J. Sailor, Chuang-Chuang Tsai i Leigh T. Canham. Microcrystalline and Nanocrystalline Semiconductors - 1998. University of Cambridge ESOL Examinations, 2014.
Znajdź pełny tekst źródła(Editor), M. J. Sailor, Chuang Chuang Tsai (Editor), Leigh T. Canham (Editor) i K. Tanaka (Editor), red. Microcrystalline and Nanocrystalline Semiconductors - 1998: Symposium Held November 30-December 3, 1998, Boston, Massachusetts, U.S.A (Materials Research Society Symposia Proceedings, 536.). Materials Research Society, 1999.
Znajdź pełny tekst źródła(Editor), Philippe Max Fauchet, Jillian M. Buriak (Editor), Leigh T. Canham (Editor), Mobuyoshi Koshida (Editor) i Burce E. White (Editor), red. Microcrystalline and Nanocrystalline Semiconductors--2000: Symposium Held November 27-30, 2000, Boston, Massachusetts, U.S.A. (Materials Research Society Symposia Proceedings, V. 638.). Materials Research Society, 2001.
Znajdź pełny tekst źródłaCondensedPhase Molecular Spectroscopy and Photophysics. John Wiley and Sons Ltd, 2013.
Znajdź pełny tekst źródłaFerry, David K., i Shunri Oda. Nanoscale Silicon Devices. Taylor & Francis Group, 2018.
Znajdź pełny tekst źródłaCzęści książek na temat "Nanostructured Semiconductors Crystals"
Fischetti, Massimo V., i William G. Vandenberghe. "Single-Electron Dynamics in Crystals". W Advanced Physics of Electron Transport in Semiconductors and Nanostructures, 163–83. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-01101-1_8.
Pełny tekst źródłaFischetti, Massimo V., i William G. Vandenberghe. "Crystals: Lattice, Reciprocal Lattice, and Symmetry". W Advanced Physics of Electron Transport in Semiconductors and Nanostructures, 39–55. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-01101-1_3.
Pełny tekst źródłaFischetti, Massimo V., i William G. Vandenberghe. "The Electronic Structure of Crystals: Theoretical Framework". W Advanced Physics of Electron Transport in Semiconductors and Nanostructures, 57–69. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-01101-1_4.
Pełny tekst źródłaFischetti, Massimo V., i William G. Vandenberghe. "The Electronic Structure of Crystals: Computational Methods". W Advanced Physics of Electron Transport in Semiconductors and Nanostructures, 71–97. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-01101-1_5.
Pełny tekst źródłaVyvenko, Oleg, i Anton Bondarenko. "Crystal Lattice Defects as Natural Light Emitting Nanostructures in Semiconductors". W Springer Series in Chemical Physics, 405–36. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-05974-3_21.
Pełny tekst źródłaZhuiykov, Serge. "Semiconductor Nano-Crystals in Environmental Sensors". W Nanostructured Semiconductors, 475–538. Elsevier, 2018. http://dx.doi.org/10.1016/b978-0-08-101919-1.00009-x.
Pełny tekst źródłaZhuiykov, Serge. "Structural Chemical Modification of Semiconductor Nano-Crystals". W Nanostructured Semiconductors, 1–52. Elsevier, 2018. http://dx.doi.org/10.1016/b978-0-08-101919-1.00001-5.
Pełny tekst źródła"Nanostructured optoelectronic devices: photonic crystals and microcavities". W Compound Semiconductors 2004, 141–46. CRC Press, 2005. http://dx.doi.org/10.1201/9781482269222-33.
Pełny tekst źródłaM. Khayyat, Maha. "Semiconductor Epitaxial Crystal Growth: Silicon Nanowires". W 21st Century Nanostructured Materials - Physics, Chemistry, Classification, and Emerging Applications in Industry, Biomedicine, and Agriculture. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.100935.
Pełny tekst źródłaIhn, Thomas. "Semiconductor crystals". W Semiconductor Nanostructures, 11–18. Oxford University Press, 2009. http://dx.doi.org/10.1093/acprof:oso/9780199534425.003.0002.
