Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: NANOSTRUCTURED IRON OXIDE.

Rozprawy doktorskie na temat „NANOSTRUCTURED IRON OXIDE”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 43 najlepszych rozpraw doktorskich naukowych na temat „NANOSTRUCTURED IRON OXIDE”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj rozprawy doktorskie z różnych dziedzin i twórz odpowiednie bibliografie.

1

Messi, C. "Nanostructured catalytic metal oxides supported over oxide supports of various nature : the iron oxide system". Doctoral thesis, Università degli Studi di Milano, 2008. http://hdl.handle.net/2434/57081.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Smith, Steven P. "Lanthanide-containing Nanostructured Materials". Diss., The University of Arizona, 2011. http://hdl.handle.net/10150/145459.

Pełny tekst źródła
Streszczenie:
The research described in this Dissertation is concerned generally with the exploration of the potential use of lanthanide elements in nanostructured materials for the purpose of modification of the magnetic and optical properties. This is explored through a focus on the development of lanthanide-containing iron oxide nanosystems. Our objectives of producing lanthanide containing nanostructured materials with potentially useful optical and magnetic applications has been achieved through the development of lanthanide-doped Fe3O4 and -Fe2O3 nanoparticles, as well as a unique core-shell magnetic-upconverting nanoparticle system.Necessary background information on nanomaterials, rationale for the study of lanthanide-containing iron oxide nanosystems and context for discussion of the results obtained in each project is provided in the Introduction Chapter. The syntheses of Fe3O4 nanoparticles doped with Eu(III) and Sm(III) are discussed, along with structural characterization and magnetic property investigation of products In Chapter 2. The following Chapter expands the study of lanthanide doping to -Fe2O3, a closely related yet distinct magnetic nanoparticle system. A completely different synthesis is attempted, and comparisons between the two systems are made.The development of novel synthetic methodologies used to create such products has yielded high-quality lanthanide-containing materials and are evidenced by TEM images displaying nearly monodisperse particles in each of our efforts. The modifications to the magnetic properties resulting from lanthanide doping include theobservation of ferromagnetism in the Fe3O4 system and increased magnetic saturation of -Fe2O3 nanoparticles, and are characterized by VSM and the visual observation of magnetic alignment of products. Our efforts towards developing a novel methodology capable of producing high quality Fe3O4 nanoparticles, and subsequent characterization of products, were published in the Journal of the American Chemical Society.Optically active, magnetic, core-shell nanoparticles are investigated in Chapter 4 for the potential uses in diagnosis and treatment of cancer. This multifunctional system uses Fe3O4 as a magnetic core, shelled by upconverting lanthanide-containing nanomaterials, and is rendered biocompatible through encapsulation of the core-shell structure by a silica shell. Added functionality is achieved through amine functionalization of the silica surface, with the goal of coupling the inorganic nanoparticle with drug targeting groups. TEM results indicate successful formation of the core-shell nanoparticles, and expected magnetic and optical properties are shown by visual observation and luminescence spectroscopy, respectively.
Style APA, Harvard, Vancouver, ISO itp.
3

Liu, Simin. "Photocatalytic hydrogen production with iron oxide under solar irradiation". Thesis, Queensland University of Technology, 2010. https://eprints.qut.edu.au/43666/1/Simin_Liu_Thesis.pdf.

Pełny tekst źródła
Streszczenie:
As solar hydrogen is a sustainable and environmental friendly energy carrier, it is considered to take the place of fossil fuels in the near future. Solar hydrogen can be generated by splitting of water under solar light illumination. In this study, the use of nanostructured hematite thin-film electrodes in photocatalytic water splitting was investigated. Hematite (á-Fe2O3) has a narrow band-gap of 2.2 eV, which is able to utilise approximately 40% of solar radiation. However, poor photoelectrochemical performance is observed for hematite due to low electrical conductivity and a high rate of electron-hole recombination. An extensive review of useful measures taken to overcoming the disadvantages of hematite so as to enhance its performance was presented including thin-film structure, nanostructuring, doping, etc. Since semiconductoring materials which exhibit an inverse opal structure are expected to have a high surface-volume ratio, unique optical characteristics and a shorter distance for photogenerated holes to travel to the electrode/electrolyte interface, inverse opals of hematite thin films deposited on FTO glass substrate were successfully prepared by doctor blading using PMMA as a template. However, due to the poor adhesion of the films, an acidic medium (i.e., 2 M HCl) was employed to significantly enhance the adhesion of the films, which completely destroyed the inverse opal structure. Therefore, undoped, Ti and Zn-doped hematite thin films deposied on FTO glass substrate without an inverse opal structure were prepared by doctor blading and spray pyrolysis and characterised using SEM, EDX, XRD, TGA, UV-Vis spectroscopy and photoelectrochemical measurements. Regarding the doped hematite thin films prepared by doctor blading, the photoelectrochemical activity of the hematite photoelectrodes was improved by incorporation of Ti, most likely owing to the increased electrical conductivity of the films, the stabilisation of oxygen vacancies by Ti4+ ions and the increased electric field of the space charge layer. A highest photoresponse was recorded in case of 2.5 at.% Ti which seemed to be an optimal concentration. The effect of doping content, thickness, and calcination temperature on the performance of the Ti-doped photoelectrodes was investigated. Also, the photoactivity of the 2.5 at.% Ti-doped samples was examined in two different types of electrochemical cells. Zn doping did not enhance the photoactivity of the hematite thin films though Zn seemed to enhance the hole transport due to the slow hole mobility of hematite which could not be overcome by the enhancement. The poor performance was also obtained for the Ti-doped samples prepared by spray pyrolysis, which appeared to be a result of introduction of impurities from the metallic parts of the spray gun in an acidic medium. Further characterisation of the thin-film electrodes is required to explain the mechanism by which enhanced performance was obtained for Ti-doped electrodes (doctor blading) and poor photoactivity for Zn and Ti-doped samples which were synthesised by doctor blading and spray pyrolysis, respectively. Ti-doped hematite thin films will be synthesised in another way, such as dip coating so as to maintain an inverse opal structure as well as well adhesion. Also, a comparative study of the films will be carried out.
Style APA, Harvard, Vancouver, ISO itp.
4

Yarahmadi, Sina. "Preparation and performance of nanostructured iron oxide thin films for solar hydrogen generation". Thesis, Loughborough University, 2011. https://dspace.lboro.ac.uk/2134/8131.

Pełny tekst źródła
Streszczenie:
Nowadays, energy and its resources are of prime importance at the global level. During the last few decades there have been several driving forces for the investigation of new sources of energy. Hydrogen has long been identified as one of the most promising carriers of energy. Photoelectrochemical (PEC) water splitting is one of the most promising means of producing hydrogen through a renewable source. Hematite (α-Fe2O3) is a strong candidate material as photoelectrode for PEC water splitting as it fulfils most of the selection criteria of a suitable photocatalyst material for hydrogen generation such as bandgap, chemical and photelectrochemical stability, and importantly ease of fabrication. This work has explored different preparation techniques for undoped and Si-doped iron oxide thin films using microwave-assisted and conventional preparation methods. Two distinct strategies towards improving PEC performance of hematite photoelectrodes were examined: retaining a finer nanostructure and enhancing the photocatalytic behaviour through doping. By depositing thin films using atmospheric pressure chemical vapour deposition (APCVD) and aerosol-assisted CVD (AACVD) at high temperature, it was shown that a combination of different factors (such as silicon incorporation into the hematite structure and formation of lattice defects, along with a nanostructure of small agglomerate/cluster enhancing hole transportation to the surface) were the contributing factors in improving the PEC performance in hematite films. The role of the Si-containing precursors and their consecutive effect on nanostructure of the hematite films were investigated. Further work is needed to study the decomposition pattern of precursors and consequent effects of Si additives as well as co-dopants on fundamental physical and electrical properties of hematite electrodes. In addition, the feasibility of using microwave annealing for the fabrication of iron oxide thin films prepared by electrodeposition at low temperature was also investigated. Hematite films showed improved PEC performance when microwave assisted annealing was used. Microwave heating decreased the annealing temperature by ~40% while the PEC performance was increased by two-fold. The improved performance is attributed to the lower processing temperatures and rapidity of the microwave method that help to retain the nanostructure of the thin films whilst restricting the grain coalescence to a minimum. Around 60% of the energy can be saved using this low carbon foot-print approach compared to conventional annealing procedures for the lab-scale preparation of hematite films – a trait that will have significant implications for scale-up production. The lower processing temperature requirements of the microwave process can also open up the possibility of fabricating hematite thin films on conducting, flexible, plastic electronic substrates.
Style APA, Harvard, Vancouver, ISO itp.
5

Morber, Jenny Ruth. "1D nanowires understanding growth and properties as steps toward biomedical and electrical application /". Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/24825.

Pełny tekst źródła
Streszczenie:
Thesis (Ph.D.)--Materials Science and Engineering, Georgia Institute of Technology, 2009.
Committee Chair: Snyder, Robert; Committee Co-Chair: Wang, Zhong Lin; Committee Member: El-Sayed, Mostafa; Committee Member: Milam, Valeria; Committee Member: Summers, Christopher; Committee Member: Wong, C. P.
Style APA, Harvard, Vancouver, ISO itp.
6

Li, Yanguang. "Nanostructured Materials for Energy Applications". The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1275610758.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Breitenbach, Rene. "Development of Free-standing Nanostructured Iron Oxide Electrodes for High Energy and Power Density 3D Li-ion Microbatteries". Thesis, Uppsala universitet, Strukturkemi, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-301338.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Lakay, Eugene Marlin. "Superparamagnetic iron-oxide based nanoparticles for the separation and recovery of precious metals from solution". Thesis, Stellenbosch : University of Stellenbosch, 2009. http://hdl.handle.net/10019.1/1866.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Walker, Jeremy D. "Exploring the Synthesis and Characterization of Nanoenergetic Materials from Sol-Gel Chemistry". Diss., Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/14573.

Pełny tekst źródła
Streszczenie:
Nanoenergetic composite materials have been synthesized by a sol-gel chemical process where the addition of a weak base molecule induces the gelation of a hydrated metal salt solution. A proposed proton scavenging mechanism, where a weak base molecule extracts a proton from the coordination sphere of the hydrated iron (III) complex in the gelation process to form iron (III) oxide/hydroxide, FeIIIxOyHz, has been confirmed for the weak base propylene oxide (PO), a 1,2 epoxide, as well as for the weak bases tetrahydrofuran (THF), a 1,4 epoxide, and pyridine, a heterocyclic nitrogen-containing compound. THF follows a similar mechanism as PO; the epoxide extracts a proton from the coordination sphere of the hydrated iron complex forming a protonated epoxide which then undergoes irreversible ring-opening after reaction with a nucleophile in solution. Pyridine also extracts a proton from the hydrated metal complex, however, the stable six-membered molecule has low associated ring strain and does not endure ring-opening. Fe2O3/Al energetic systems were synthesized from the epoxides PO, trimethylene oxide (TMO) and 3,3 dimethyl oxetane (DMO). Surface area analysis of the synthesized matrices shows a direct correlation between the surface area of the iron (III) oxide matrix and the quantified exothermic heat of reaction of the nano-scaled aluminum-containing energetic material due to the magnitude of the interfacial surface area contact between the iron (III) oxide matrix and the aluminum particles. The Fe2O3(PO)/Al systems possess the highest heat of reaction values due to the oxide interfacial surface area available for contact with the aluminum particles. Also, reactions containing nano-scale aluminum react differently than those containing micron-scale aluminum. RuO2/Al energetic systems behave differently dependent on the atmosphere the sample is heated. Heating the RuO2/Al samples in an inert atmosphere results in the complete reduction of the ruthenium oxide matrix to Ru(0) before reaction with the aluminum particles, resulting in the exothermic formation of RuxAly intermetallics, with the stoichiometry dependent on the initial Ru:Al concentration. However, heating the samples in an oxygen-rich atmosphere results in an exothermic reaction between RuO2 and Al.
Style APA, Harvard, Vancouver, ISO itp.
10

Kim, Il Tae. "Carbon-based magnetic nanohybrid materials for polymer composites and electrochemical energy storage and conversion". Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/45876.

Pełny tekst źródła
Streszczenie:
The role of nanohybrid materials in the fields of polymer composites and electrochemical energy systems is significant since they affect the enhanced physical properties and improved electrochemical performance, respectively. As basic nanomaterials, carbon nanotubes and graphene were utilized due to their outstanding physical properties. With these materials, hybrid nanostructures were generated through a novel synthesis method, modified sol-gel process; namely, carbon nanotubes (CNTs)-maghemite and reduced graphene oxide (rGO)-maghemite nanohybrid materials were developed. In the study on polymer composities, developed CNTs-maghemite (magnetic carbon nanotbues (m-CNTs)) were readily aligned under an externally applied magnetic field, and due to the aligned features of m-CNTs in polymer matrices, it showed much enhanced anisotropic electrical and mechanical properties. In the study on electrochemical energy system (Li-ion batteries), rGO-maghemite were used as anode materials; as a result, they showed improved electrochemical performance for Li-ion batteries due to their specific morphology and characteristics.
Style APA, Harvard, Vancouver, ISO itp.
11

Rebuttini, Valentina. "Functional iron oxide-based hybrid nanostructures". Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät, 2014. http://dx.doi.org/10.18452/17049.

Pełny tekst źródła
Streszczenie:
In der vorliegenden Arbeit wird das Prinzip der chemischen Oberflächenmodifikation als allgemeine Synthesestrategie beschrieben. Davon ausgehend werden verschiedene Ansätze der chemischen Funktionalisierung dargestellt, mit denen die Eigenschaften der erhaltenen Materialien eingestellt werden können. Im Fokus der Arbeit stehen Eisenoxid-Nanopartikel, die über die „Benzylalkohol-Route“ dargestellt werden. Es wird auf Basis dieser einfachen und vielseitig anwendbaren Funktionalisierung die Herstellung von neuartigen Hybridmaterialien gezeigt. Zur Funktionalisierung zweier magnetischer molekularer Rezeptoren wurde eine Synthesestrategie entwickelt, bei der organische Gruppen kovalent angebunden wurden. Der erste Rezeptor kann zur Erkennung von Biomarkern und den Metaboliten von Pharmazeutika eingesetzt werden. Die Beschichtung der Oberflächen der Eisenoxid-Nanopartikel gelang dabei durch die Verwendung von Organosilan-basierten Kopplungsreagenzien. Der zweite Rezeptor konnte zur Auftrennung eines racemischen Gemisches eines chiralen cavitand eingesetzt werden. Die Darstellung von Graphenoxid-Eisenoxid-Kompositen gelang erfolgreich durch ein ex-situ Verfahren. Es wurde der Einfluss der Oberflächenfunktionalitäten auf die Beladung und Verteilung der Eisenoxid-Nanopartikel untersucht. Dazu wurden via Diazoniumchemie verschiedene Funktionalitäten auf der Graphenoxid-Oberfläche eingeführt. Die Entwicklung einer wasserfreien one-pot Synthese von Gold-Eisenoxid-hetero-Nanostrukturen beschrieben wurde. Insbesondere wurden die Auswirkungen kleiner organischer Moleküle auf die Bildung der Heterostrukturen untersucht.
This thesis describes diverse approaches of chemical functionalization as a general strategy to tailor material properties depending on the target application. Particular attention was dedicated to the surface chemistry of iron oxide nanoparticles. Crystalline 10 nm-sized magnetite nanoparticles synthesized through the “benzyl alcohol route” exhibit superparamagnetic behaviour. For this reason they are regarded as suitable solid supports for the fabrication of recoverable devices, which is a fundamental requirement for several of the reported studies. Here it is demonstrated, via the fabrication of novel hybrid materials, that the ease of functionalization of iron oxide nanoparticles renders this material a versatile platform for the development of diverse surface chemistries. A covalent organic functionalization strategy was developed for the synthesis of two recoverable magnetic molecular receptors. The first targeted the recognition of drugs metabolites and biomarkers. It is based on the use of organosilanes coupling agents. A second approach aimed to the heterogeneous resolution of a racemic mixture of an inherently chiral cavitand. Graphene oxide-iron oxide composites were successfully fabricated through an ex-situ approach based on non-covalent interactions between the component phases. The effects of surface functionalities on the loading and distribution of iron oxide nanoparticles were studied by introducing selected functionalities at the graphene oxide surface through diazonium chemistry. Finally, the development of a non-aqueous one-pot synthesis route to gold-iron oxide hetero-nanostructures was described. Particular emphasis was dedicated to study the influence of small organic molecules in promoting the formation of the heterostructures.
Style APA, Harvard, Vancouver, ISO itp.
12

Miller, Emily Jo. "Assembly of Hybrid Nanostructures Utilizing Iron Oxide". Bowling Green State University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1586550489892278.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Franceschin, Giulia. "Magnetic Oxides-based Hetero-Nanostructured Ceramics : from Nanomaterial Engineering to Exchange-bias Coupling". Thesis, Sorbonne Paris Cité, 2017. http://www.theses.fr/2017USPCC281.

