Gotowa bibliografia na temat „Nanostructured materials, porous materials”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Nanostructured materials, porous materials”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Nanostructured materials, porous materials"
Chen, Huige, Run Shi i Tierui Zhang. "Nanostructured Photothermal Materials for Environmental and Catalytic Applications". Molecules 26, nr 24 (13.12.2021): 7552. http://dx.doi.org/10.3390/molecules26247552.
Pełny tekst źródłaMenzel, Nadine, Erik Ortel, Ralph Kraehnert i Peter Strasser. "Electrocatalysis Using Porous Nanostructured Materials". ChemPhysChem 13, nr 6 (14.02.2012): 1385–94. http://dx.doi.org/10.1002/cphc.201100984.
Pełny tekst źródłaManova, Elina, Pilar Aranda, M. Angeles Martín-Luengo, Sadok Letaïef i Eduardo Ruiz-Hitzky. "New titania-clay nanostructured porous materials". Microporous and Mesoporous Materials 131, nr 1-3 (czerwiec 2010): 252–60. http://dx.doi.org/10.1016/j.micromeso.2009.12.031.
Pełny tekst źródłaZhang, Xin Xin, Ying Xia Jin, Hai Peng Wang i Yu Yang. "Development and Application of Porous Anodic Alumina Template". Applied Mechanics and Materials 320 (maj 2013): 558–66. http://dx.doi.org/10.4028/www.scientific.net/amm.320.558.
Pełny tekst źródłaKajii, H., H. Take i K. Yoshino. "Novel Properties of periodic porous nanostructured carbon materials". Synthetic Metals 121, nr 1-3 (marzec 2001): 1315–16. http://dx.doi.org/10.1016/s0379-6779(00)01296-0.
Pełny tekst źródłaMoshnikov, Vyacheslav A., Irina E. Gracheva, Vladimir V. Kuznezov, Alexsandr I. Maximov, Svetlana S. Karpova i Alina A. Ponomareva. "Hierarchical nanostructured semiconductor porous materials for gas sensors". Journal of Non-Crystalline Solids 356, nr 37-40 (sierpień 2010): 2020–25. http://dx.doi.org/10.1016/j.jnoncrysol.2010.06.030.
Pełny tekst źródłaZemtsova, Elena, Denis Yurchuk i Vladimir Smirnov. "The Process of Nanostructuring of Metal (Iron) Matrix in Composite Materials for Directional Control of the Mechanical Properties". Scientific World Journal 2014 (2014): 1–12. http://dx.doi.org/10.1155/2014/979510.
Pełny tekst źródłaZheng, Xin, Keliang Jiang, Linlin Zhang i Cheng Wang. "N-doped 3D porous carbon materials derived from hierarchical porous IRMOF-3 using a citric acid modulator: fabrication and application in lithium ion batteries as anode materials". Dalton Transactions 49, nr 27 (2020): 9369–76. http://dx.doi.org/10.1039/d0dt01706j.
Pełny tekst źródłaLi, Chenyang, Jiaqian Qin, Montree Sawangphruk, Xinyu Zhang i Riping Liu. "Rational design and synthesis of SiC/TiC@SiOx/TiO2 porous core–shell nanostructure with excellent Li-ion storage performance". Chemical Communications 54, nr 89 (2018): 12622–25. http://dx.doi.org/10.1039/c8cc07673a.
Pełny tekst źródłaAlfarisa, Suhufa, Suriani Abu Bakar, Azmi Mohamed, Norhayati Hashim, Azlan Kamari, Illyas Md Isa, Mohamad Hafiz Mamat, Abdul Rahman Mohamed i Mohamad Rusop Mahmood. "Carbon Nanostructures Production from Waste Materials: A Review". Advanced Materials Research 1109 (czerwiec 2015): 50–54. http://dx.doi.org/10.4028/www.scientific.net/amr.1109.50.
Pełny tekst źródłaRozprawy doktorskie na temat "Nanostructured materials, porous materials"
Farghaly, Ahmed A. "Fabrication of Multifunctional Nanostructured Porous Materials". VCU Scholars Compass, 2016. http://scholarscompass.vcu.edu/etd/4189.
Pełny tekst źródłaScanlon, Shane. "Nanostructured porous materials based on designed self-assembling biopolymers". Thesis, University of Leeds, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.434581.
Pełny tekst źródłaBerrigan, John Daniel. "Biomimetic and synthetic syntheses of nanostructured electrode materials". Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/53143.
Pełny tekst źródłaZhang, Jin. "Electrodeposition of novel nanostructured and porous materials for advanced applications: synthesis, structural characterization and physical/chemical performance". Doctoral thesis, Universitat Autònoma de Barcelona, 2016. http://hdl.handle.net/10803/393985.
