Gotowa bibliografia na temat „Nanostructured materials applications”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Nanostructured materials applications”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Nanostructured materials applications"
Yang, Ming, Xiaohua Chen, Zidong Wang, Yuzhi Zhu, Shiwei Pan, Kaixuan Chen, Yanlin Wang i Jiaqi Zheng. "Zero→Two-Dimensional Metal Nanostructures: An Overview on Methods of Preparation, Characterization, Properties, and Applications". Nanomaterials 11, nr 8 (23.07.2021): 1895. http://dx.doi.org/10.3390/nano11081895.
Pełny tekst źródłaChen, Huige, Run Shi i Tierui Zhang. "Nanostructured Photothermal Materials for Environmental and Catalytic Applications". Molecules 26, nr 24 (13.12.2021): 7552. http://dx.doi.org/10.3390/molecules26247552.
Pełny tekst źródłaMatteazzi, Paolo. "Nanostructured Titanium Based Materials". Materials Science Forum 539-543 (marzec 2007): 2878–83. http://dx.doi.org/10.4028/www.scientific.net/msf.539-543.2878.
Pełny tekst źródłaBechelany, Mikhael, Sebastien Balme i Philippe Miele. "Atomic layer deposition of biobased nanostructured interfaces for energy, environmental and health applications". Pure and Applied Chemistry 87, nr 8 (1.08.2015): 751–58. http://dx.doi.org/10.1515/pac-2015-0102.
Pełny tekst źródłaHan, Yang, i Zhien Zhang. "Nanostructured Membrane Materials for CO2 Capture: A Critical Review". Journal of Nanoscience and Nanotechnology 19, nr 6 (1.06.2019): 3173–79. http://dx.doi.org/10.1166/jnn.2019.16584.
Pełny tekst źródłaMachín, Abniel, Kenneth Fontánez, Juan C. Arango, Dayna Ortiz, Jimmy De León, Sergio Pinilla, Valeria Nicolosi, Florian I. Petrescu, Carmen Morant i Francisco Márquez. "One-Dimensional (1D) Nanostructured Materials for Energy Applications". Materials 14, nr 10 (17.05.2021): 2609. http://dx.doi.org/10.3390/ma14102609.
Pełny tekst źródłaJortner, Joshua, i C. N. R. Rao. "Nanostructured advanced materials. Perspectives and directions". Pure and Applied Chemistry 74, nr 9 (1.01.2002): 1491–506. http://dx.doi.org/10.1351/pac200274091491.
Pełny tekst źródłaNocua, José E., Fabrice Piazza, Brad R. Weiner i Gerardo Morell. "High-Yield Synthesis of Stoichiometric Boron Nitride Nanostructures". Journal of Nanomaterials 2009 (2009): 1–6. http://dx.doi.org/10.1155/2009/429360.
Pełny tekst źródłaKamanina, N. V., P. Ya Vasilyev, S. V. Serov, V. P. Savinov, K. Yu Bogdanov i D. P. Uskokovic. "Nanostructured Materials for Optoelectronic Applications". Acta Physica Polonica A 117, nr 5 (maj 2010): 786–90. http://dx.doi.org/10.12693/aphyspola.117.786.
Pełny tekst źródłaChang, Shoou-Jinn, Teen-Hang Meen, Stephen D. Prior, Artde Donald Kin-Tak Lam i Liang-Wen Ji. "Nanostructured Materials for Microelectronic Applications". Advances in Materials Science and Engineering 2014 (2014): 1. http://dx.doi.org/10.1155/2014/383041.
Pełny tekst źródłaRozprawy doktorskie na temat "Nanostructured materials applications"
Kariuki, Nancy N. "Nanostructured materials for electroanalytical applications". Diss., Online access via UMI:, 2005.
Znajdź pełny tekst źródłaLi, Yanguang. "Nanostructured Materials for Energy Applications". The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1275610758.
Pełny tekst źródłaBuchholt, Kristina. "Nanostructured materials for gas sensing applications". Doctoral thesis, Linköpings universitet, Tillämpad Fysik, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-69641.