Pełny tekst źródła
Streszczenie:
Récemment, les recherches scientifiques ont attiré son attention sur les domaines liés à l'énergie en raison de la consommation croissante d'énergie qui a affecté les dernières décennies. Les matériaux magnétiques sont déterminants dans les applications basées sur l'énergie et l'amélioration de leurs performances joue un rôle primordial dans le développement technologique. Le présent travail explore la possibilité de préparer des composites céramiques magnétiques hétéro-nano-structurés à base de constituants d'oxydes. Un oxyde ferromagnétique (F) a été couplé à un antiferromagnétique (AF) à l'échelle nanométrique pour étudier les propriétés magnétiques résultantes, en accordant une importance primordiale au couplage d'échange entre les deux phases. L’établissement de l’effet de biais d’échange à l’interface des phases F-AF est souhaitable pour augmenter l’anisotropie magnéto-cristalline du système et le produit énergétique relatif BHmax. Dans ce but, deux oxydes F différents ont été pris en compte, le Fe3O4 et le CoFe2O4, et trois oxydes différents de la AF, CoO, NiO et l'hématite α-Fe2O3. Des nanoparticules d'oxyde de chaque composant ont été préparées par synthèse de polyol, avec une bonne qualité cristalline et une morphologie uniforme. Ils ont ensuite été utilisés pour préparer des échantillons de céramique de consolidation par la technique SPS. Pour chaque échantillon, un oxyde F a été mélangé à l'un des oxydes AF. Les céramiques résultantes ont été formées selon différents rapports de masse F / AF, variant entre 0,75 / 0,25, 0,5 / 0,5 et 0,25 / 0,75, et selon différentes combinaisons entre les oxydes F et AF considérés. Tous les échantillons ont été frittés à 500 ° C et 100 MPa pendant 5 minutes. Toutes les céramiques ont été étudiées en profondeur, notamment en ce qui concerne leur structure, leur microstructure et leurs propriétés magnétiques. L’analyse HR-TEM réalisée sur des lames raffinées de céramiques Fe3O4-CoO, Fe3O4-NiO et CoFe2O4-NiO, ainsi que des résultats de diffraction XR, a mis en évidence une importante variation de la composition des échantillons après frittage. Une nouvelle phase métallique est formée après frittage dans l'atmosphère fortement réductrice au cours du processus SPS, modifiant ainsi la composition relative des phases F et AF individuelles. L’établissement d’effets de biais d’échange n’a guère été observé à cause de la diffusion des atomes qui affecte l’échantillon. En effet, les nanoparticules AF d'hématite se sont révélées instables dans une large plage de températures et donc inappropriées pour ce type d'application. En particulier, une transformation de phase se produisant à environ 380 ° C a été observée lorsqu'un champ magnétique externe est appliqué. Une telle transition a été étudiée au moyen d’une caractérisation par magnétomètre, d’une analyse HR-TEM et d’une analyse EELS et a révélé qu’elle impliquait la transformation de l’hématite en magnétite. Le mécanisme de cette transformation n’a pas encore été compris et fait l’objet d’une enquête plus approfondie
Recently the scientific research led its attention towards energy related fields because of the increasing energy consumption that affected the last few decades. Magnetic materials are determining in energy-based applications and the enhancement of their performances has a primary role on the technological development. The present work explores the possibility to prepare hetero-nano-structured magnetic ceramic composites based on oxide constituents. A ferromagnetic oxide (F) was coupled with an antiferromagnetic one (AF) at a nanometric size scale to study the resulting magnetic properties, above all concerting the exchange coupling between the two different phases. The establishing of the exchange-bias effect at the F-AF phases interface is desirable in order to increase the magneto-crystalline anisotropy of the system and the relative energy product BHmax. At this aim, two different F oxides were took into account, the Fe3O4 and the CoFe2O4, and three different AF oxides, CoO, NiO and hematite α-Fe2O3. Oxide nanoparticles of each component were prepared by polyol synthesis, with a good crystalline quality and uniform morphology. They were then employed to prepare consolidate ceramic samples by SPS technique. For each sample, one F oxide was mixed with one of the AF oxides. The resulting ceramics were formed by different F/AF mass ratio, varying between 0,75/0,25, 0,5/0,5 and 0,25/0,75, and by different combinations between the considered F and AF oxides. All the samples were sintered at 500°C and 100 MPa for 5 minutes. All the ceramics were deeply studied, above all concerning their structure, microstructure and magnetic properties. HR-TEM analysis performed on FIB-refined slides of the Fe3O4-CoO, Fe3O4-NiO and CoFe2O4-NiO ceramic samples, together with XRD results, highlighted an important variation of samples’ composition after sintering. A new metallic phase is formed after sintering cause to the strongly reductive atmosphere during the SPS process, thus modifying the relative composition of the single F and AF phases too. The establishing of exchange-bias effects was hardly observed exactly because of the atoms diffusion that affects the sample. The hematite AF nanoparticles, indeed, were found to be unstable in a wide temperature range and thus unsuitable for this kind of application. In particular, a phase transformation occurring at about 380°C was observed when an external magnetic field is applied. Such a transition was studied by mean of magnetometer characterisation, HR-TEM and EELS analysis and was found to involve hematite transforming into magnetite. The mechanism of such transformation hasn’t been understood yet and is under further investigation
Style APA, Harvard, Vancouver, ISO itp.
14

Eid, Cynthia Joseph. "Synthèse et caractérisation de nouvelles nanostructures à base d’oxyde et de carbure de Fe". Thesis, Lyon 1, 2010. http://www.theses.fr/2010LYO10172/document.

Pełny tekst źródła
Streszczenie:
Comme les propriétés physiques d'un matériau à l’échelle nanométrique sont largement dépendantes de la taille et de la forme des nanostructures, il est inutile de synthétiser de nouvelles compositions et morphologies. L’étude avancée de leur structure par les techniques de caractérisation usuelles (MET, MEB, DRX, Raman…) permettra de collecter toutes les informations nécessaires à la compréhension de leurs propriétés physiques (magnétiques, optiques, électriques). Dans ce manuscrit, nous décrirons plusieurs approches d’élaboration de nanostructures 0D, 1D et 2D multifonctionnelles afin de mieux connaître les paramètres qui contrôlent leur composition chimique et leur structure. De plus, ce travail de recherche a abouti à la synthèse de nouveaux matériaux à base d’oxyde et de carbure de fer. Des nanofibres magnétiques ayant des morphologies originales « Ruban » et « tube » ont été élaborées par la technique d’électrospinning en modifiant plusieurs paramètres expérimentaux : concentration de la solution, atmosphères de traitement thermique, température de recuit… De plus, des couches minces guidantes dopées par des nanostructures magnétiques ont été préparées par la technique dip-coating. Nous avons mené une étude complexe et détaillée sur les propriétés structurales de ces matériaux afin de définir les paramètres expérimentaux qui permettront d’obtenir des nano objets de bonne qualité. Dans un but ultime, nous souhaiterons explorer les possibilités d’application de ces matériaux qui présentent à la fois des caractéristiques électriques et magnétiques
The physical properties of a nanomaterial strongly depend on the size and the shape of the nanostructure. As a consequence, it is interesting to elaborate new materials with different compositions and morphologies. The advanced study on the structure using common characterization techniques (TEM, MEB, XRD, Raman…) allows us to collect all the important information on their physical properties (magnetic, optical and electrical properties). In this thesis, we describe multiple ways to elaborate multifunctional nanostructures with 0D, 1D and 2D in order to study the parameters that control their chemical composition and structure. Besides, this research lead to the elaboration of new nanomaterials based on the oxide and the carbide forms of iron. Magnetic nanofibers with different morphologies (belts, tubes) were prepared using the electrospinning technique while controlling several experimental parameters : solution concentration, pyrolysis atmosphere, thermal treatment temperature… Moreover, thin layers doped with magnetic nanostructures were deposited on a pyrex substrate using the dip-coating technique. A full and detailed study on their structural properties was performed in order to reach the experimental parameters that allow us to obtain high quality products. Finally, we wish to explore the possible applications of these materials that present interesting electrical and magnetic characteristics
Style APA, Harvard, Vancouver, ISO itp.
15

Rebuttini, Valentina [Verfasser], Nicola [Akademischer Betreuer] Pinna, Gerhard [Akademischer Betreuer] Kemnitz i Frédéric [Akademischer Betreuer] Favier. "Functional iron oxide-based hybrid nanostructures / Valentina Rebuttini. Gutachter: Nicola Pinna ; Gerhard Kemnitz ; Frédéric Favier". Berlin : Mathematisch-Naturwissenschaftliche Fakultät, 2014. http://d-nb.info/1060425319/34.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Mendes, Rafael Gregorio. "Synthesis, characterization and toxicological evaluation of carbon-based nanostructures". Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-186839.

Pełny tekst źródła
Streszczenie:
The synthesis, characterization and biological evaluation of different graphene-based nanoparticles with potential biomedical applications are explored. The results presented within this work show that eukaryotic cells can respond differently not only to different types of nanoparticles, but also identify slight differences in the morphology of nanoparticles, such as size. This highlights the great importance of the synthesis and thorough characterization of nanoparticles in the design of effective nanoparticle platforms for biological applications. In order to test the influence of morphology of graphene-based nanoparticles on the cell response, nanoparticles with different sizes were synthesized and tested on different cells. The synthesis of spherical iron-oxide nanoparticles coated with graphene was accomplished using a colloidal chemistry route. This synthesis route was able to render nanoparticle samples with narrow size distributions, which can be taken as monodispersed. Four different samples varying in diameter from 10 to 20 nm were produced and the material was systematically characterized prior to the biological tests. The characterization of the material suggests that the iron oxide nanoparticles consist of a mix of both magnetite and maghemite phases and are coated with a thin graphitic layer. All samples presented functional groups and were similar in all aspects except in diameter. The results suggest that cells can respond differently even to small differences in the size of the nanoparticles. An in situ study of the coating of the iron-oxide nanoparticles using a transmission electron microscope revealed that it is possible to further graphitize the remaining oleic acid on the nanoparticles. The thickness of the graphitic coating was controlled by varying the amount of oleic acid on the nanoparticles. The in situ observations using an electron beam were reproduced by annealing the nanoparticles in a dynamic vacuum. This procedure showed that it is not only possible to coat large amounts of iron oxide nanoparticles with graphene using oleic acid, but also to improved their magnetic properties for other applications such as hyperthermia. This study therefore revealed a facile route to grow 2D graphene takes on substrates using oleic acid as a precursor. The synthesis of nanographene oxide nanoparticles of different sizes was in a second approach accomplished by using the Hummers method to oxidize and expand commercially available graphite. The size of the oxidized graphite was adjusted by sonicating the samples for different periods of time. The material was also thoroughly characterized and demonstrated to have two distinctive average size distributions and possess functional groups. The results suggest that different size flakes can trigger different cell response. The synthesis, characterization and biological evaluation of graphene nanoshells were performed. The graphene nanoshells were produced by using magnesia nanoparticles as a template to the graphene nanoshells. The coating of magnesia with graphene layers was accomplished using chemical vapor deposition. The nanoshells were obtained by removing the magnesia core. The size of the nanoshells was determined by the size of the magnesia nanoparticles and presented a broad size distribution since the diameter of the magnesia nanoparticles could not be controlled. The nanoshells were also characterized and the biological evaluation was performed in the Swiss Federal Laboratories for Materials Science and Technology (EMPA), in Switzerland. The results suggest that despite inducing the production of reactive oxygen species on cells, the nanoshells did not impede cell proliferation
Die Herstellung, Charakterisierung und biologische Auswertung von verschiedenen Graphen-basierten Nanopartikeln mit einer potenziellen biomedizinischen Anwendung wurden erforscht. Die vorgestellten Ergebnisse im Rahmen dieser Arbeit zeigen, dass eukaryotische Zellen unterschiedlich reagieren können, wenn sie mit Nanopartikeln unterschiedlicher Morphologie interagieren. Die Zellen können geringe Unterschiede in der Morphologie, insbesondere der Größe der Nanopartikeln, identifizieren. Dies unterstreicht den Einfluss der Herstellungsmethoden und die Notwendigkeit einer gründlichen Charakterisierung, um ein effektives Design von Nanopartikeln für biologische Anwendungen zu erreichen. Um den Einfluss der Größe von Graphen-basierten Nanopartikel auf das Zellverhalten zu erforschen, wurden verschiedene Graphen-beschichte Eisenoxid-Nanopartikelproben durch eine kolloidchemische Methode hergestellt. Dieses Herstellungsverfahren ermöglicht die Synthese von Nanopartikeln mit engen Größenverteilungen, die als monodispers gelten können. Vier Proben mit unterschiedlichen Durchmessern (von 10 bis 20 nm) wurden hergestellt und vor den biologischen Untersuchungen systematisch charakterisiert. Die Probencharakterisierung deutet auf eine Mischung aus Magnetit- und Maghemit-Kristallphasen hin, außerdem besitzen die Nanopartikel eine dünne Graphitschicht. Die spektroskopischen Ergebnisse auch zeigen außerdem, dass alle Proben funktionelle Gruppen auf ihrer Oberfläche besitzen, sodass sie in allen Aspekten, außer Morphologie (Durchmesser), ähnlich sind. Die biologischen Untersuchungen deuten darauf hin, dass Zellen unterschiedliche Größen von Eisenoxid-Nanopartikeln reagieren können. Ein in situ Untersuchung der Beschichtung der Eisenoxid-Nanopartikel wurde mit einem Transmissionelektronenmikroskop durchgeführt. Die Ergebnisse zeigen, dass eine dünne Schicht von Ölsäure aus dem Syntheseprozess auf den Nanopartikeln verbleibt. Diese Schicht kann mit einem Elektronstrahl in Graphen umgewandelt werden. Die Dicke der Graphitschicht auf den Nanopartikeln kann durch die Menge der eingesetzten Ölsäure kontrolliert werden. Die in situ Beobachtungen der Graphenumwandlung konnte durch erhitzen der Nanopartikeln in einem dynamischen Vakuum reproduziert werden. Das Brennen der Eisenoxid-Nanopartikel ermöglicht nicht nur die Graphitisierung der Ölsäure, sondern auch eine Verbesserung der magnetischen Eigenschaften der Nanopartikel für weitere Anwendungen, z. B. der Hyperthermie. Die Umwandlung der Ölsäure in Graphen konnte so als relativ einfaches Verfahren der Beschichtung von zweidimensionalen (2D) Substraten etabliert werden. Die Herstellung von Nanographenoxid mit unterschiedlichen Größen wurde mit der Hummers-Method durchgeführt. Die unterschiedlichen Größen der Nanographenoxidpartikel wurde durch eine Behandlung in Ultraschallbad erreicht. Zwei Proben mit deutlicher Verteilung wurden mit mehreren Verfahren charakterisiert. Beide Proben haben Nanographenoxid Nanoteilchen mit verschiedenen funktionellen Gruppen. Die biologische Charakterisierung deutet darauf hin, dass unterschiedliche Größen des Nanographens ein unterschiedliches Zellverhalten auslösen. Abschließend, wurde die Herstellung, Charakterisierung und biologische Auswertung von Graphen-Nanoschalen durchgeführt. Die Graphen-Nanoschalen wurden mit Magnesiumoxid-Nanopartikeln als Template hergestellt. Die Beschichtung des Magnesia mit Graphen erforgte durch die chemische Gasphasenabscheidung. Die Nanoschalen wurden durch Entfernen des Magnesia-Kerns erhalten. Die Größe der Nanohüllen ist durch die Größe der Magnesia-Kerns bestimmt und zeigt eine breite Verteilung, da der Durchmesser der Magnesiumoxid-Nanopartikel gegeben war. Die Nanoschalen wurden ebenfalls mit Infrarot- und Röntgen Photoemissionspektroskopie charakterisiert und die biologische Bewertung wurde im Eidgenössische Materialprüfungs- und Forschungsanstalt (EMPA) durchgeführt, in der Schweiz. Die Ergebnisse zeigen, dass zwar die Produktion von reaktiven Sauerstoffspezies in den Zellen ausgelöst wird, diese sich aber weiterhin vermehren können
Style APA, Harvard, Vancouver, ISO itp.
17

Al-Saadi, Ali. "Preparation and characterisation of encapsulation magnetic metal iron oxide nanoparticles". Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:57bdcf38-9d45-48ab-a971-a2d60e2e4391.