Pełny tekst źródłaThis Thesis dissertation covers the electrochemical synthesis of advanced metallic materials in two different configurations, namely porous films and segmented nanowires (NWs). Porous films are prepared by hydrogen bubble-assisted electrodeposition (macroporous Ni and Cu-Ni systems) and self-organized template (block-copolymer P123) assisted electrodeposition (nanoporous Ni). The Cu-Ni films exhibit a hierarchical porosity (they consist of micron-sized roughly spherical pores and nanodendritic walls), superhydrophobic character and ferromagnetic properties at room temperature (due to the occurrence of phase separation during deposition). Furthermore, they are electrocatalytically active toward hydrogen evolution reaction in alkaline media, outperforming pure Cu and Ni porous films prepared under similar conditions. Meanwhile, segmented CoPt/Cu/Ni and CoPt/Ni NWs with controlled segment lengths are prepared by electrodeposition in polycarbonate (PC) membranes. Due to the dissimilar ferromagnetic properties of CoPt and Ni segments (hard- and soft-ferromagnetic character, respectively), it is possible to achieve an antiparallel alignment of the magnetization of the segments if their lengths are properly tuned. This would make it possible to minimize aggregation of the NWs once released from the PC template. These findings have been validated by analytical calculations. The macroporous Cu-Ni and Ni films are used as scaffolds for the fabrication of novel nanocomposite layers, namely ZnO@CuNi, Al2O3@Ni and Co2FeO4@Ni, by applying sol-gel coating and atomic layer deposition techniques. The latter allows a nanometer-thick conformal coating of the metallic host. The resulting nanocomposites combine the properties coming from the metallic matrix and those arising from the coating (photoluminescence and photocatalytic properties in the case of ZnO, changes in the wettability for Al2O3 and Co2FeO4). Finally, the nanomechanical properties of nanoporous Ni films are evaluated and a thickness-dependence of both the Young’s modulus and the yield strength with the maximum applied force during nanoidentation is disclosed, due to the graded porosity of these films.
Su, Zixue. "Porous anodic metal oxides". Thesis, University of St Andrews, 2010. http://hdl.handle.net/10023/1019.
Pełny tekst źródłaKing, L. J. "Aligned nanorods of A1PO4-5 within the pores of anodic alumina : a thesis submitted to the Victoria University of Wellington in fulfilment of the requirements for the degree of Master of Science with Honours in Chemistry /". ResearchArchive@Victoria e-thesis, 2010. http://hdl.handle.net/10063/1289.
Pełny tekst źródłaGu, Xingxing. "Environmentally-benign, Porous and Conductive Carbon Materials for Lithium-Sulphur Batteries". Thesis, Griffith University, 2017. http://hdl.handle.net/10072/366860.
Pełny tekst źródłaThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
Griffith School of Environment
Science, Environment, Engineering and Technology
Full Text
Hou, Chia-Hung. "Electrical double layer formation in nanoporous carbon materials". Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/22698.
Pełny tekst źródłaCommittee Chair: Sotira Yiacoumi; Committee Co-Chair: Costas Tsouris; Committee Member: Ching-Hua Huang; Committee Member: Sankar Nair; Committee Member: Spyros G. Pavlostathis.
Bimbo, Nuno Maria Marques dos Santos. "Modelling and analysis of hydrogen storage in nanostructured solids for sustainable energy systems". Thesis, University of Bath, 2013. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.577745.
Pełny tekst źródłaMasika, Eric. "Fabrication of nanostructured inorganic and carbon porous materials for catalysis and gas storage applications". Thesis, University of Nottingham, 2013. http://eprints.nottingham.ac.uk/14590/.
Pełny tekst źródłaKsiążki na temat "Nanostructured materials, porous materials"
service), ScienceDirect (Online, red. Advances in nanoporous materials. Amsterdam: Elsevier Science, 2009.
Znajdź pełny tekst źródłaservice), ScienceDirect (Online, red. Ordered porous solids: Recent advances and prospects. Amsterdam: Elsevier Science, 2008.
Znajdź pełny tekst źródłaChatterjee, Abhijit. Structure property correlations for nanoporous materials. Boca Raton: Taylor & Francis, 2010.
Znajdź pełny tekst źródłaChatterjee, Abhijit. Structure property correlations for nanoporous materials. Boca Raton: CRC Press/Taylor & Francis, 2010.
Znajdź pełny tekst źródłaChatterjee, Abhijit. Structure property correlations for nanoporous materials. Boca Raton: Taylor & Francis, 2010.
Znajdź pełny tekst źródłaHaghi, A. K. A first course on basic elements of heat flow in nanoporous fabrics. Hauppauge, N.Y: Nova Science Publishers, 2011.