Pełny tekst źródłaLatini, Alessandro. "Inorganic Nanostructured Materials for Technological Applications". Doctoral thesis, La Sapienza, 2006. http://hdl.handle.net/11573/917353.
Pełny tekst źródłaLi, Shanghua. "Fabrication of Nanostructured Materials for Energy Applications". Doctoral thesis, Kista : Division of Functional Materials, Department of Microelectronics and Applied Physics, School of Information and Communication Technology, Royal Institute o Technology, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4807.
Pełny tekst źródłaFornara, Andrea. "Magnetic nanostructured materials for advanced bio-applications". Licentiate thesis, Stockholm : Informations- och kommunicationsteknik, Kungliga Tekniska högskolan, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-9569.
Pełny tekst źródłaBassett, David. "Synthesis and applications of bioinspired inorganic nanostructured materials". Thesis, McGill University, 2011. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=97064.
Pełny tekst źródłaMalgré le fait que l'étude des biomatériaux remonte à plusieurs siècles, ce n'est que récemment que des principes biologiques furent appliqués à des systèmes synthétiques dans des procédés de "biomimetic" et "bioinspirés", permettant ainsi de nouveaux matériaux de synthèses tout en réduisant l'expansion d'énergie et/ou d'éliminer les résultantes toxiques. Plusieurs chercheurs se sont inspirés des formes inusuelles dès plus intéressantes créées par des organismes, formés par un procédé de biominéralisation, qui modifie la nanostructure des matériaux synthétiques. Toutefois, les champs d'études des synthèses de nanoparticules et de la biominéralisation demeurent grandement à part, et cette thèse tente d'appliquer de nouvelles études de biominéralisation par rapport à la science des nanomatériaux.Les protéines sériques qui influencent la biominéralisation sont chargées négativement de résidus d'aspartate. Cette recherche déterminera l'habileté de ces protéines et des diverses molécules bio–organiques qui stabilisent biologiquement d'important minéraux aux multiples formes qui influencent la formation de matériaux non biogènes sur une nano échelle; l'or et le dioxyde de titane ont permis de démontrer ce résultat. L'or fut transformé en nanoparticules de cristal par l'action des protéines sériques, et c'est l'utilité de ces nanoparticules en tant que biocapteurs qui fut explorée. L'influence des molécules bios-organiques sur le choix de la phase ainsi que sur la restriction de la grosseur du cristal de dioxyde de titane, un important semi-conducteur dans plusieurs applications, fut explorée. Les nanoparticules dérivant bio-organiquement du dioxyde de titane ont dès lors démontrées leur action hautement efficace comme photo catalyseur. Le carbonate de calcium, un biominéral commun, a su démontré sa capacité à auto-former des structures à multiples échelles ainsi que différents polymorphes cristallins sous l'influence d'une protéine modèle. De plus, la manipulation des structures à former divers arrangements est une variable qui fut démontrée. Finalement, la stabilité des nanoparticules du phosphate de calcium à se disperser dans le sérum de culture fut modifiée afin d'optimiser l'efficacité du transfert dans deux lignes de cellules.Plusieurs grandes recherches ont accomplis de façon significative; (i) l'évaluation de l'habileté relative du sérum, le dérivé des protéines sériques et de leur capacité à stabiliser les phases de leurs multiples formes, (ii) la formation simple cristalline de l'or former par un anticorps, (iii) la formation de nanoparticules très actives photocatalytiquement d'anatase formées par un ester cyclique phosphorylée, (iv) la formation de structures coniques à l'interface air liquide par la capacité de gabarits d'une protéine, (iv) l'optimisation de transfection médiation par des nanoparticules de phosphate de calcium dans deux lignées cellulaires par filtration méchanique.
Renard, Laëtitia. "Nanostructured tin-based materials : sensing and optical applications". Thesis, Bordeaux 1, 2010. http://www.theses.fr/2010BOR14183/document.