Pełny tekst źródła
Streszczenie:
One of the most challenging goals in nanoparticle research is to develop successful protocols for the large-scale, simple and possibly low-cost preparation of morphologically pure nanoparticles with enhanced properties. The work presented in this thesis was focused on the synthesis, characterisation and testing of magnetic nanoparticles and their potential applications. There are a number of magnetic nano-materials prepared for specific applications such as metal oxide nanoparticles encapsulated with various porous materials including Fe₃O₄/Fe₂O₃ coated with soft bio-organic materials such as glycol chitosan and bovine serum albumin and hard materials such as silica (SiO₂) and zinc sulphide (ZnS). The preparation of these materials was achieved principally by bottom-up methods with different approaches including micro-emulsion, precipitation, electrostatic and thermolysis processes. The thesis also presents the uses of various analytical techniques for characterising different types of nano-materials including Attenuated Total Reflection Fourier Transformer Infrared Vibrational Spectroscopy (ATR-FTIR), Ultraviolet Visible- Near Infrared (UV-Vis-NIR) Spectroscopy, Zeta Potentiometric Surface Charge Analysis, Superconducting Quantum Interference Device (SQUID) and Vibration Sample Magnetometry (VSM) for magnetic analysis and powder X-Ray Diffraction (XRD) for crystallographic pattern analysis. There are many applications of magnetic nanoparticles, including nano-carriers for biological and catalytic reagents. The magnetic nanoparticles can facilitate separation in order to isolate the carriers from solution mixtures as compared to many inefficient and expensive classic methods, which include dialysis membrane, electrophoresis, ultracentrifugation, precipitation and column separation methods. There are six key chapters in this thesis: the first chapter introduces the up-to-date literature regarding magnetic nano-materials. The uses of magnetic nano-materials in drug binding and for protein separation are discussed in the second and third chapters. The fourth chapter presents the use of magnetic nanoparticle in conjunction with a photo-catalytic porous overlayer for the photo-catalytic reduction of organic molecules. The fifth chapter describes different analytical techniques used for the characterisation of nanoparticles and the underlying principles and the experimental details are also given. The sixth chapter summarises the results and provides an overview of the work in a wider context of future applications of magnetic nanoparticles.
Style APA, Harvard, Vancouver, ISO itp.
18

Zhao, Yanyan. "Synthesis and characterisation of metal (Fe, Ga, Y) doped alumina and gallium oxide nanostructures". Thesis, Queensland University of Technology, 2008. https://eprints.qut.edu.au/20529/1/Yanyan_Zhao_Thesis.pdf.

Pełny tekst źródła
Streszczenie:
It is well known that nanostructures possess unique electronic, optical, magnetic, ferroelectric and piezoelectric properties that are often superior to traditional bulk materials. In particular, one dimensional (1D) nanostructured inorganic materials including nanofibres, nanotubes and nanobelts have attracted considerable attention due to their distinctive geometries, novel physical and chemical properties, combined effects and their applications to numerous areas. Metal ion doping is a promising technique which can be utilized to control the properties of materials by intentionally introducing impurities or defects into a material. γ-Alumina (Al2O3), is one of the most important oxides due to its high surface area, mesoporous properties, chemical and thermal properties and its broad applications in adsorbents, composite materials, ceramics, catalysts and catalyst supports. γ-Alumina has been studied intensively over a long period of time. Recently, considerable work has been carried out on the synthesis of 1D γ-alumina nanostructures under various hydrothermal conditions; however, research on the doping of alumina nanostructures has not been forthcoming. Boehmite (γ-AlOOH) is a crucial precursor for the preparation of γ-Alumina and the morphology and size of the resultant alumina can be manipulated by controlling the growth of AlOOH. Gallium (Ga) is in the same group in the periodic table as aluminum. β-Gallium (III) oxide (β-Ga2O3), a wide band gap semiconductor, has long been known to exhibit conduction, luminescence and catalytic properties. Numerous techniques have been employed on the synthesis of gallium oxide in the early research. However, these techniques are plagued by inevitable problems. It is of great interest to explore the synthesis of gallium oxide via a low temperature hydrothermal route, which is economically efficient and environmentally friendly. The overall objectives of this study were: 1) the investigation of the effect of dopants on the morphology, size and properties of metal ion doped 1D alumina nanostructures by introducing dopant to the AlOOH structure; 2) the investigation of impacts of hydrothermal conditions and surfactants on the crystal growth of gallium oxide nanostructures. To achieve the above objectives, trivalent metal elements such as iron, gallium and yttrium were employed as dopants in the study of doped alumina nanostructures. In addition, the effect of various parameters that may affect the growth of gallium oxide crystals including temperature, pH, and the experimental procedure as well as different types of surfactants were systematically investigated. The main contributions of this study are: 1) the systematic and in-depth investigation of the crystal growth and the morphology control of iron, gallium and yttrium doped boehmite (AlOOH) under varying hydrothermal conditions, as a result, a new soft-chemistry synthesis route for the preparation of one dimensional alumina/boehmite nanofibres and nanotubes was invented; 2) systematic investigation of the crystal growth and morphology and size changes of gallium oxide hydroxide (GaOOH) under varying hydrothermal conditions with and without surfactant at low temperature; We invented a green hydrothermal route for the preparation of α-GaOOH or β-GaOOH micro- to nano-scaled particles; invented a simple hydrothermal route for the direct preparation of γ-Ga2O3 from aqueous media at low temperature without any calcination. The study provided detailed synthesis routes as well as quantitative property data of final products which are necessary for their potential industrial applications in the future. The following are the main areas and findings presented in the study: • Fe doped boehmite nanostructures This work was undertaken at 120ºC using PEO surfactant through a hydrothermal synthesis route by adding fresh iron doped aluminium hydrate at regular intervals of 2 days. The effect of dopant iron, iron percentage and experimental procedure on the morphology and size of boehmite were systematically studied. Iron doped boehmite nanofibres were formed in all samples with iron contents no more than 10%. Nanosheets and nanotubes together with an iron rich phase were formed in 20% iron doped boehmite sample. A change in synthesis procedure resulted in the formation of hematite large crystals. The resultant nanomaterials were characterized by a combination of XRD, TEM, EDX, SAED and N2 adsorption analysis. • Growth of pure boehmite nanofibres/nanotubes The growth of pure boehmite nanofibres/nanotubes under different hydrothermal conditions at 100ºC with and without PEO surfactant was systematically studied to provide further information for the following studies of the growth of Ga and Y doped boehmite. Results showed that adding fresh aluminium hydrate precipitate in a regular interval resulted in the formation of a mixture of long and short 1D boehmite nanostructures rather than the formation of relatively longer nanofibres/nanotubes. The detailed discussion and mechanism on the growth of boehmite nanostructure were presented. The resultant boehmite samples were also characterized by N2 adsorption to provide further information on the surface properties to support the proposed mechanism. • Ga doped boehmite nanostructures Based on this study on the growth of pure boehmite nanofibre/nanotubes, gallium doped boehmite nanotubes were prepared via hydrothermal treatment at 100ºC in the presence of PEO surfactant without adding any fresh aluminium hydrate precipitate during the hydrothermal treatment. The effect of dopant gallium, gallium percentage, temperature and experimental procedure on the morphology and size of boehmite was systematically studied. Various morphologies of boehmite nanostructures were formed with the increase in the doping gallium content and the change in synthesis procedure. The resultant gallium doped boehmite nanostructures were characterized by TEM, XRD, EDX, SAED, N2 adsorption and TGA. • Y doped boehmite nanostructures Following the same synthesis route as that for gallium doped boehmite, yttrium doped boehmite nanostructures were prepared at 100ºC in the presence of PEO surfactant. From the study on iron and gallium doped boehmite nanostructures, it was noted both iron and gallium cannot grow with boehmite nanostructure if iron nitrate and gallium nitrate were not mixed with aluminium nitrate before dissolving in water, in particular, gallium and aluminium are 100% miscible. Therefore, it’s not necessary to study the mixing procedure or synthesis route on the formation of yttrium doped boehmite nanostructures in this work. The effect of dopant yttrium, yttrium percentage, temperature and surfactant on the morphology and size of boehmite were systematically studied. Nanofibres were formed in all samples with varying doped Y% treated at 100ºC; large Y(OH)3 crystals were also formed at high doping Y percentage. Treatment at elevated temperatures resulted in remarkable changes in size and morphology for samples with the same doping Y content. The resultant yttrium doped boehmite nanostructures were characterized by TEM, XRD, EDX, SAED, N2 adsorption and TGA. • The synthesis of Gallium oxide hydroxide and gallium oxide with surfactant In this study, the growth of gallium oxide hydroxide under various hydrothermal conditions in the presence of different types of surfactants was systematically studied. Nano- to micro-sized gallium oxide hydroxide was prepared. The effect of surfactant and synthesis procedure on the morphology of the resultant gallium oxide hydroxide was studied. β-gallium oxide nanorods were derived from gallium oxide hydroxide by calcination at 900ºC and the initial morphology was retained. γ-gallium oxide nanotubes up to 65 nm in length, with internal and external diameters of around 0.8 and 3.0 nm, were synthesized directly in solution with and without surfactant. The resultant nano- to micro-sized structures were characterized by XRD, TEM, SAED, EDX and N2 adsorption. • The synthesis of gallium oxide hydroxide without surfactant The aim of this study is to explore a green synthesis route for the preparation of gallium oxide hydroxide or gallium oxide via hydrothermal treatment at low temperature. Micro to nano sized GaOOH nanorods and particles were prepared under varying hydrothermal conditions without any surfactant. The resultant GaOOH nanomaterials were characterized by XRD, TEM, SAED, EDX, TG and FT-IR. The growth mechanism of GaOOH crystals was proposed.
Style APA, Harvard, Vancouver, ISO itp.
19

Zhao, Yanyan. "Synthesis and characterisation of metal (Fe, Ga, Y) doped alumina and gallium oxide nanostructures". Queensland University of Technology, 2008. http://eprints.qut.edu.au/20529/.