Znajdź pełny tekst źródłaLu, An-Hui. Nanocasting: A versatile strategy for creating nanostructured porous materials. Cambridge: RSC Pub., 2010.
Znajdź pełny tekst źródłaNanoporous materials: Advanced techniques for characterization, modeling, and processing. Boca Raton, Fla: CRC Press, 2011.
Znajdź pełny tekst źródłaCurtis, Conner Wm, Fraissard Jacques P. 1934- i NATO Public Diplomacy Division, red. Fluid transport in nanoporous materials. Dordrecht, The Netherlands: Springer in cooperation with NATO Public Diplomacy Division, 2006.
Znajdź pełny tekst źródłaProfessor, Lu G. Q., i Zhao X. S, red. Nanoporous materials: Science and engineering. London: Imperial College Press, 2004.
Znajdź pełny tekst źródłaCzęści książek na temat "Nanostructured materials, porous materials"
Péter, László. "Porous Nanostructured Materials". W Monographs in Electrochemistry, 259–302. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-69117-2_8.
Pełny tekst źródłaVantomme, A., A. Léonard, Zhong Yong Yuan i Bao Lian Su. "Hierarchically Nanostructured Porous Functional Ceramics". W Key Engineering Materials, 1933–38. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-410-3.1933.
Pełny tekst źródłaMiele, Philippe, Mikhael Bechelany i Samuel Bernard. "Hierarchically Nanostructured Porous Boron Nitride". W Advanced Hierarchical Nanostructured Materials, 267–90. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2014. http://dx.doi.org/10.1002/9783527664948.ch8.
Pełny tekst źródłaWang, Da-Wei. "Hierarchical Design of Porous Carbon Materialsfor Supercapacitors". W Advanced Hierarchical Nanostructured Materials, 443–60. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2014. http://dx.doi.org/10.1002/9783527664948.ch12.
Pełny tekst źródłaBleta, Rudina, Eric Monflier i Anne Ponchel. "Cyclodextrins and Nanostructured Porous Inorganic Materials". W Environmental Chemistry for a Sustainable World, 105–53. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76159-6_3.
Pełny tekst źródłaButwong, Nutthaya. "Porous Nanostructured Materials for Electroanalytical Applications". W Handbook of Nanobioelectrochemistry, 219–40. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-9437-1_11.
Pełny tekst źródłaSohn, Hiesang, Mikhail L. Gordin i Donghai Wang. "Hierarchical Porous Carbon Nanocomposites for Electrochemical Energy Storage". W Advanced Hierarchical Nanostructured Materials, 407–42. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2014. http://dx.doi.org/10.1002/9783527664948.ch11.
Pełny tekst źródłaSun, Li, i Chunxu Pan. "Novel 3D Hierarchical Porous Carbon/Metal Oxides or Carbide Composites". W Nanostructured Materials for Supercapacitors, 293–317. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-99302-3_14.
Pełny tekst źródłaFranco, Ana, Alina M. Balu, Antonio A. Romero i Rafael Luque. "Nanostructured Porous Materials: Synthesis and Catalytic Applications". W Nanotechnology in Catalysis, 119–44. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2017. http://dx.doi.org/10.1002/9783527699827.ch6.
Pełny tekst źródłaBrock, Stephanie L. "Aerogels: Disordered, Porous Nanostructures". W Nanoscale Materials in Chemistry, 207–41. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2009. http://dx.doi.org/10.1002/9780470523674.ch8.
Pełny tekst źródłaStreszczenia konferencji na temat "Nanostructured materials, porous materials"
Smerdov, Rostislav S., Alexander S. Mustafaev, Vladimir S. Soukhomlinov, Yulia M. Spivak i Vyacheslav A. Moshnikov. "Nanostructured Porous Silicon and Graphene-based Materials for PETE Electrode Synthesys". W 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). IEEE, 2019. http://dx.doi.org/10.1109/eiconrus.2019.8657196.
Pełny tekst źródłaFricke, J. "THERMAL TRANSPORT IN NANOSTRUCTURED POROUS MATERIALS AND THEIR OPTIMIZATION AS THERMAL SUPERINSULATORS". W International Heat Transfer Conference 10. Connecticut: Begellhouse, 1994. http://dx.doi.org/10.1615/ihtc10.1840.
Pełny tekst źródłaRupp, Cory, M. Frenzel, A. Evgrafov, K. Maute i Martin L. Dunn. "Design of Nanostructured Phononic Materials". W ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-82206.
Pełny tekst źródłaHosseini, Hadi, Mehrdad Kokabi i Seyyed Mohammad Mousavi. "Biosynthesis of highly porous bacterial cellulose nanofibers". W 6TH INTERNATIONAL BIENNIAL CONFERENCE ON ULTRAFINE GRAINED AND NANOSTRUCTURED MATERIALS: (UFGNSM2017). Author(s), 2018. http://dx.doi.org/10.1063/1.5018942.