Pełny tekst źródłaClass II hybrid materials were prepared from ditin hexaalkynides. Two families of precursors, including either hydrocarbon or oligothiophene-based spacers, were obtained and led by the sol-gel process to self-assembled organotin-based hybrid materials made of planes of oxide separated by organic bridges. Thus, the rigid thienyl spacer gave rise to a “pseudo-lamellar” structure that showed a monomer emission band with a rather small red-shift compared with to the emission of the precursor in solution. However more disordered thienyl xerogels led to broad emission features assigned to excimer or dimer formation. Moreover, thin films containing alkylene- and arylalkylene bridged have been prepared and showed a “pseudoparticulate” porous morphology and a short-range hierarchical order in the organic-inorganic SnOx pseudoparticles. Unexpectedly these hybrid thin films detect hydrogen gas at a temperature as low as 50 °C at the 200-10000 ppm level. From these hybrid thin films, crystalline tin dioxide (SnO2) were prepared by a thermal post-treatment. As expected, cassiterite SnO2 films detected H2 and to a less extent CO with a best operating temperature comprised between 300 and 350 °C
E, Peisan. "Nanostructured electroactive materials : applications in electroanalysis and electrocatalysis". Thesis, University of Warwick, 2016. http://wrap.warwick.ac.uk/89561/.
Pełny tekst źródłaRISPLENDI, FRANCESCA. "Nanostructured Materials for Photovoltaic Applications: a Theoretical Study". Doctoral thesis, Politecnico di Torino, 2014. http://hdl.handle.net/11583/2533099.
Pełny tekst źródłaKsiążki na temat "Nanostructured materials applications"
Balakumar, Subramanian, Valérie Keller i M. V. Shankar, red. Nanostructured Materials for Environmental Applications. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-72076-6.
Pełny tekst źródłaLogothetidis, Stergios, red. Nanostructured Materials and Their Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-22227-6.
Pełny tekst źródłaSwain, Bibhu Prasad, red. Nanostructured Materials and their Applications. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-8307-0.
Pełny tekst źródłaBergmann, Carlos Pérez, i Mônica Jung de Andrade, red. Nanostructured Materials for Engineering Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19131-2.
Pełny tekst źródłaservice), SpringerLink (Online, red. Nanostructured Materials and Their Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
Znajdź pełny tekst źródłaJung, Andrade Mônica, i SpringerLink (Online service), red. Nanostructured Materials for Engineering Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011.
Znajdź pełny tekst źródłaC, Koch C., red. Nanostructured materials: Processing, properties, and applications. Wyd. 2. Norwich, NY: William Andrew Pub., 2007.
Znajdź pełny tekst źródłaValiev, Ruslan Z. Bulk nanostructured materials: Fundamentals and applications. Hoboken, New Jersey: TMS-Wiley, 2014.
Znajdź pełny tekst źródłaReithmaier, Johann Peter. Nanostructured Materials for Advanced Technological Applications. Dordrecht: Springer Netherlands, 2009.
Znajdź pełny tekst źródłaReithmaier, Johann Peter, Plamen Petkov, Wilhelm Kulisch i Cyril Popov, red. Nanostructured Materials for Advanced Technological Applications. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-9916-8.
Pełny tekst źródłaCzęści książek na temat "Nanostructured materials applications"
Thangadurai, T. Daniel, N. Manjubaashini, Sabu Thomas i Hanna J. Maria. "Miscellaneous Applications of Nanostructures". W Nanostructured Materials, 187–93. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-26145-0_16.
Pełny tekst źródłaThangadurai, T. Daniel, N. Manjubaashini, Sabu Thomas i Hanna J. Maria. "Nanomaterials, Properties and Applications". W Nanostructured Materials, 11–28. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-26145-0_2.
Pełny tekst źródłaThangadurai, T. Daniel, N. Manjubaashini, Sabu Thomas i Hanna J. Maria. "Nanostructured Materials for Photonic Applications". W Nanostructured Materials, 171–78. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-26145-0_14.
Pełny tekst źródłaProvenzano, V. "Nanostructured Materials for Gas-Reactive Applications". W Nanostructured Materials, 335–59. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5002-6_17.
Pełny tekst źródłaVenturini, Janio. "Nanostructured Thermoelectric Materials". W Technological Applications of Nanomaterials, 35–45. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-86901-4_2.
Pełny tekst źródłaThangadurai, T. Daniel, N. Manjubaashini, Sabu Thomas i Hanna J. Maria. "Nanostructured Materials for Optical and Electronic Applications". W Nanostructured Materials, 149–59. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-26145-0_12.