Pełny tekst źródła
Streszczenie:
It is well known that nanostructures possess unique electronic, optical, magnetic, ferroelectric and piezoelectric properties that are often superior to traditional bulk materials. In particular, one dimensional (1D) nanostructured inorganic materials including nanofibres, nanotubes and nanobelts have attracted considerable attention due to their distinctive geometries, novel physical and chemical properties, combined effects and their applications to numerous areas. Metal ion doping is a promising technique which can be utilized to control the properties of materials by intentionally introducing impurities or defects into a material. γ-Alumina (Al2O3), is one of the most important oxides due to its high surface area, mesoporous properties, chemical and thermal properties and its broad applications in adsorbents, composite materials, ceramics, catalysts and catalyst supports. γ-Alumina has been studied intensively over a long period of time. Recently, considerable work has been carried out on the synthesis of 1D γ-alumina nanostructures under various hydrothermal conditions; however, research on the doping of alumina nanostructures has not been forthcoming. Boehmite (γ-AlOOH) is a crucial precursor for the preparation of γ-Alumina and the morphology and size of the resultant alumina can be manipulated by controlling the growth of AlOOH. Gallium (Ga) is in the same group in the periodic table as aluminum. β-Gallium (III) oxide (β-Ga2O3), a wide band gap semiconductor, has long been known to exhibit conduction, luminescence and catalytic properties. Numerous techniques have been employed on the synthesis of gallium oxide in the early research. However, these techniques are plagued by inevitable problems. It is of great interest to explore the synthesis of gallium oxide via a low temperature hydrothermal route, which is economically efficient and environmentally friendly. The overall objectives of this study were: 1) the investigation of the effect of dopants on the morphology, size and properties of metal ion doped 1D alumina nanostructures by introducing dopant to the AlOOH structure; 2) the investigation of impacts of hydrothermal conditions and surfactants on the crystal growth of gallium oxide nanostructures. To achieve the above objectives, trivalent metal elements such as iron, gallium and yttrium were employed as dopants in the study of doped alumina nanostructures. In addition, the effect of various parameters that may affect the growth of gallium oxide crystals including temperature, pH, and the experimental procedure as well as different types of surfactants were systematically investigated. The main contributions of this study are: 1) the systematic and in-depth investigation of the crystal growth and the morphology control of iron, gallium and yttrium doped boehmite (AlOOH) under varying hydrothermal conditions, as a result, a new soft-chemistry synthesis route for the preparation of one dimensional alumina/boehmite nanofibres and nanotubes was invented; 2) systematic investigation of the crystal growth and morphology and size changes of gallium oxide hydroxide (GaOOH) under varying hydrothermal conditions with and without surfactant at low temperature; We invented a green hydrothermal route for the preparation of α-GaOOH or β-GaOOH micro- to nano-scaled particles; invented a simple hydrothermal route for the direct preparation of γ-Ga2O3 from aqueous media at low temperature without any calcination. The study provided detailed synthesis routes as well as quantitative property data of final products which are necessary for their potential industrial applications in the future. The following are the main areas and findings presented in the study: • Fe doped boehmite nanostructures This work was undertaken at 120ºC using PEO surfactant through a hydrothermal synthesis route by adding fresh iron doped aluminium hydrate at regular intervals of 2 days. The effect of dopant iron, iron percentage and experimental procedure on the morphology and size of boehmite were systematically studied. Iron doped boehmite nanofibres were formed in all samples with iron contents no more than 10%. Nanosheets and nanotubes together with an iron rich phase were formed in 20% iron doped boehmite sample. A change in synthesis procedure resulted in the formation of hematite large crystals. The resultant nanomaterials were characterized by a combination of XRD, TEM, EDX, SAED and N2 adsorption analysis. • Growth of pure boehmite nanofibres/nanotubes The growth of pure boehmite nanofibres/nanotubes under different hydrothermal conditions at 100ºC with and without PEO surfactant was systematically studied to provide further information for the following studies of the growth of Ga and Y doped boehmite. Results showed that adding fresh aluminium hydrate precipitate in a regular interval resulted in the formation of a mixture of long and short 1D boehmite nanostructures rather than the formation of relatively longer nanofibres/nanotubes. The detailed discussion and mechanism on the growth of boehmite nanostructure were presented. The resultant boehmite samples were also characterized by N2 adsorption to provide further information on the surface properties to support the proposed mechanism. • Ga doped boehmite nanostructures Based on this study on the growth of pure boehmite nanofibre/nanotubes, gallium doped boehmite nanotubes were prepared via hydrothermal treatment at 100ºC in the presence of PEO surfactant without adding any fresh aluminium hydrate precipitate during the hydrothermal treatment. The effect of dopant gallium, gallium percentage, temperature and experimental procedure on the morphology and size of boehmite was systematically studied. Various morphologies of boehmite nanostructures were formed with the increase in the doping gallium content and the change in synthesis procedure. The resultant gallium doped boehmite nanostructures were characterized by TEM, XRD, EDX, SAED, N2 adsorption and TGA. • Y doped boehmite nanostructures Following the same synthesis route as that for gallium doped boehmite, yttrium doped boehmite nanostructures were prepared at 100ºC in the presence of PEO surfactant. From the study on iron and gallium doped boehmite nanostructures, it was noted both iron and gallium cannot grow with boehmite nanostructure if iron nitrate and gallium nitrate were not mixed with aluminium nitrate before dissolving in water, in particular, gallium and aluminium are 100% miscible. Therefore, it’s not necessary to study the mixing procedure or synthesis route on the formation of yttrium doped boehmite nanostructures in this work. The effect of dopant yttrium, yttrium percentage, temperature and surfactant on the morphology and size of boehmite were systematically studied. Nanofibres were formed in all samples with varying doped Y% treated at 100ºC; large Y(OH)3 crystals were also formed at high doping Y percentage. Treatment at elevated temperatures resulted in remarkable changes in size and morphology for samples with the same doping Y content. The resultant yttrium doped boehmite nanostructures were characterized by TEM, XRD, EDX, SAED, N2 adsorption and TGA. • The synthesis of Gallium oxide hydroxide and gallium oxide with surfactant In this study, the growth of gallium oxide hydroxide under various hydrothermal conditions in the presence of different types of surfactants was systematically studied. Nano- to micro-sized gallium oxide hydroxide was prepared. The effect of surfactant and synthesis procedure on the morphology of the resultant gallium oxide hydroxide was studied. β-gallium oxide nanorods were derived from gallium oxide hydroxide by calcination at 900ºC and the initial morphology was retained. γ-gallium oxide nanotubes up to 65 nm in length, with internal and external diameters of around 0.8 and 3.0 nm, were synthesized directly in solution with and without surfactant. The resultant nano- to micro-sized structures were characterized by XRD, TEM, SAED, EDX and N2 adsorption. • The synthesis of gallium oxide hydroxide without surfactant The aim of this study is to explore a green synthesis route for the preparation of gallium oxide hydroxide or gallium oxide via hydrothermal treatment at low temperature. Micro to nano sized GaOOH nanorods and particles were prepared under varying hydrothermal conditions without any surfactant. The resultant GaOOH nanomaterials were characterized by XRD, TEM, SAED, EDX, TG and FT-IR. The growth mechanism of GaOOH crystals was proposed.
Style APA, Harvard, Vancouver, ISO itp.
20

Gessner, Isabel [Verfasser]. "Chemically Engineered Iron Oxide and Carbon Nanostructures for Medicinal Applications: Bioconjugation Strategies for Next Generation in vitro and ex vivo Theranostics / Isabel Gessner". München : Verlag Dr. Hut, 2019. http://d-nb.info/1178898938/34.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Bertorelle, Fabrizio. "Magneto-plasmonic nanostructures based on laser ablated nanoparticles of Au and FeOx for nanomedicine applications". Doctoral thesis, Università degli studi di Padova, 2016. http://hdl.handle.net/11577/3422266.

Pełny tekst źródła
Streszczenie:
In the last years, gold and iron oxide nanoparticles have received an increasing interest in nanomedicine and biotechnology thanks to their properties. Gold nanoparticles (AuNPs) are biocompatible and possess useful optical properties that make them a powerful imaging tool using, for example, SERS spectroscopy. On the other hand, iron oxide nanoparticles (FeOxNPs, in particular those made of magnetite) are interesting because of their magnetic properties. Combining gold and iron oxide nanoparticles in a unique system, one obtains a magneto-plasmonic material in which the characteristics properties of the two nanoparticles are present. The use of magneto-plasmonic nanostructured materials in nanomedicine is a quite young research topic and one of the reasons is the elaborated synthesis often required. Several passages are needed also for the purification of these nanosystem from chemicals used during synthesis, which is a crucial point when the final application is in nanomedicine or nanobiology. In this work we will show the synthesis of two magneto-plasmonic systems made of gold and iron oxide nanoparticles. AuNPs and FeOxNPs are synthetized with the laser ablation synthesis in solution (LASiS) method. LASiS is a green chemistry method, which allows to obtain chemical-free and stable nanoparticles in water solution. With LASiS, purification passages are unnecessary or reduced to a minimum and no chemicals that could interfere in biological environment are present. In chapter 2 it will be reported the synthesis of gold and iron oxide nanoclusters (AuFeOxNC) in which the aggregation between particles is performed without the use of chemicals, but exploiting the surface charges of nanoparticles. The use of such nanoclusters in cells guiding and sorting and imaging will be also shown. In chapter 3, the synthesis of another magneto-plasmonic system in which AuNPs and FeOxNPs are arranged in a core-shell-satellite structure, is reported. Also in this case, purification passages are reduced thanks to the laser ablation synthesis. This system is conjugated with an antibody and shows high performance in immunomagnetic sorting and photothermal treatment of cancer cells. The arguments developed in the thesis are introduced in the first chapter.
Negli ultimi anni, nanoparticelle di oro e ossido di ferro hanno ricevuto un interesse crescente in campi come la nanomedicina e la biotecnologia grazie alle loro proprietà. Le nanoparticelle di oro (AuNPs) sono biocompatibili e possiedono utili proprietà ottiche che le rendono un potente strumento di imaging usando, per esempio, la spettroscopia SERS.Le nanoparticelle di ossido di ferro (FeOxNP, in particolare quelle di magnetite) sono interessanti a causa delle loro proprietà magnetiche. Combinando i due tipi di particelle in un unico sistema si ottiene un materiale magneto-plasmonico, nel quale si manifestano le proprietà di entrambe le nanoparticelle. L'uso di materiali magneto-plasmonici in nanomedicina è un campo di ricerca abbastanza giovane e uno dei motivi è la sintesi elaborata che spesso questi materiali richiedono. Durante la sintesi sono necessari diversi passaggi di purificazione dalle sostanze chimiche impiegate, passaggi che sono fondamentali quando l'applicazione finale è la nanomedicina o la nanobiologia.In questa tesi mostreremo la sintesi di due sistemi magneto-plasmonici composti da nanoparticelle di oro e ossido di ferro. AuNPs e FeOxNPs sono sintetizzate con il metodo dell'ablazione laser in soluzione (LASiS). Con l'ablazione laser i passaggi di purificazione non sono necessari e non sono presenti sostanze chimiche che possono interferire in ambiente biologico. Nel capitolo due della tesi mostreremo la sintesi di nanocluster di nanoparticelle di oro e ossido di ferro nei quali i due tipi di particelle sono aggregate senza l'utilizzo di sostanze chimiche. Questi nanocluster saranno utilizzati per guidare magneticamente cellule in soluzione, per la selezione di cellule e imaging. Nel capitolo tre viene riportata la sintesi di un altro sistema magneto-plasmonico in cui AuNPs e FeOxNPs sono arrangiate in una struttura di tipo core-shell-satellite. Anche in questo caso i passaggi di purificazione sono ridotti grazie all'utilizzo dell'ablazione laser. Questo sistema viene poi completato coniugando un anticorpo e mostra ottime performance nella selezione immunomagnetica e nel trattamento fototermico di cellule cancerose. Gli argomenti trattati nella tesi sono introdotti nel primo capitolo.
Style APA, Harvard, Vancouver, ISO itp.
22

Bouhjar, Feriel. "Preparation et performance d'une cellule photocatalytique à base d'hématite pour la génération d'hydrogène". Doctoral thesis, Universitat Politècnica de València, 2018. http://hdl.handle.net/10251/106345.

Pełny tekst źródła
Streszczenie:
El hidrógeno es un portador de energía que ya ha demostrado su capacidad para reemplazar el petróleo como combustible. Sin embargo, los medios de producción actualmente en uso siguen siendo altamente emisores de gases de efecto invernadero. La foto-electrólisis del agua es un proceso que, a partir de la energía solar, separa los compuestos elementales del agua como el hidrógeno y el oxígeno utilizando un semiconductor con propiedades físicas adecuadas. La hematita (¿-Fe2O3) es un material prometedor para esta aplicación debido a su estabilidad química y su capacidad para absorber una porción significativa de la luz (con una banda prohibida entre 2.0 - 2.2 eV). A pesar de estas propiedades ventajosas, existen limitaciones intrínsecas al uso de óxido de hierro para la descomposición fotoelectroquímica del agua. La primera restricción es la posición de su banda de conducción que es menor que el potencial de reducción de agua. Esta limitación se puede superar mediante la adición en serie de un segundo material, en tándem, que absorberá una parte complementaria del espectro solar y llevar a los electrones a un nivel de energía más alto que el potencial para la liberación de hidrógeno. El segundo obstáculo proviene del desacuerdo entre la corta longitud de difusión de los portadores de carga y la profundidad de penetración larga de la luz. Por lo tanto, es necesario controlar la morfología de los electrodos de hematita en una escala de tamaño similar a la longitud de transporte del orificio. En esta tesis, se introduce un nuevo concepto para mejorar el rendimiento fotoelectroquímico de la hematita. Usando el método hidrotermal depositamos capas delgadas de hematita dopada con Cr en sustratos de vidrio conductivo. También se ha preparado por medios electroquímicos una heterounión del tipo p-CuSCN/n-Fe2O3 depositando secuencialmente una capa de ¿-Fe2O3 y una película de CuSCNsobre sustratos de FTO (SnO2: F).Finalmente, se ha preparado células solares de perovskitas y óxido de hierro. Para ello se depositó una capa delgada, densa y uniformede óxido de hierro (¿-Fe2O3) como capa de transporte de electrones (ETL) en lugar de dióxido de titanio (TiO2) que se utiliza convencionalmente en las células fotovoltaicas perovskitastipoCH3NH3PbI3 (SGP). Este último dispositivo mostró un aumento en la fotocorriente del 20% y un IPCE30 veces mayor que la hematita simple, lo que sugiere una mejor conversión de las longitudes de onda por encima de 500 nm. Palabras clave: Fotoelectroquímica, división de agua, producción de hidrógeno, evolución de oxígeno, semiconductores de óxido de metal, hematita, óxido de hierro, nanoestructuras
Hydrogen is an energy carrier that has already demonstrated its ability to replace oil as a fuel. However, the means of production currently used remain highly emitting greenhouse gases. Photo-electrolysis of water is a process that uses solar energy to separate the elemental compounds of water such as hydrogen and oxygen using a semiconductor with adequate physical properties. Hematite (¿-Fe2O3) is a promising material for this application because of its chemical stability and ability to absorb a significant portion of light (with a band-gap between 2.0 - 2.2 eV). Despite these advantageous properties, there are intrinsic limitations to the use of iron oxide for the photoelectrochemical cracking of water. The first constraint is the position of its conduction band, which is lower than the water reduction potential. This constraint can be overcome by the addition in series of a second material, in tandem, which will absorb a complementary part of the solar spectrum and bring the electrons to a higher energy level than the potential of hydrogen release. The second obstacle comes from the disagreement between the short diffusion length of the charge carriers and the long light penetration depth. It is therefore necessary to control the morphology of the hematite electrodes on a scale of similar size to the transport length of the hole. In this thesis a new concept is introduced to improve the photoelectrochemical performances. Using the hydrothermal method we deposited thin layers of Cr-doped hematite on conductive glass substrates. We also electrochemically prepared a p-CuSCN / n-Fe2O3 heterojunction by sequentially depositing ¿-Fe2O3 and CuSCN films on FTO (SnO2: F) substrates. Finally, we have used uniform and dense thin layers of iron oxide (¿-Fe2O3) as an electron transport layer (ETL) in place of titanium dioxide (TiO2) conventionally used in photovoltaic cells based on perovskites CH3NH3PbI3 (PSC). This latter concept showed a 20% increase of the photocurrent and an IPCE 30 times greater than the simple hematite, suggesting better conversion of high wavelengths (> 500 nm). Keywords: Photoelectrochemistry, Water Splitting, Hydrogen Production, Oxygen Evolution, MetalOxide Semiconductors, Hematite, Iron Oxide, Nanostructures, Surface.
L'hidrogen és un proveïdor d'energia que ja ha demostrat la seva capacitat per reemplaçar el petroli com a combustible, però els mitjans de producció actuals continuen essent fortament emissors dels gasos responsables d'efecte hivernacle. La fotoelectròlisi de l'aigua és un procés que, a partir de l'energia solar, separa els compostos elementals d'aigua com l'hidrogen i l'oxigen utilitzant un semiconductor amb propietats físiques adequades. La hematita (¿-Fe2O3) és un material prometedor per a aquesta aplicació a causa de la seva estabilitat química i capacitat d'absorbir una porció significativa de la llum (amb un gap entre 2,0 i 2,2 eV). Malgrat aquestes propietats avantatjoses, hi ha limitacions intrínseques per a l'ús d'òxid de ferro per a la descomposició fotoelectroquímica de l'aigua. La primera restricció és la posició de la seva banda de conducció que és inferior al potencial de reducció d'aigua. Aquesta limitació es pot superar mitjançant l'addició en sèrie d'un segon material, en tàndem, que absorbirà una part complementària de l'espectre solar i portar els electrons a un nivell d'energia més alt que el potencial per a l'alliberament d'hidrogen. El segon obstacle prové del desacord entre la curta durada de la difusió dels portadors de càrrega i la llarga profunditat de penetració de la llum. Per tant, és necessari controlar la morfologia dels elèctrodes d'hematita en una escala de mida similar a la longitud del forat del transport. En aquesta tesi, es presenta un nou concepte per millorar el rendiment fotoelectroquímic. Mitjançant el mètode hidrotermal es van dipositar capes primes de hematita Cr-doped sobre substrats de vidre conductor. També s'han preparat electroquímicamentheterounions de tipus p-CuSCN/n-Fe2O3 dipositant seqüencialment una capa de ¿-Fe2O3 i altra de CuSCN sobre substrats FTO (SnO2: F).Finalment, s'han produït cél·lules solars de perovskitesi óxid de ferro. Per això es va depositaruna capa prima,densai uniforme d'òxid de ferro (¿-Fe2O3) com a capa de transport d'electrons (ETL) en lloc de diòxid de titani (TiO2) que s'utilitza convencionalment en les cèl·lules fotovoltaiques de perovskita híbrida del tipus CH3NH3PbI3 (SGP). Aquest últim dispositiu va mostrar un augment del fotocorrent del 20% i una IPCE30 vegades superior a la hematita simple, la qual cosa suggereix una millor conversió a longitud d'ones per sobre de 500 nm. Paraules clau:Fotoelectroquímica, divisió d'aigua, producció d'hidrogen, evolució d'oxigen, semiconductors d'òxids metàl·lics, hematita, òxid de ferro, nanoestructures.
Bouhjar, F. (2018). Preparation et performance d'une cellule photocatalytique à base d'hématite pour la génération d'hydrogène [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/106345
TESIS
Style APA, Harvard, Vancouver, ISO itp.
23

Aguilar, Daniel Angel Bellido. "Incorporação de impurezas pelo método do complexo polimerizado em nanoestruturas de óxido de ferro". reponame:Repositório Institucional da UFABC, 2015.