Pełny tekst źródłaAksoy, Huseyin G. "Effect of Morphology on Wave Propagation in Porous Materials". W ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-53043.
Pełny tekst źródłaSuleimanov, Nail, Valery Bazarov i Nikolay Platonov. "Electrophysical properties and morphology of nanostructured porous Ge obtained by method of ion implantation". W International Scientific and Practical Symposium "Materials Science and Technology" (MST2021). AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0099539.
Pełny tekst źródłaJiang, Yajie, Craig M. Johnson, Peter J. Reece, Yang Yang, Yang Li, Supriya Pillai i Martin A. Green. "Porous Silicon Omnidirectional Bragg Reflector for Si Solar Cells". W Optical Nanostructures and Advanced Materials for Photovoltaics. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/pv.2014.pw2b.1.
Pełny tekst źródłaLishchuk, Pavlo, Ali Belarouci, Roman Tkach, Kateryna Dubyk, Roman Ostapenko, Vasyl Kuryliuk, Guillaume Castanet i in. "Impact of thermal annealing on photoacoustic response and heat transport in porous silicon based nanostructured materials". W THERMOPHYSICS 2019: 24th International Meeting of Thermophysics and 20th Conference REFRA. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5132727.
Pełny tekst źródłaAlam, Noor, Kusum Sharma i S. S. Islam. "Ultrahigh performance of electrochemically grown nanostructured porous anodic alumina for low humidity applications". W PROCEEDINGS OF INTERNATIONAL CONFERENCE ON RECENT TRENDS IN MECHANICAL AND MATERIALS ENGINEERING: ICRTMME 2019. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0025727.
Pełny tekst źródłaGradauskas, J., J. Stupakova, A. Sužiedėlis i N. Samuoliene. "Detection of microwave radiation on porous silicon nanostructures". W Eigth International Conference on Advanced Optical Materials and Devices, redaktor Janis Spigulis. SPIE, 2014. http://dx.doi.org/10.1117/12.2083575.
Pełny tekst źródłaRaporty organizacyjne na temat "Nanostructured materials, porous materials"
Svejda, Steven A. Nanostructured Materials. Fort Belvoir, VA: Defense Technical Information Center, sierpień 2005. http://dx.doi.org/10.21236/ada436355.
Pełny tekst źródłaMabry, Joseph M. Nanostructured Materials. Fort Belvoir, VA: Defense Technical Information Center, sierpień 2012. http://dx.doi.org/10.21236/ada566320.
Pełny tekst źródłaDr. Frank. Quantitative Characterization of Nanostructured Materials. Office of Scientific and Technical Information (OSTI), sierpień 2010. http://dx.doi.org/10.2172/984663.
Pełny tekst źródłaWendell E Rhine, PI, Wenting Dong i PM Greg Caggiano. Aerogel Derived Nanostructured Thermoelectric Materials. Office of Scientific and Technical Information (OSTI), październik 2010. http://dx.doi.org/10.2172/990203.
Pełny tekst źródłaLieber, Charles M. Nanostructured Functional and Multifunctional Materials. Fort Belvoir, VA: Defense Technical Information Center, czerwiec 2004. http://dx.doi.org/10.21236/ada423704.
Pełny tekst źródłaParsons, Gregory. Nanostructured Materials for Renewable Alternative Energy. Office of Scientific and Technical Information (OSTI), lipiec 2013. http://dx.doi.org/10.2172/1121733.
Pełny tekst źródłaFox, G. A., T. F. Baumann, L. J. Hope-Weeks i A. L. Vance. Chemistry and Processing of Nanostructured Materials. Office of Scientific and Technical Information (OSTI), styczeń 2002. http://dx.doi.org/10.2172/15005302.
Pełny tekst źródłaMirkin, Chad A., i SonBinh T. Nguyen. Nanostructured Materials for 3-D Powerstructures. Fort Belvoir, VA: Defense Technical Information Center, listopad 2002. http://dx.doi.org/10.21236/ada409244.
Pełny tekst źródłaLiu, Di-Jia, i Luping Yu. Nanostructured polymeric materials for hydrogen storage. Office of Scientific and Technical Information (OSTI), marzec 2013. http://dx.doi.org/10.2172/1171719.
Pełny tekst źródłaPeter K. Dorhout i Ellen R. Fisher. Nanostructured Assemblies of Thermoelectric Composite Materials. Office of Scientific and Technical Information (OSTI), luty 2008. http://dx.doi.org/10.2172/924135.
Pełny tekst źródła