Pełny tekst źródłaMayo, M. J. "Nanocrystalline Ceramics for Structural Applications: Processing and Properties". W Nanostructured Materials, 361–85. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5002-6_18.
Pełny tekst źródłaClement, Kristin, Angela Iseli, Dennis Karote, Jessica Cremer i Shyamala Rajagopalan. "Nanostructured Materials: Industrial Applications". W Handbook of Industrial Chemistry and Biotechnology, 265–306. Boston, MA: Springer US, 2012. http://dx.doi.org/10.1007/978-1-4614-4259-2_9.
Pełny tekst źródłaIcten, O. "Functionalized Magnetic Nanoparticles for Biomedical Applications (Treatment, Imaging, and Separation and Detection Applications)". W Nanostructured Magnetic Materials, 67–96. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003335580-4.
Pełny tekst źródłaKamaraj, Sathish-Kumar, Arun Thirumurugan, Sebastián Díaz de la Torre, Suresh Kannan Balasingam i Shanmuga Sundar Dhanabalan. "Functionalized Magnetic Nanomaterials and Their Applications". W Nanostructured Magnetic Materials, 1–13. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003335580-1.
Pełny tekst źródłaStreszczenia konferencji na temat "Nanostructured materials applications"
González, J. M. "Nanostructured Magnetic Materials". W INDUSTRIAL APPLICATIONS OF THE MOSSBAUER EFFECT: International Symposium on the Industrial Applications of the Mossbauer Effect. AIP, 2005. http://dx.doi.org/10.1063/1.1923649.
Pełny tekst źródłaFattakhova-Rohlfing, Dina. "Nanostructured Materials for Electrochemical Applications". W The World Congress on Recent Advances in Nanotechnology. Avestia Publishing, 2016. http://dx.doi.org/10.11159/icnnfc16.1.
Pełny tekst źródłaPrasad, Narasimha S., Patrick Taylor i David Nemir. "Shockwave consolidation of nanostructured thermoelectric materials". W SPIE Optical Engineering + Applications, redaktorzy Edward W. Taylor i David A. Cardimona. SPIE, 2014. http://dx.doi.org/10.1117/12.2063852.
Pełny tekst źródłaSaxena, Ashok, Rahul Rajgarhia i Shubhra Bansal. "Design of Nanocrystalline Materials for Structural Applications". W 2008 Second International Conference on Integration and Commercialization of Micro and Nanosystems. ASMEDC, 2008. http://dx.doi.org/10.1115/micronano2008-70012.
Pełny tekst źródłaSwaminathan, Srinivasan, M. Ravi Shankar, Balkrishna C. Rao, Travis L. Brown, Srinivasan Chandrasekar, W. Dale Compton, Alexander H. King i Kevin P. Trumble. "Nanostructured Materials by Machining". W ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-81242.
Pełny tekst źródłaGoldoni, Andrea. "Nanostructured carbon-based materials for Gas sensor applications". W 2014 AEIT Annual Conference - From Research to Industry: The Need for a More Effective Technology Transfer (AEIT). IEEE, 2014. http://dx.doi.org/10.1109/aeit.2014.7002033.
Pełny tekst źródłaRea, I., M. Terracciano, J. Politi, A. Calio, P. Dardano, M. Gioffre, A. Lamberti, I. Rendina i L. De Stefano. "Natural and synthetic nanostructured materials for biomedical applications". W 2015 AEIT International Annual Conference (AEIT). IEEE, 2015. http://dx.doi.org/10.1109/aeit.2015.7415279.
Pełny tekst źródłaBalaya, P., K. Saravanan, S. Hariharan, V. Ramar, H. S. Lee, M. Kuezma, S. Devaraj, D. H. Nagaraju, K. Ananthanarayanan i C. W. Mason. "Nanostructured mesoporous materials for lithium-ion battery applications". W SPIE Defense, Security, and Sensing, redaktorzy Nibir K. Dhar, Priyalal S. Wijewarnasuriya i Achyut K. Dutta. SPIE, 2011. http://dx.doi.org/10.1117/12.884460.