Znajdź pełny tekst źródła
Streszczenie:
Orientador: Prof. Dr. Flavio Leandro de Souza
Dissertação (mestrado) - Universidade Federal do ABC, Programa de Pós-Graduação em Nanociências e Materiais Avançados, 2015.
Iron oxide is one of the most promising semiconductors for applications as photoanodes in photoelectrochemical cells. A simple and cheap route to prepare hematite photoelectrodes is the sol-gel method. Hematite thin films can be also prepared by using the polymerized complex (PC) method that is a sol-gel method derived technique. This methodology involves the formation of complexes of metal ions that then undergo polymerization. In addition, the PC method allows an optimal control of stoichiometry and of the incorporation of impurities during the process. In this work, pure and doped hematite thin films were prepared by using the PC method at two different heat treatments (500°C and 800°C). The á-Fe2O3 thin films were modified with two differently charged dopants (Zn2+ and Sn4+), and their photoelectrochemical properties were studied in comparison with the pure hematite films. Hematite electrodes prepared at 800°C exhibited the best photocatalytic response in comparison with 500°C-treated hematite films. This effect was attributed to the higher roughness and surface area of films synthesized at higher temperatures. Furthermore, the modification of á-Fe2O3 with Zn2+ and Sn4+ ions resulted in a better photoresponse and stability as showed by the linear sweep voltammetry and chronoamperometry results. Dopants influenced differently on the photocurrent onset potential and the potential for the electrocatalytic oxygen evolution. In addition, results suggested that impurities were incorporated more efficiently into the hematite films prepared at 800°C. Nevertheless, the photocatalytic properties of the undoped and modified hematite films was poor, and two plausible hypothesis are proposed to explain the poor performance of hematite electrodes. First, most of dopants may have segregated, and, according to the previous reports in the literature, they may have acted as recombination sites that reduced the efficiency of the charge separation (photogenerated electron-hole pair). Second, poor contact between the hematite and F-SnO2 layer (from substrate) may have formed that severely hindered the harvesting of the photogenerated charges. The overall consequence of these two effects is the reduction in the activity of hematite films under illumination conditions.
O oxido de ferro e um dos semicondutores mais promissores para aplicacoes como fotoanodos em celulas fotoeletroquimicas. Uma rota simples e barata para preparar fotoeletrodos de hematita e o metodo sol-gel. Filmes finos de hematita podem tambem ser preparados utilizando o metodo do complexo polimerizado (CP) que e um metodo derivado da tecnica sol-gel. Esta metodologia envolve a formacao de complexos de ions metalicos que em seguida se polimerizam. Alem disso, o metodo do CP permite um controle optimo da estequiometria e da incorporacao de impurezas durante o processo. Neste trabalho, filmes finos de hematita pura e dopada foram preparados utilizando o metodo do CP em dois tratamentos termicos diferentes (500¿C e 800¿C). Os filmes finos de ¿¿-Fe2O3 foram modificados com dois dopantes de cargas diferentes (Zn2+ e Sn4+) e as suas propriedades fotoeletroquimicas foram estudadas em comparacao com os filmes de hematita pura. Os eletrodos de hematita preparados a 800¿C apresentaram a melhor resposta fotocatalitica em comparacao com os filmes de hematita preparados a 500¿C. Este efeito foi atribuido a maior rugosidade e area superficial dos filmes sintetizados a temperaturas mais elevadas. Alem disso, a modificacao de ¿¿-Fe2O3 com os ions Zn2+ e Sn4+ resultou em uma melhor fotoresposta e estabilidade como demonstrado pelos resultados da voltametria linear e cronoamperometria. Os dopantes influenciaram de forma diferente no potencial do comeco da fotocorrente e no potencial da evolucao de oxigenio eletrocatalitica. Alem disso, os resultados sugeriram que as impurezas foram incorporadas de forma mais eficiente nos filmes de hematita preparados a 800¿C. Porem, as propriedades fotocataliticas dos filmes de hematita nao dopada e modificada nao foram significativas, e duas hipoteses plausiveis sao propostas para explicar o baixo desempenho dos eletrodos de hematita. Em primeiro lugar, a maioria dos dopantes podem ter segregado, e, de acordo com o reportado na literatura, eles podem estar atuando como sitios de recombinacao que reduziram a eficiencia da separacao das cargas (par eletron-buraco fotogerado). Em segundo lugar, mau contato entre a camada de hematita e F-SnO2 (do substrato) pode ter sido formado que impediu severamente a colheita das cargas fotogeradas. A consequencia global destes dois efeitos e a reducao da atividade fotocatalitica dos filmes de hematita.
Style APA, Harvard, Vancouver, ISO itp.
24

Self, Katherine. "Non-classical growth mechanisms of functional inorganic crystals". Thesis, University of St Andrews, 2016. http://hdl.handle.net/10023/12012.

Pełny tekst źródła
Streszczenie:
This project relates to the non-classical growth of inorganic crystals with interesting morphologies that are highly desirable in industry. All crystals were synthesized via hydrothermal or solvothermal methods and their growth was studied by stopping each reaction at a range of different times, extracting the particles and analysing them using a variety of characterisation techniques. The main techniques used were scanning electron microscopy and transmission electron microscopy but other techniques, such as powder X-ray diffraction and thermal gravimetric analysis, were also employed. Decorated ZnO microstadiums were studied where ZnO nanocones coat the inner and outer columnar walls of ZnO microstadiums. It was revealed that the polymer in the synthetic solution enhanced the aggregation of nanocrystallites of precursor ions on the microstadium surfaces, which then underwent recrystallization, forming ZnO nanocones. The presence of organic agents was also found to be crucial in the non-classical growth mechanisms of CaCO₃ and RHO-ZIF crystals as the presence of charged groups on the organic molecules led to the aggregation of precursor molecules/ions, preventing classical growth. The disordered aggregates underwent surface recrystallization, forming ‘core-shell' structures where a thin layer of single crystal encased a disordered core. Over time the crystallisation extended from the surface inwards, towards the core, until true single crystals were formed. Organic molecules were also shown to play a role in the non-classical growth of 8-branched Cu₂O structures. In this case, however, studies of the electronic configuration of the main terminating facets of Cu₂O crystals revealed another key factor in their non-classical growth. Terminating hydroxyl groups on the Cu₂O surfaces could have different charges depending on the number of Cu⁺ ions they were coordinated to. The terminating {111} faces were the only ones to be coated with negatively charged hydroxyl groups, which explained the rapid growth on these surfaces as they were able to attract the positively charged metal/polymer precursor clusters. This new phenomenon was also found to be the main driving force in the rapid growth of branches in snowflake-like Fe₂O₃ crystals despite no organic agent being used. In this case, the {11-20} faces of the seed crystals had positively charged hydroxyl groups that were able to rapidly attract the negatively charged [Fe(CN) ₆]³⁻ ions in the aqueous solution.
Style APA, Harvard, Vancouver, ISO itp.
25

HUET, SARAH D. P. "Estudo de interações hiperfinas em nanopartículas de Fesub(3)Osub(4) e Fesub(3)Osub(4) dopadas com gadolínio pela espectroscopia de correlação angular perturbada". reponame:Repositório Institucional do IPEN, 2014. http://repositorio.ipen.br:8080/xmlui/handle/123456789/10616.

Pełny tekst źródła
Streszczenie:
Made available in DSpace on 2014-10-09T12:42:28Z (GMT). No. of bitstreams: 0
Made available in DSpace on 2014-10-09T14:01:49Z (GMT). No. of bitstreams: 0
Dissertação (Mestrado)
IPEN/D
Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
Style APA, Harvard, Vancouver, ISO itp.
26

UMAR, MOHAMMAD. "NANOSTRUCTURED IRON OXIDE MODIFIED CONDUCTING PAPER FOR CANCER DIAGNOSTICS". Thesis, 2016. http://dspace.dtu.ac.in:8080/jspui/handle/repository/15207.

Pełny tekst źródła
Streszczenie:
This dissertation contains results of the studies relating to the fabrication of a label-free, lightweight and flexible conducting paper based immunosensing platform comprising of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) and iron oxide nanocomposite for the detection of carcinoembryonic antigen (CEA), a cancer biomarker. The effect of various solvents such as sorbitol, ethanol, propanol, n-methyl-2-pyrrolidone (NMP) and dimethyl sulfoxide (DMSO) on the electrical conductivity of PEDOT:PSS coated whatman filter paper #1 (conducting paper, CP) has been investigated. Increment in the conductivity of the conducting paper electrode by two-fold was observed (from 6.84 x 10-4 to 2.40 x 10-2 S cm-1) after treatment with DMSO (DMSO@CP). Further, the incorporation of iron oxide nanoparticles (nFe2O3) into DMSO@CP has enhanced the electrochemical performance and signal stability. Thereafter, biorecognition element anti-CEA was immobilized on the modified electrode surface (nFe2O3/DMSO@CP) for the detection of CEA and bovine serum albumin (BSA) was used for blocking of nonspecific sites. Electrochemical response studies indicated that this BSA/anti-CEA/nFe2O3/DMSO@CP electrode has a sensitivity of 10.2 μA ng-1 mL cm-2, limit of detection 0.27 ng mL-1 with good linearity in the detection range 4-25 ng mL-1 and shelf life of 34 days. This fabricated immunosensor has also been validated via detection of CEA in serum samples of cancer patients employing ELISA technique.
Style APA, Harvard, Vancouver, ISO itp.
27

Chang, Chih-Yung, i 張智詠. "The study of nanostructured iron oxide photocatalyst electorde using anodization method". Thesis, 2010. http://ndltd.ncl.edu.tw/handle/55330928573964508843.

Pełny tekst źródła
Streszczenie:
碩士
國立中央大學
能源工程研究所
98
In this study, iron films were deposited on fluorine-tin-oxide coated glass substrate. Using RF sputtering system, a self-oriented iron oxide nanorods array was obtained by anodization of iron thin films. Anodization was carried out in an ethylene glycol solution containing 0.1M NH4F and various water content. We investigated the mechanism of anodic iron oxide making by anodization of iron thin films, and the properties of anodic iron oxide samples anodized with different water content in the electrolyte. The results of X-ray diffraction、X-ray photoelectron spectroscopy and mapping image show that iron oxide can be obtained by anodization of iron thin films. SEM images show the porous morphology on the surface of samples. Nanorod like structure can be observed using cross-sectional SEM images. Surface roughness and nanorods array measurements were carried out using AFM. The conductivity of electrolyte vary from 596 to 957μS/cm by adjusting water content from 2 to 14vol%. The pore sizes of samples are 48-140nm respectively. The direct band gap of samples vary from 1.95 to 2.2 eV. Carrier concentrations of samples are in range of 4.695×1020 to 2.038×1021cm-3 using Hall measurement. The flat band potentials of samples are in the range of -0.7V to -0.75V by using Mott-Schottky measurement in 1M KOH solution. The maximum photocurrent density is 0.72mA/cm2 with a bias voltage of 0.5V (V vs. Ag/AgCl), under a 300W Xe lamp system.
Style APA, Harvard, Vancouver, ISO itp.
28

Lee, Rung-Hau, i 李榮浩. "Nanostructured iron oxide electrodes prepared by electrochemical deposition and their electrochemical properties". Thesis, 2008. http://ndltd.ncl.edu.tw/handle/35996920208085787086.

Pełny tekst źródła
Streszczenie:
碩士
國立高雄應用科技大學
化學工程系碩士班
96
This research uses electrochemical deposition route to deposit nanostructured iron oxide films for high-performance electrode materials. By tuning the deposition parameters, it is possible to deposit iron oxide film with different surface morphologies. Surface morphology of the nanostructured iron oxide films is investigated by SEM. It is found that the iron oxide film deposited at low-current density (lower than 0.025 mA cm-2) is rod-like morphology of 28~38 nm in diameter; at high-current density (higher than 0.125 mA cm-2) is sheet-like morphology of 20~30 nm in thickness. As-deposited iron oxide film shows aggregation of nanorods. The sheet-like morphology is observed by annealing the film at higher temperatures (100 ℃~500 ℃). When the annealing temperature exceeds over 500 ℃, the sheet-shaped structure transforms into the grain structure. The crystal structure of the deposited iron oxide films is identified by GA-XRD pattern. As-deposited iron oxide film is α-FeO(OH). After annealing at 100 ℃ and 200 ℃, the diffraction peak of γ-FeO(OH) can be observed. The iron hydroxide converts into Fe2O3 structure when the annealing temperature is elevated to 300 ℃. The films deposited at different current densities (0.025~0.25 mA cm-2) and then annealed at various temperatures (100~500 ℃) are investigated in their electrochemical behavior. The aqueous and organic electrolytes are used in the electrochemical investigation, respectively. In aqueous system (1 M Li2SO4), an optimum electrochemical property is obtained by depositing the film at 0.125 mA cm-2 and annealing at 300 ℃; its specific capacitance reaches 145.1 F g-1 at a scan rate of 5 mVs-1. On the other hand, when the organic electrolyte (1 M LiClO4) is used in CV scan, there are two distinct reduction and oxidation peaks at 0.85 V vs. Li/Li+. In cycle-life stability test, an optimum electrochemical performance is obtained by depositing the film at 0.125 mA cm-2 and annealing at 500 ℃. Charging and discharging currents are set at 1000 mA g−1. After 10 cycles, the discharging capacity reaches 1000 mAh g-1.
Style APA, Harvard, Vancouver, ISO itp.
29

Ou-Yang, Huei, i 歐陽暉. "Characterization of nanostructured iron oxide composite electrode as an anode material for high-capacity Li-ion batteries". Thesis, 2009. http://ndltd.ncl.edu.tw/handle/20292566236248703085.