Pełny tekst źródłaStreszczenia konferencji na temat "Nanostructured Semiconductors Crystals"
Hu, L., i G. Chen. "Thermal Radiative Heat Transfer Between Closely Spaced Nanostructures". W ASME 4th Integrated Nanosystems Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/nano2005-87066.
Pełny tekst źródłaGrosse, S., R. Arnold, A. Kriele, G. von Plessen, J. P. Kotthaus, J. Feldmann, R. Rettig, T. Marschner i W. Stolz. "Relaxation dynamics of excitons and electron-hole pairs studied by spatiotemporal pump and probe experiments". W Quantum Optoelectronics. Washington, D.C.: Optica Publishing Group, 1997. http://dx.doi.org/10.1364/qo.1997.qthd.4.
Pełny tekst źródłaYao, Yu-Feng, Keng-Ping Chou, Chi-Chung Chen, Charng-Gan Tu, Tsai-Pei Li, Yung-Chen Cheng, Wen-Yen Chang i in. "Crystal Structures and Surface Plasmon Properties of GaZnO Nanostructures". W 2019 Compound Semiconductor Week (CSW). IEEE, 2019. http://dx.doi.org/10.1109/iciprm.2019.8819049.
Pełny tekst źródłaLiu, Ruijia, Chang-Jiang Chen, Annan Shang, Yun Goo Lee i Stuart Yin. "Nanostructure-enabled longer lock-on time GaAs photoconductive semiconductor switches". W Photonic Fiber and Crystal Devices: Advances in Materials and Innovations in Device Applications XIV, redaktorzy Shizhuo Yin i Ruyan Guo. SPIE, 2020. http://dx.doi.org/10.1117/12.2570747.
Pełny tekst źródłaYang, Juekuan, Scott W. Waltermire, Yang Yang, Deyu Li, Xiaoxia Wu i Terry Xu. "Measurements of the Thermal Conductivity of Individual α-Tetragonal Boron Nanoribbons". W ASME/JSME 2011 8th Thermal Engineering Joint Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajtec2011-44337.
Pełny tekst źródłaGaliy, P. V., T. M. Nenchuk, O. R. Dveriy, A. Ciszewski, P. Mazur i I. O. Poplavskyy. "Study of Self-assembled 2D Ag Nanostructures Intercalated into In4Se3 Layered Semiconductor Crystal". W 2018 IEEE 8th International Conference Nanomaterials: Application & Properties (NAP). IEEE, 2018. http://dx.doi.org/10.1109/nap.2018.8915253.
Pełny tekst źródłaRupp, Cory, M. Frenzel, A. Evgrafov, K. Maute i Martin L. Dunn. "Design of Nanostructured Phononic Materials". W ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-82206.
Pełny tekst źródłaKobayashi, Nobuhiko P. "A new route to grow single-crystal group III-V compound semiconductor nanostructures on non-single-crystal substrates". W Optics East 2007, redaktorzy Nibir K. Dhar, Achyut K. Dutta i M. Saif Islam. SPIE, 2007. http://dx.doi.org/10.1117/12.747485.
Pełny tekst źródłaLiang, Zhi, i Hai-Lung Tsai. "Effect of Interlayer Between Semiconductors on Interfacial Thermal Transport". W ASME 2012 Third International Conference on Micro/Nanoscale Heat and Mass Transfer. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/mnhmt2012-75273.
Pełny tekst źródłaKritskaya, Tatiana, Leonid Schwartzman, Vladimir Dodonov i Anatoly Kravtsov. "NEW DIRECTIONS OF MODERNIZATION OF SILICON TECHNOLOGY OF SEMICONDUCTOR PURITY". W International Forum “Microelectronics – 2020”. Joung Scientists Scholarship “Microelectronics – 2020”. XIII International conference «Silicon – 2020». XII young scientists scholarship for silicon nanostructures and devices physics, material science, process and analysis. LLC MAKS Press, 2020. http://dx.doi.org/10.29003/m1549.silicon-2020/29-34.
Pełny tekst źródła