Pełny tekst źródłaZhang, Zhihui, Zhiyue Xu i Bobby J. Salinas. "High Strength Nanostructured Materials and Their Oil Field Applications". W SPE International Oilfield Nanotechnology Conference and Exhibition. Society of Petroleum Engineers, 2012. http://dx.doi.org/10.2118/157092-ms.
Pełny tekst źródłaMaranchi, Jeffrey, Il-Seok Kim, Aloysius Hepp i Prashant Kumta. "Nanostructured Electrochemically Active Materials: Opportunities for Aerospace Power Applications". W 1st International Energy Conversion Engineering Conference (IECEC). Reston, Virigina: American Institute of Aeronautics and Astronautics, 2003. http://dx.doi.org/10.2514/6.2003-5952.
Pełny tekst źródłaRaporty organizacyjne na temat "Nanostructured materials applications"
Braterman, Paul S., Phillip Isabio Phol, Zhi-Ping Xu, C. Jeffrey Brinker, Yi Yang, Charles R. Bryan, Kui Yu, Huifang Xu, Yifeng Wang i Huizhen Gao. Potential applications of nanostructured materials in nuclear waste management. Office of Scientific and Technical Information (OSTI), wrzesień 2003. http://dx.doi.org/10.2172/917460.
Pełny tekst źródłaOhuchi, Fumio, i Rajandra Bordia. Precursor-Derived Nanostructured Silicon Carbide Based Materials for Magnetohydrodynamic Electrode Applications. Office of Scientific and Technical Information (OSTI), lipiec 2019. http://dx.doi.org/10.2172/1542886.
Pełny tekst źródłaOhuchi, Fumio, i Rajandra Bordia. Precursor-Derived Nanostructured Silicon Carbide Based Materials for Magnetohydrodynamic Electrode Applications. Office of Scientific and Technical Information (OSTI), grudzień 2018. http://dx.doi.org/10.2172/1489149.
Pełny tekst źródłaBordia, Rajendra, Vikas Tomar i Chuck Henager. Precursor Derived Nanostructured Si-C-X Materials for Nuclear Applications. Final Report, October 2010 - September 2014. Office of Scientific and Technical Information (OSTI), kwiecień 2015. http://dx.doi.org/10.2172/1179802.
Pełny tekst źródłaPanfil, Yossef E., Meirav Oded, Nir Waiskopf i Uri Banin. Material Challenges for Colloidal Quantum Nanostructures in Next Generation Displays. AsiaChem Magazine, listopad 2020. http://dx.doi.org/10.51167/acm00008.
Pełny tekst źródłaLong, Chiang. Ultrafast Photoresponsive Starburst and Dendritic Fullerenyl Nanostructures for Broadband Nonlinear Photonic Material Applications. Fort Belvoir, VA: Defense Technical Information Center, sierpień 2014. http://dx.doi.org/10.21236/ada608881.
Pełny tekst źródłaWang, Haiyan. 2014 TMS RF Mehl Medal Symposium on Frontiers in Nanostructured Electronic and Structural Materials and Their Application. Fort Belvoir, VA: Defense Technical Information Center, kwiecień 2015. http://dx.doi.org/10.21236/ad1001061.
Pełny tekst źródłaWang, Xiaohua. Characterization of Mesoscopic Fluid Films for Applications in SPM Imaging and Fabrication of Nanostructures on Responsive Materials. Portland State University Library, styczeń 2000. http://dx.doi.org/10.15760/etd.1068.
Pełny tekst źródłaRappe, Andrew M. Materials Design of Core-Shell Nanostructure Catalysts and New Quantum Monte Carlo Methods, with Application to Combustion. Fort Belvoir, VA: Defense Technical Information Center, luty 2010. http://dx.doi.org/10.21236/ada589588.
Pełny tekst źródłaBarbee, T. W., i W. Yee. Development and Implementaton of Advanced Materials for Aircraft Engine Applications Development and Implementation of Nanostructure Laminates Final Report CRADA No. TC-0497-93-B. Office of Scientific and Technical Information (OSTI), marzec 2018. http://dx.doi.org/10.2172/1426102.
Pełny tekst źródła