Pełny tekst źródła
Streszczenie:
碩士
國立高雄應用科技大學
化學工程與材料工程系
97
In this study, the iron oxide (α-Fe2O3) active materials are synthesized by electrochemical deposition and chemical precipitation methods, respectively. In addition, the iron oxide was coated on the surface of carbon fiber (VGCF) to form α-Fe2O3/VGCF composite electrode as an anode material for high-capacity Li-ion batteries. In the first part, the iron oxide film and α-Fe2O3/VGCF composite electrodes are prepared by electrochemical deposition method. The effects of different deposition current densities (0.025 and 0.125 mA cm-2) on the material characteristics and electrochemical performances of iron oxide electrode are investigated. According to the SEM analysis, the iron oxide film deposited at low-current density (0.025 mA cm-2) is rod-like morphology and that deposited at high-current density (0.125 mA cm-2) is sheet-like morphology. During the first charge-discharge process, the reversible capacity of films deposited at 0.025 and 0.125 mA cm−2 are 1390 and 1275 mAh g-1, respectively; At 10 C rate, the reversible capacity are 803 and 797 mAh g-1, respectively. The synthesized anode materials have a higher capacity than the graphite material for lithium storage. The SEM and XRD results indicate that iron oxide films are uniformly coated on the surface of carbon fiber by means of electrochemical deposition process. Compared with iron oxide electrode (deposited at 0.125 mA cm-2), the reversible capacity of α-Fe2O3/VGCF composite electrodes are increased by 17.9 % in first charge-discharge process and 12 % at 10 C rate. The results show that carbon fiber can improve the electrochemical performance of the composite electrodes effectively. In the second part, the iron oxide powder is synthesized by chemical precipitation method and is deposited onto the stainless steel substrate by electrophoretic deposition to form iron oxide film and α-Fe2O3/VGCF composite electrodes. The effects of different precursors [Fe(NH4)2(SO4)2.6H2O and FeCl3.6H2O] on the material characteristics and electrochemical performances of the iron oxide electrode is investigated. According to the SEM analysis, when the precursors are Fe(NH4)2(SO4)2.6H2O and FeCl3.6H2O, the morphologies of resulting iron oxide powder are nanorod and nanoparticles, respectively. The TG-DTA and XRD results indicate that FeOOH is fully converted into α-Fe2O3 when the annealing temperature is elevated to 400℃. During the first charge-discharge process, the reversible capacity of films for Fe(NH4)2(SO4)2.6H2O and FeCl3.6H2O are 1390 and 1275 mAh g-1, respectively; At 10 C rate, the reversible capacity are 713 and 503 mAh g-1, respectively. Compared with iron oxide electrode [Fe(NH4)2(SO4)2.6H2O], the reversible capacity of α-Fe2O3/VGCF composite electrodes are increased by 16.2 % in first charge-discharge process and 11.8 % at 10 C rate.
Style APA, Harvard, Vancouver, ISO itp.
30

Nanda, Debasis. "Green Synthesis of Iron Oxide Nanostructures". Thesis, 2015. http://ethesis.nitrkl.ac.in/7818/1/2015_Green_Synthesis_Nanda.pdf.

Pełny tekst źródła
Streszczenie:
Iron oxide nanoparticles are continuously drawing researchers’ attention because of their unique electronic and physiochemical properties in the fields of catalysis, environmental remediation, bio-imaging, and drug delivery, and so on. Iron oxide nanoparticles are mainly prepared by the chemical reduction of iron precursors, but the environment toxicity and expensiveness of reducing agent limits its application. Recently many people reported the leaf extract as a reducing agent for the synthesis of the variety of NPs as economical, environmentally friendly, and biocompatibility source. In this study, we report a simple, low cost, time-consuming and environment-friendly synthesis of iron oxide and iron oxide/Au coated nanorods using green tea extract as a reducing agent. On the other hand, iron-oxide tubes were also synthesized by a heat treatment method using a cotton template. The as-synthesized particles were characterized by UV-vis spectroscopy, FTIR spectroscopy. The crystalline structure and the phase change were clarified by XRD. The FESEM analysis revealed the morphology of the synthesized nanoparticles. The average surface area of the microtubes synthesized was found to be 72 m2/g from BET. The synthesized nanoparticles were used as Fenton as a catalyst for organic dye degradation, reduction of 4-NP to 4-AP and Oxidation of THF.
Style APA, Harvard, Vancouver, ISO itp.
31

Chang, Jia-Ming, i 張家銘. "The Study of Electrodeposition of Iron Oxide Nanostructures". Thesis, 2007. http://ndltd.ncl.edu.tw/handle/89716459260795771218.

Pełny tekst źródła
Streszczenie:
碩士
國立聯合大學
材料科學工程學系碩士班
95
In the study, the electrodeposition of iron oxide films on cathode has been carried out through the interaction of species Fe2+ with generated hydroxyl ions to form iron hydroxide. We also add ethylene glycol and hydrazine monohydrate into the solution in order to characterize their effect on the phase composition of the deposited films. According to XRD and SEM analysis, the effect of solution chemistry on phase composition, microstructure and texture development, particularly the deposition of single-phase magnetite films, has been discussed. In addition, the above-mentioned procedure can also be used to prepare of iron (III) oxide nanorods and nanotubes through the AAO template-mediated process. It is found that the configuration of the electrode assembly can lead to nanorod or nanotube structure; besides, the variation of concentration and deposition time can be used to change the morphology and aspect ratio. The present study not only discussed the growth behavior of nanorod but also explain the deposition of nanotube under specific condition and their microstructure transition. In addition to electrodeposition there is another microstructure appearing simultaneously by chemical precipitation in the solution, i.e., network structure composed of nanosheets. The growth behavior of nanosheets can be studied by changing the deposition parameters (e.g., reaction time, temperature, solution concentration, and/or substrate) and a possible growth mechanism has been proposed. The results indicates that the KCH3COO concentration determines both the nucleation rate and growth rate of the nanosheets, where the network structure cannot be observed due to limited nucleation density of nanosheets at low KCH3COO concentration below a critical limit. On the contrary, the growth rate would be retarded if there is a high nucleation rate for nanosheets which can consume the reactants in the solution during the nucleation period.
Style APA, Harvard, Vancouver, ISO itp.
32

Chalasani, Rajesh. "Functionalized Nanostructures : Iron Oxide Nanocrystals and Exfoliated Inorganic Nanosheets". Thesis, 2013. http://etd.iisc.ac.in/handle/2005/3463.

Pełny tekst źródła
Streszczenie:
This thesis consists of two parts. The first part deals with the magnetic properties of Fe3O4 nanocrystals and their possible application in water remediation. The second part is on the delamination of layered materials and the preparation of new layered hybrids from the delaminated sheets. In recent years, nanoscale magnetic particles have attracted considerable attention because of their potential applications in industry, medicine and environmental remediation. The most commonly studied magnetic nanoparticles are metals, bimetals and metal oxides. Of these, magnetite, Fe3O4, nanoparticles have been the most intensively investigated as they are, non-toxic, stable and easy to synthesize. Magnetic properties of nanoparticles such as the saturation magnetization, coercivity and blocking temperature are influenced both by size and shape. Below a critical size magnetic particles can become single domain and above a critical temperature (T B , the blocking temperature) thermal fluctuations can induce random flipping of magnetic moments resulting in loss of magnetic order. At temperatures above the blocking temperature the particles are superparamagnetic. Magnetic nanocrystals of similar dimensions but with different shapes show variation in magnetic properties especially in the value of the blocking temperature, because of differences in the surface anisotropy contribution. The properties of magnetic nanoparticles are briefly reviewed in Chapter 1. The objective of the present study was to synthesize Fe3O4 nanocrystals of different morphologies, to understand the difference in magnetic properties associated with shape and to explore the possibility of using Fe3O4 nanocrystals in water remediation. In the present study, oleate capped magnetite (Fe3O4) nanocrystals of spherical and cubic morphologies of comparable dimensions (∼10nm) have been synthesized by thermal decomposition of FeOOH in high-boiling octadecene solvent (Chapter 2). The nanocrystals were characterized by XRD, TEM and XPS spectroscopy. The nanoparticles of different morphologies exhibit very different blocking temperatures. Cubic nanocrystals have a higher blocking temperature (T B = 190 K) as compared to spheres (T B = 142 K). From the shift in the hysteresis loop it is demonstrated that the higher blocking temperature is a consequence of exchange bias or exchange anisotropy that manifests when a ferromagnetic material is in physical contact with an antiferromagnetic material. In nanoparticles, the presence of an exchange bias field leads to higher blocking temperatures T B because of the magnetic exchange coupling induced at the interface between the ferromagnet and antiferromagnet. It is shown that in these iron oxide nanocrystals the exchange bias field originates from trace amounts of the antiferromagnet wustite, FeO, present along with the ferrimagnetic Fe3O4 phase. It is also shown that the higher FeO content in nanocrystals of cubic morphology is responsible for the larger exchange bias fields that in turn lead to a higher blocking temperature. Magnetic nanoparticles with moderate magnetization can be easily separated from dispersions by applying low intensity magnetic fields. Oleate capped spherical and cubic iron oxide nanocrystals have considerable magnetic moment and hence have the potential as host-carriers for magnetic separation in environmental remediation. These nanocrystals are, however, dispersible only in non-polar solvents like chloroform, toluene, etc. Environmental remediation requires that the nanocrystals be water dispersible. This was achieved by functionalizing the surface of the iron oxide nanocrystals by coordinating carboxymethyl-β-cyclodextrin (CMCD) cavities (Chapter 3). The hydroxyl groups located at the rim of the anchored cyclodextrin cavity renders the surface of the functionalized nanocrystal hydrophilic. The integrity of the anchored CMCD molecules are preserved on capping and their hydrophobic cavities available for host-guest chemistry. The CMCD capped iron oxide particles are water dispersible and separable in modest magnetic fields (<0.5 T). Small molecules like naphthalene and naphthol can be removed from aqueous media by forming inclusion complexes with the anchored cavities of the CMCD-Fe3O4 nanocrystals followed by separation of the nanocrystals by application of a magnetic field. The adsorption properties of the iron oxide surface towards arsenic ions are unaffected by the CMCD capping so it too can be simultaneously removed in the separation process. To extend the application of the iron oxide nanocrystals so that they can both capture and destroy organic contaminants present in water, cyclodextrin functionalized water dispersible core-shell Fe3O4@TiO2 (CMCD-Fe3O4@TiO2) nanocrystals have been synthesized (Chapter 4). The application of these particles for the photocatalytic degradation of endocrine disrupting chemicals (EDC), bisphenol A and dibutyl phthalate, in water is demonstrated. EDC molecules that may be present in water are captured by the CMCD-Fe3O4@TiO2 nanoparticles by inclusion within the anchored cavities. Once included they are photocatalytically destroyed by the TiO2 shell on UV light illumination. The magnetism associated with the crystalline Fe3O4 core allows for the magnetic separation of the particles from the aqueous dispersion once photocatalytic degradation is complete. An attractive feature of these ‘capture and destroy’ nanomaterials is that they may be completely removed from the dispersion and reused with little or no loss of catalytic activity. The second part of the thesis deals with the intercalation of surfactants in inorganic layered solids and their subsequent delamination of the functionalized solid in non-polar solvents. The solids investigated were - the anionic layered double hydroxides (LDH), the 2:1 smectite clay, montmorillonite (MMT), layered metal thiophosphates (CdPS3) and graphite oxide (GO). Layered Double Hydroxides (LDH) are lamellar solids of the general chemical formula [M0(1−x)Mx(OH)2], where M0 is a divalent metal ion and M a trivalent ion. The structure of the Mg-Al layered double hydroxide (Mg-Al LDH) may be derived from that of brucite, Mg(OH)2, by isomorphous substitution of a part of the Mg2+ by trivalent Al3+ ions with electrical neutrality maintained by interlamellar exchangeable ions like nitrate or carbonate. The ion exchange intercalation of the anionic surfactant dodecyl sulfate (DDS) in an Mg-Al LDH and the subsequent delamination of the surfactant intercalated LDH in non-polar solvent is reviewed in Chapter 5. Delamination results in a clear dispersion of neutral nanosheets. The delaminated sheets are neutral as the surfactant chains remain anchored to the inorganic sheet. On solvent evaporation, the sheets re-stack to give back the original surfactant intercalated solid. This strategy for delamination of layered solids by intercalation of an appropriate surfactant followed by dispersing in a non-polar solvent has been extended to montmorillonite (MMT) and cadmium thiophosphates (CdPS3) by ion-exchange intercalation of the cationic surfactant dioctadecyldimethylammonium bromide (DODMA) followed by sonication in non-polar solvents e.g. toluene or chloroform as in the case of the LDH (Chapter 6). The nanosheets of the MMT and CdPS3 are electrically neutral as the surfactant chains remain anchored to the inorganic sheet even after exfoliation. Graphite oxide (GO) too can be delaminated by functionalizing the sheets by covalently linking oleylamine chains to the GO sheets via an amide bond. The oleylamine functionalized GO is easily delaminated in non-polar solvents to give electrically neutral GO nanosheets. It is shown in Chapter 7 that the 1:1 mixtures of dispersions of montmorillonite-DODMA with Mg-Al LDH-DDS nanosheets can self assemble, on solvent evaporation, to give a new layered solid with periodically alternating montmorillonite and LDH layers. In this method attractive forces between the neutral exfoliated nanosheets of cationic and anionic ensures self-assembly of a perfectly periodic alternating layered structure. The method has been extended to synthesize new layered solids in which surfactant tethered cationic and anionic inorganic sheets alternate. The hybrid solids synthesized are CdPS3—MgAl-LDH, CdPS3—CoAl-LDH, GO—MgAl-LDH, GO—CoAl-LDH. The procedure outlined in Chapter 7 allows for a simple, but versatile, method for generating new periodically ordered layered hybrid solids by self-assembly.
Style APA, Harvard, Vancouver, ISO itp.
33

Chalasani, Rajesh. "Functionalized Nanostructures : Iron Oxide Nanocrystals and Exfoliated Inorganic Nanosheets". Thesis, 2013. http://etd.iisc.ernet.in/2005/3463.

Pełny tekst źródła
Streszczenie:
This thesis consists of two parts. The first part deals with the magnetic properties of Fe3O4 nanocrystals and their possible application in water remediation. The second part is on the delamination of layered materials and the preparation of new layered hybrids from the delaminated sheets. In recent years, nanoscale magnetic particles have attracted considerable attention because of their potential applications in industry, medicine and environmental remediation. The most commonly studied magnetic nanoparticles are metals, bimetals and metal oxides. Of these, magnetite, Fe3O4, nanoparticles have been the most intensively investigated as they are, non-toxic, stable and easy to synthesize. Magnetic properties of nanoparticles such as the saturation magnetization, coercivity and blocking temperature are influenced both by size and shape. Below a critical size magnetic particles can become single domain and above a critical temperature (T B , the blocking temperature) thermal fluctuations can induce random flipping of magnetic moments resulting in loss of magnetic order. At temperatures above the blocking temperature the particles are superparamagnetic. Magnetic nanocrystals of similar dimensions but with different shapes show variation in magnetic properties especially in the value of the blocking temperature, because of differences in the surface anisotropy contribution. The properties of magnetic nanoparticles are briefly reviewed in Chapter 1. The objective of the present study was to synthesize Fe3O4 nanocrystals of different morphologies, to understand the difference in magnetic properties associated with shape and to explore the possibility of using Fe3O4 nanocrystals in water remediation. In the present study, oleate capped magnetite (Fe3O4) nanocrystals of spherical and cubic morphologies of comparable dimensions (∼10nm) have been synthesized by thermal decomposition of FeOOH in high-boiling octadecene solvent (Chapter 2). The nanocrystals were characterized by XRD, TEM and XPS spectroscopy. The nanoparticles of different morphologies exhibit very different blocking temperatures. Cubic nanocrystals have a higher blocking temperature (T B = 190 K) as compared to spheres (T B = 142 K). From the shift in the hysteresis loop it is demonstrated that the higher blocking temperature is a consequence of exchange bias or exchange anisotropy that manifests when a ferromagnetic material is in physical contact with an antiferromagnetic material. In nanoparticles, the presence of an exchange bias field leads to higher blocking temperatures T B because of the magnetic exchange coupling induced at the interface between the ferromagnet and antiferromagnet. It is shown that in these iron oxide nanocrystals the exchange bias field originates from trace amounts of the antiferromagnet wustite, FeO, present along with the ferrimagnetic Fe3O4 phase. It is also shown that the higher FeO content in nanocrystals of cubic morphology is responsible for the larger exchange bias fields that in turn lead to a higher blocking temperature. Magnetic nanoparticles with moderate magnetization can be easily separated from dispersions by applying low intensity magnetic fields. Oleate capped spherical and cubic iron oxide nanocrystals have considerable magnetic moment and hence have the potential as host-carriers for magnetic separation in environmental remediation. These nanocrystals are, however, dispersible only in non-polar solvents like chloroform, toluene, etc. Environmental remediation requires that the nanocrystals be water dispersible. This was achieved by functionalizing the surface of the iron oxide nanocrystals by coordinating carboxymethyl-β-cyclodextrin (CMCD) cavities (Chapter 3). The hydroxyl groups located at the rim of the anchored cyclodextrin cavity renders the surface of the functionalized nanocrystal hydrophilic. The integrity of the anchored CMCD molecules are preserved on capping and their hydrophobic cavities available for host-guest chemistry. The CMCD capped iron oxide particles are water dispersible and separable in modest magnetic fields (<0.5 T). Small molecules like naphthalene and naphthol can be removed from aqueous media by forming inclusion complexes with the anchored cavities of the CMCD-Fe3O4 nanocrystals followed by separation of the nanocrystals by application of a magnetic field. The adsorption properties of the iron oxide surface towards arsenic ions are unaffected by the CMCD capping so it too can be simultaneously removed in the separation process. To extend the application of the iron oxide nanocrystals so that they can both capture and destroy organic contaminants present in water, cyclodextrin functionalized water dispersible core-shell Fe3O4@TiO2 (CMCD-Fe3O4@TiO2) nanocrystals have been synthesized (Chapter 4). The application of these particles for the photocatalytic degradation of endocrine disrupting chemicals (EDC), bisphenol A and dibutyl phthalate, in water is demonstrated. EDC molecules that may be present in water are captured by the CMCD-Fe3O4@TiO2 nanoparticles by inclusion within the anchored cavities. Once included they are photocatalytically destroyed by the TiO2 shell on UV light illumination. The magnetism associated with the crystalline Fe3O4 core allows for the magnetic separation of the particles from the aqueous dispersion once photocatalytic degradation is complete. An attractive feature of these ‘capture and destroy’ nanomaterials is that they may be completely removed from the dispersion and reused with little or no loss of catalytic activity. The second part of the thesis deals with the intercalation of surfactants in inorganic layered solids and their subsequent delamination of the functionalized solid in non-polar solvents. The solids investigated were - the anionic layered double hydroxides (LDH), the 2:1 smectite clay, montmorillonite (MMT), layered metal thiophosphates (CdPS3) and graphite oxide (GO). Layered Double Hydroxides (LDH) are lamellar solids of the general chemical formula [M0(1−x)Mx(OH)2], where M0 is a divalent metal ion and M a trivalent ion. The structure of the Mg-Al layered double hydroxide (Mg-Al LDH) may be derived from that of brucite, Mg(OH)2, by isomorphous substitution of a part of the Mg2+ by trivalent Al3+ ions with electrical neutrality maintained by interlamellar exchangeable ions like nitrate or carbonate. The ion exchange intercalation of the anionic surfactant dodecyl sulfate (DDS) in an Mg-Al LDH and the subsequent delamination of the surfactant intercalated LDH in non-polar solvent is reviewed in Chapter 5. Delamination results in a clear dispersion of neutral nanosheets. The delaminated sheets are neutral as the surfactant chains remain anchored to the inorganic sheet. On solvent evaporation, the sheets re-stack to give back the original surfactant intercalated solid. This strategy for delamination of layered solids by intercalation of an appropriate surfactant followed by dispersing in a non-polar solvent has been extended to montmorillonite (MMT) and cadmium thiophosphates (CdPS3) by ion-exchange intercalation of the cationic surfactant dioctadecyldimethylammonium bromide (DODMA) followed by sonication in non-polar solvents e.g. toluene or chloroform as in the case of the LDH (Chapter 6). The nanosheets of the MMT and CdPS3 are electrically neutral as the surfactant chains remain anchored to the inorganic sheet even after exfoliation. Graphite oxide (GO) too can be delaminated by functionalizing the sheets by covalently linking oleylamine chains to the GO sheets via an amide bond. The oleylamine functionalized GO is easily delaminated in non-polar solvents to give electrically neutral GO nanosheets. It is shown in Chapter 7 that the 1:1 mixtures of dispersions of montmorillonite-DODMA with Mg-Al LDH-DDS nanosheets can self assemble, on solvent evaporation, to give a new layered solid with periodically alternating montmorillonite and LDH layers. In this method attractive forces between the neutral exfoliated nanosheets of cationic and anionic ensures self-assembly of a perfectly periodic alternating layered structure. The method has been extended to synthesize new layered solids in which surfactant tethered cationic and anionic inorganic sheets alternate. The hybrid solids synthesized are CdPS3—MgAl-LDH, CdPS3—CoAl-LDH, GO—MgAl-LDH, GO—CoAl-LDH. The procedure outlined in Chapter 7 allows for a simple, but versatile, method for generating new periodically ordered layered hybrid solids by self-assembly.
Style APA, Harvard, Vancouver, ISO itp.
34

Mei-YiLiao i 廖美儀. "Manganese iron oxide nanostructures for catalysis, photothermal therapy and bioimaging applications". Thesis, 2012. http://ndltd.ncl.edu.tw/handle/39169407281229631510.

Pełny tekst źródła
Streszczenie:
博士
國立成功大學
化學系碩博士班
100
Part I: Innovative ligand-assisted synthesis of NIR-activated iron oxide as a promising theranostic agent for MRI-guided photothermal therapy A new near-infrared (NIR)-activated Fe3O4 nanostructure was synthesized using a ligand-assisted hydrothermal process with carboxylate ligand and MOF-related ligand. No additional photoabsorbers (i.e., Au nanoshells, Au nanorods, or organic dyes) were necessary in this one-pot reaction. Fourier-transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) analyses indicated that the carboxylate molecules on the surface of the Fe3O4 nanostructure affected the visible–NIR d–d transitions of iron ions and resulted in a dramatic absorbance enhancement in the NIR region. The NIR-activated Fe3O4 nanostructure modified with mesoporous silica (mSiO2) showed the gradual depletion of the NIR absorption band as a function of HCl etching time as the iron oxide core was removed from the inside out, which suggested that the ligand-capped surface composites contributed to the NIR absorption of the iron oxide materials. Notably, this ligand-assisted hydrothermal reaction was also utilized to synthesize NIR-activated α-Fe2O3 nanoplates. Because of their magnetic properties, NIR-activated Fe3O4 nanostructures were biologically examined in vitro and in vivo as a potential therapeutic agent. The Fe3O4 nanostructures were used for the NIR laser photothermal ablation of KB cells, for the acquisition of local thermal images, and as an MR contrast agent for local tumor treatments. The NIR-activated Fe3O4 nanostructures had no significant toxic effects based on cell and animal experiments. Part I: Synthesis of magnetic hollow nanotubes based on the kirkendall effect for MR contrast agent and colorimetric hydrogen peroxide sensor We developed a simple solvothermal approach to synthesize hollow Mn ferrite nanostructures. A mixture of ferric stearate (Fe(SA)3) and manganese stearate (Mn(SA)2) reacted with [Fe3+]/[M2+] ratio = 1: 1 in 1-octanol solvent at 240 oC. No additional capping agent was necessary in this reaction. Transmission electron microscopy (TEM) and X-ray diffractometer (XRD) showed that solid tetragonal-structured hausmannite nanorods were primary formation at ~ 1 h and then followed by a hollowing process to form core-free spinel-type Mn ferrite nanotubes at ~ 12 h. The as-obtained Mn ferrite nanotubes showed a non-stoichiometric composition, which was an average ratio of Fe and Mn elements as ~ 1. High resolution TEM (HRTEM) analysis was carried to understand the hollowing process which suspected a crystallographic relationship of facet orientation and epitaxial growth via a Kirkendall effect pathway. Superconducting quantum interference device (SQUID) measurements determined that the paramagnetic behavior of hausmannite nanorods with low mass magnetization conversed to superparamagnetism of Mn ferrite nanotubes with high mass magnetization. Magnetic resonance imaging (MRI) contrast signal was significantly enhanced by using high magnetic Mn ferrite nanotubes. Both solid hausmannite nanorods and hollow Mn ferrite nanotubes performed the potential application in peroxidase-like catalytic activity. Furthermore, this hollowing strategy using solvothermal method could be easy handy o prepare stoichiometric composition of hollow Mn ferrite nanospheres by adjusting the [Fe3+]/[M2+] ratio (2: 1) of metal precursors through either a one-step or step-by-step syntheses.
Style APA, Harvard, Vancouver, ISO itp.
35

Lin, Kuan-Che, i 林寬哲. "Synthesis of Gold@Iron Oxide Core-Shell Nanostructures via an Electroxidation Procedure". Thesis, 2014. http://ndltd.ncl.edu.tw/handle/04982703550684069540.

Pełny tekst źródła
Streszczenie:
碩士
國立清華大學
生醫工程與環境科學系
103
Core-shell nanostructures have attracted considerable interest as a new class of nanomaterials due to the fascinating physical and chemical characteristics. Herein, a facial and low-cost approach was reported for the synthesis of gold@iron oxide core-shell nanoparticles. By using the citrate-stabilized gold nanoparticles as seeds, the gold@iron oxide nanoparticles were prepared via an electroxidation of iron nail at 1.0 V between the electrodes in aqueous solution. Modulating with the parameters such as pH values, buffers and reaction time make the iron shell thickness to be well controlled. The optimized shell thickness was further utilized with gold narnoparticles for the surface-enhanced Raman scattering (SERS) effect by Raman spectrometry application. Most importantly, gold@iron oxide nanoparticles turn superparamagnetic after annealing at 350℃ for six hours under nitrogen environment. The enhanced magnetic properties of the resulting core-shell nanoparticles show their future potential in magnetic resonance imaging as well as targeted delivery through magnetofection.
Style APA, Harvard, Vancouver, ISO itp.
36

Dar, Ghulam Nabi. "Metal oxide nanostructures and their applications". Thesis, 2015. http://hdl.handle.net/10889/8553.

Pełny tekst źródła
Streszczenie:
Recently, researchers on nanoparticles and nanostructures has received a great deal of attention not only in the area of synthesis and characterization but also in their potential application in various high-technological applications. Nanomaterials are widely used not only for environmental and biological applications but also for electronic and sensing applications. Among various classes of nanomaterials, the metal oxide nanostructures possess particular important because of their significant physical and chemical properties which allowed them to be used for the fabrication of highly efficient nanodevices. The metal oxide nanomaterials are widely used for catalysis, sensing, and electronic devices, and so on. Due to the high-efficient applications, researchers have developed several synthesis strategies to prepare metal oxide nanostructures with tailored geometry and utilize them for a variety of applications. However, it is still desirable to prepare metal oxide nanomaterials with environment-friendly precursors and processes with varied size and morphology for their effective utilization in specific applications. This thesis focuses on the synthesis, characterizations and specific applications of two undoped and doped metal oxide nanostructures, i.e. zinc oxide (ZnO) and iron oxide (α-Fe2O3). The thesis highlights the development of novel synthesis techniques/procedures which are rapid, consume less energy and time, and are less cumbersome, more economical, especially because of the low temperature process. The other aspect of the thesis is to use the as-synthesized nanomaterials for several important applications such as sensors, photovoltaic, and photocatalysis. The thesis is divided into several chapters. Chapter 1 starts with a brief introduction of the metal oxide nanostructures and their various synthetic methods. In addition to this, a short review on the targeted applications, i.e. sensing, photovoltaic and photocatalytic, of this thesis was also discussed in this chapter. Finally, the chapter describes the objective and importance of the thesis. Chapter 2 deals with the details of the synthesis and characterization techniques used in this thesis. Two specific techniques, i.e. hydrothermal and thermal evaporation, have been used for the synthesis of various undoped and doped nanomaterials explored in this thesis. The synthesized nanomaterials were examined by variety of techniques in terms of the morphological, structural, optical, compositional and electrical properties. Moreover the prepared nanomaterials together were used for various applications such as sensing, photovoltaic and photocatalytic applications. In a word, this chapter provides all the detailed procedures for the synthesis, characterizations and applications of targeted nanomaterials in this thesis. Chapter 3 describes the main results and discussion of the thesis. This chapter is divided into several sections and each section describes the synthesis, detailed characterizations and particular application of a single metal oxide nanomaterial. Section 1 describes the growth, characterization and ammonia chemical sensing applications of well-crystalline ZnO nanopencils grown via facile and simple hydrothermal process using commonly used laboratory chemicals. Importantly, the fabricated ammonia chemical sensor exhibited ultra-high sensitivity. Section 2 demonstrates the use of ZnO balls made of intermingled nanocrystalline nanosheets for photovoltaic device application. Successful growth, characterizations and phenyl hydrazine chemical sensing applications based on Ag-doped ZnO nanoflowers was demonstrated in section 3 of this chapter. Section 4 describes the Ce-doped ZnO nanorods for the detection of hazardous chemical; hydroquinone. Section 5 exemplifies the facile growth and detailed structural and optical characterizations of In-Doped ZnO hollow spheres composed of nanosheets networks and nanocones. Finally, section 6 illustrates the utilization of α-Fe2O3 hexagonal nanoparticles for environmental remediation and smart sensor applications. Moreover the synthesized α-Fe2O3 hexagonal nanoparticles were characterized in detail in terms of their morphological, structural, compositional and optical properties. Chapter 4 briefly highlights the overall conclusion and an outlook for further investigations suggested by the work undertaken here for this thesis.
Τα τελευταία χρόνια τα νανοσωματίδια και οι νανοδομές έχουν προσελκύσει μεγάλο ερευνητικό ενδιαφέρον λόγω των σημαντικών δυνατοτήτων που προσφέρουν για εφαρμογές υψηλής τεχνολογίας. Τα νανοϋλικά χρησιμοποιούντα ευρέως τόσο για περιβαλλοντικές και βιολογικές εφαρμογές όσο και για εφαρμογές στην ηλεκτρονική και τους αισθητήρες. Μεταξύ των διάφορων κατηγοριών νανοϋλικών, οι νανοδομές μεταλλικών οξειδίων παρουσιάζουν ιδιαίτερο ενδιαφέρον λόγω των φυσικών και χημικών ιδιοτήτων τους, που τους επιτρέπουν να χρησιμοποιούνται για την κατασκευή νανοσυσκευών υψηλής απόδοσης, με χαρακτηριστικά πεδία εφαρμογών την κατάλυση, την ηλεκτρονική και τους αισθητήρες. Για τους σκοπούς αυτούς, έχει αναπτυχθεί πληθώρα μεθόδων για την σύνθεση και προετοιμασία νανοδομών μεταλλικών οξειδίων με επιθυμητές γεωμετρίες, ώστε να είναι κατάλληλα για διαφορετικές εφαρμογές. Παρόλα αυτά, εξακολουθεί να υπάρχει έντονο ενδιαφέρον για την παραγωγή τέτοιων υλικών σε διάφορα μεγέθη και μορφολογίες, με περιβαλλοντικά φιλικές μεθόδους, με απώτερο σκοπό την χρησιμοποίησή τους σε συγκεκριμένες εφαρμογές. Η παρούσα διατριβή εστιάζει στην σύνθεση, τον χαρακτηρισμό και τις εφαρμογές των νανοδομών δύο συγκεκριμένων μεταλλικών οξειδίων (ZnO και α-Fe2O3) με ή χωρίς προσμείξεις. Η διατριβή δίνει έμφαση σε νέες τεχνικές σύνθεσης, οι οποίες είναι γρήγορες, καταναλώνουν λιγότερη ενέργεια και είναι πιο οικονομικές κυρίως λόγω χαμηλότερης θερμοκρασίας επεξεργασίας. Οι δομές των νανοϋλικών που προκύπτουν, χρησιμοποιούνται σε διάφορες σημαντικές εφαρμογές, όπως είναι οι αισθητήρες, τα φωτοβολταϊκά και η φωτοκατάλυση. Η διατριβή χωρίζεται σε 4 κεφάλαια. Στο κεφάλαιο 1 δίνεται μία σύντομη εισαγωγή στις νανοδομές των μεταλλικών οξειδίων και τις διάφορες μεθόδους σύνθεσης. Παρουσιάζονται συνοπτικά τα είδη των εφαρμογών τα οποία θα αποτελέσουν αντικείμενο μελέτης και τέλος περιγράφονται οι αντικειμενικοί στόχοι και η σημασία της διατριβής. Το κεφάλαιο 2 πραγματεύεται λεπτομερώς τις τεχνικές σύνθεσης και χαρακτηρισμού που υιοθετούνται στο μεγαλύτερο μέρος της μελέτης. Συγκεκριμένα, για την σύνθεση των νανοϋλικών (με ή χωρίς προσμίξεις) χρησιμοποιούνται οι τεχνικές της υδροθερμικής και της θερμικής εξάχνωσης. Τα παραγόμενα νανοϋλικά μελετήθηκαν ως προς την σύνθεσή τους, καθώς επίσης και τις μορφολογικές, δομικές, οπτικές και ηλεκτρικές ιδιότητες. Στην συνέχεια, χρησιμοποιούνται για τα διάφορα είδη εφαρμογών που αναφέρθηκαν παραπάνω. Με άλλα λόγια, στο κεφάλαιο αυτό περιέχονται όλες οι λεπτομέρειες των διαδικασιών παραγωγής και των εφαρμογών. Το κεφάλαιο 3 περιλαμβάνει την παρουσίαση και συζήτηση των αποτελεσμάτων. Αποτελείται από διάφορες παραγράφους η κάθε μία εκ των οποίων περιγράφει την σύνθεση, τον χαρακτηρισμό και τις εφαρμογές ενός εκ των υλικών. Στην Παράγραφο 1 περιγράφονται η ανάπτυξη, ο χαρακτηρισμός των κρυσταλλικών ZnO νανομολυβδιών μέσω μίας απλής και εύκολης υδροθερμικής διαδικασίας, χρησιμοποιώντας συνηθισμένα εργαστηριακά υλικά, καθώς επίσης και η εφαρμογή τους ως χημικοί αισθητήρες αμμωνίας. Αξίζει να σημειωθεί ότι οι αισθητήρες που κατασκευάστηκαν επέδειξαν υπέρ-υψηλή ευαισθησία. Η παράγραφος 2 επιδεικνύει την χρήση ZnO σφαιρών που είναι κατασκευασμένες απο αναμιγμένα νανοκρυσταλλικά νανοφύλλα για φωτοβολταϊκές εφαρμογές. Η επιτυχής ανάπτυξη και χαρακτηρισμός ZnO νανολουλουδιών εμπλουτισμένα με Άργυρο καθώς επίσης και η χρήση τους σε εφαρμογές αισθητήρων φαινυλο-υδραζίνης παρουσιάζονται στην παράγραφο 3. Στην παράγραφο 4 περιγράφεται η χρήση ZnO νανοράβδων εμπλουτισμένων με Δημήτριο για την ανίχνευση της επικίνδυνης χημικής ουσίας υδροκινόνης. Στην Παράγραφο 5 παρουσιάζεται η ανάπτυξη και ο λεπτομερής δομικός και οπτικός χαρακτηρισμός κοίλων σφαιρών ZnO εμπλουτισμένων με Ίνδιο που αποτελούνται απο δίκτυα νανοφύλλων και νανοκώνους. Τέλος στην παράγραφο 6 περιγράφεται η χρήση εξαγωνικών νανοσωματιδίων α-Fe2O3 για περιβαλλοντική αποκατάσταση και εφαρμογές ευφυών αισθητήρων. Οι δομές αυτές χαρακτηρίστηκαν λεπτομερώς ως προς τη σύνθεση τις μορφολογικές, τις δομικές και τις οπτικές ιδιότητες. Στο κεφάλαιο 4 παρουσιάζονται τα συμπεράσματα της παρούσας διατριβής καθώς επίσης και προστάσεις για την περεταίρω διερεύνηση των υπό μελέτη συστημάτων.
Style APA, Harvard, Vancouver, ISO itp.
37

Lin, Cheng-Hao, i 林正皓. "Growth of iron oxide nanostructures under different oxygen environments by CO2 laser-heating". Thesis, 2015. http://ndltd.ncl.edu.tw/handle/39757414313139678911.

Pełny tekst źródła
Streszczenie:
碩士
國立臺灣海洋大學
光電科學研究所
103
In this paper, the carbon dioxide laser was used to grow iron oxide (α-Fe2O3) of nanostructures and explore the growth situation under the atmosphere, the pure N2 and the pure O2 ambient. We use carbon dioxide laser to heat iron foil to grow iron oxide nanostructures. At atmospheric environment the main growing structure is nanowire. At pure N2 environment the main growing structure is nanoflake. At pure O2 environment the main growing structure is nanorod. At nitrogen-oxygen ratio of 10:1 and 7:1 the main growing structure are nanoneedles. In this study, the carbon dioxide laser was used to heat iron foil, the heating time is 1 to 20 minutes, the laser power is 9 to 11 W. In material analysis, the scanning electron microscope (SEM) was used to observe the size and the patterns of nanostructures, the transmission electron microscope (TEM) was used to observe the lattice arrangement, and the X-ray diffraction analyzer (XRD) was used to analysis the crystal structure. At atmospheric environment the nanowire length is between 671 nm and 3.7 m, and its diameter is between 15 and 235 nm. At N2 environment the nanoflake length is between 1.5 and 3.8 m, its top width is between 62 and 164 nm and bottom width is between 181 and 281 nm. At O2 environment the nanoflake length is between 1.2 and 3.6 m, and its diameter is between 83 and 250 nm. At nitrogen-oxygen ratio of 7:1 the nanoneedle length is between 2.4 and 5.5 m, and its bottom width is between 34 and 316 nm. At nitrogen-oxygen ratio of 10:1 the nanoneedle length is between 2.8 and 6.1 m, and its bottom width is between 70 and 280 nm. We also found that the iron oxide nanowire is a single crystal structure. α-Fe2O3 is the n-type semiconductor with band gap of about 2.1 eV; material itself is magnetic, nontoxic, and anticorrosion properties. It can absorb visible light wavelengths below 540 nm. In the oxide material field, except iron oxide it has almost no material can absorb wavelengths longer than 460 nm, therefore, iron oxide has a great advantage in band gap, and can be used in lithium batteries electrodes, gas sensors, field effect transistors, field emission and so on.
Style APA, Harvard, Vancouver, ISO itp.
38

Chen, Jia-ling, i 陳嘉伶. "Hydrothermal Synthesis of Iron Oxide Nanostructures for the Adsorption of As(V) Ion". Thesis, 2012. http://ndltd.ncl.edu.tw/handle/98729200889900331819.

Pełny tekst źródła
Streszczenie:
碩士
中原大學
化學工程研究所
100
In this study, the reaction temperature were low-temperature of 70°C and high temperature of 180°C in the hydrothermal process, in the presence of FeSO4 ·7H2O and HMTA, successful preparation of iron oxide nanoparticles and the plate structure. In addition, in order to overcome the shortcomings of small particles of iron oxide nanoparticles agglomeration, the high temperature 180°C reaction by adding phenol for the phenolic (Phenol-Formaldehyde, PF) polymerization. The product was organic-inorganic hybrid of phenolic resin/iron oxide composites. After the high-temperature calcination in air, removing the phenolic resin, the formation of the porous iron oxide of high porosity and surface area. The amount of HMTA affected that phenolic produce different degrees of polymerization, resulting in the differences of the porosity at the high-temperature calcination. Then, the original nanoparticles can enhance the specific surface area, and using the iron oxide itself has magnetic properties and high specific surface area in arsenic(V)ion adsorption. Iron oxide porous material can be separation by an external magnetic field, reducing separation costs, and enhance the adsorption performance has considerable potential for heavy metals in water treatment applications. Finally, the use of hydrazine as a reducing agent and phenolic resin-assisted to reduce the iron oxide in the nitrogen environment calcination, it enhance the effect of the adsorption of arsenic(V) ions.
Style APA, Harvard, Vancouver, ISO itp.
39

Mendes, Rafael Gregorio. "Synthesis, characterization and toxicological evaluation of carbon-based nanostructures". Doctoral thesis, 2014. https://tud.qucosa.de/id/qucosa%3A29029.

Pełny tekst źródła
Streszczenie:
The synthesis, characterization and biological evaluation of different graphene-based nanoparticles with potential biomedical applications are explored. The results presented within this work show that eukaryotic cells can respond differently not only to different types of nanoparticles, but also identify slight differences in the morphology of nanoparticles, such as size. This highlights the great importance of the synthesis and thorough characterization of nanoparticles in the design of effective nanoparticle platforms for biological applications. In order to test the influence of morphology of graphene-based nanoparticles on the cell response, nanoparticles with different sizes were synthesized and tested on different cells. The synthesis of spherical iron-oxide nanoparticles coated with graphene was accomplished using a colloidal chemistry route. This synthesis route was able to render nanoparticle samples with narrow size distributions, which can be taken as monodispersed. Four different samples varying in diameter from 10 to 20 nm were produced and the material was systematically characterized prior to the biological tests. The characterization of the material suggests that the iron oxide nanoparticles consist of a mix of both magnetite and maghemite phases and are coated with a thin graphitic layer. All samples presented functional groups and were similar in all aspects except in diameter. The results suggest that cells can respond differently even to small differences in the size of the nanoparticles. An in situ study of the coating of the iron-oxide nanoparticles using a transmission electron microscope revealed that it is possible to further graphitize the remaining oleic acid on the nanoparticles. The thickness of the graphitic coating was controlled by varying the amount of oleic acid on the nanoparticles. The in situ observations using an electron beam were reproduced by annealing the nanoparticles in a dynamic vacuum. This procedure showed that it is not only possible to coat large amounts of iron oxide nanoparticles with graphene using oleic acid, but also to improved their magnetic properties for other applications such as hyperthermia. This study therefore revealed a facile route to grow 2D graphene takes on substrates using oleic acid as a precursor. The synthesis of nanographene oxide nanoparticles of different sizes was in a second approach accomplished by using the Hummers method to oxidize and expand commercially available graphite. The size of the oxidized graphite was adjusted by sonicating the samples for different periods of time. The material was also thoroughly characterized and demonstrated to have two distinctive average size distributions and possess functional groups. The results suggest that different size flakes can trigger different cell response. The synthesis, characterization and biological evaluation of graphene nanoshells were performed. The graphene nanoshells were produced by using magnesia nanoparticles as a template to the graphene nanoshells. The coating of magnesia with graphene layers was accomplished using chemical vapor deposition. The nanoshells were obtained by removing the magnesia core. The size of the nanoshells was determined by the size of the magnesia nanoparticles and presented a broad size distribution since the diameter of the magnesia nanoparticles could not be controlled. The nanoshells were also characterized and the biological evaluation was performed in the Swiss Federal Laboratories for Materials Science and Technology (EMPA), in Switzerland. The results suggest that despite inducing the production of reactive oxygen species on cells, the nanoshells did not impede cell proliferation.
Die Herstellung, Charakterisierung und biologische Auswertung von verschiedenen Graphen-basierten Nanopartikeln mit einer potenziellen biomedizinischen Anwendung wurden erforscht. Die vorgestellten Ergebnisse im Rahmen dieser Arbeit zeigen, dass eukaryotische Zellen unterschiedlich reagieren können, wenn sie mit Nanopartikeln unterschiedlicher Morphologie interagieren. Die Zellen können geringe Unterschiede in der Morphologie, insbesondere der Größe der Nanopartikeln, identifizieren. Dies unterstreicht den Einfluss der Herstellungsmethoden und die Notwendigkeit einer gründlichen Charakterisierung, um ein effektives Design von Nanopartikeln für biologische Anwendungen zu erreichen. Um den Einfluss der Größe von Graphen-basierten Nanopartikel auf das Zellverhalten zu erforschen, wurden verschiedene Graphen-beschichte Eisenoxid-Nanopartikelproben durch eine kolloidchemische Methode hergestellt. Dieses Herstellungsverfahren ermöglicht die Synthese von Nanopartikeln mit engen Größenverteilungen, die als monodispers gelten können. Vier Proben mit unterschiedlichen Durchmessern (von 10 bis 20 nm) wurden hergestellt und vor den biologischen Untersuchungen systematisch charakterisiert. Die Probencharakterisierung deutet auf eine Mischung aus Magnetit- und Maghemit-Kristallphasen hin, außerdem besitzen die Nanopartikel eine dünne Graphitschicht. Die spektroskopischen Ergebnisse auch zeigen außerdem, dass alle Proben funktionelle Gruppen auf ihrer Oberfläche besitzen, sodass sie in allen Aspekten, außer Morphologie (Durchmesser), ähnlich sind. Die biologischen Untersuchungen deuten darauf hin, dass Zellen unterschiedliche Größen von Eisenoxid-Nanopartikeln reagieren können. Ein in situ Untersuchung der Beschichtung der Eisenoxid-Nanopartikel wurde mit einem Transmissionelektronenmikroskop durchgeführt. Die Ergebnisse zeigen, dass eine dünne Schicht von Ölsäure aus dem Syntheseprozess auf den Nanopartikeln verbleibt. Diese Schicht kann mit einem Elektronstrahl in Graphen umgewandelt werden. Die Dicke der Graphitschicht auf den Nanopartikeln kann durch die Menge der eingesetzten Ölsäure kontrolliert werden. Die in situ Beobachtungen der Graphenumwandlung konnte durch erhitzen der Nanopartikeln in einem dynamischen Vakuum reproduziert werden. Das Brennen der Eisenoxid-Nanopartikel ermöglicht nicht nur die Graphitisierung der Ölsäure, sondern auch eine Verbesserung der magnetischen Eigenschaften der Nanopartikel für weitere Anwendungen, z. B. der Hyperthermie. Die Umwandlung der Ölsäure in Graphen konnte so als relativ einfaches Verfahren der Beschichtung von zweidimensionalen (2D) Substraten etabliert werden. Die Herstellung von Nanographenoxid mit unterschiedlichen Größen wurde mit der Hummers-Method durchgeführt. Die unterschiedlichen Größen der Nanographenoxidpartikel wurde durch eine Behandlung in Ultraschallbad erreicht. Zwei Proben mit deutlicher Verteilung wurden mit mehreren Verfahren charakterisiert. Beide Proben haben Nanographenoxid Nanoteilchen mit verschiedenen funktionellen Gruppen. Die biologische Charakterisierung deutet darauf hin, dass unterschiedliche Größen des Nanographens ein unterschiedliches Zellverhalten auslösen. Abschließend, wurde die Herstellung, Charakterisierung und biologische Auswertung von Graphen-Nanoschalen durchgeführt. Die Graphen-Nanoschalen wurden mit Magnesiumoxid-Nanopartikeln als Template hergestellt. Die Beschichtung des Magnesia mit Graphen erforgte durch die chemische Gasphasenabscheidung. Die Nanoschalen wurden durch Entfernen des Magnesia-Kerns erhalten. Die Größe der Nanohüllen ist durch die Größe der Magnesia-Kerns bestimmt und zeigt eine breite Verteilung, da der Durchmesser der Magnesiumoxid-Nanopartikel gegeben war. Die Nanoschalen wurden ebenfalls mit Infrarot- und Röntgen Photoemissionspektroskopie charakterisiert und die biologische Bewertung wurde im Eidgenössische Materialprüfungs- und Forschungsanstalt (EMPA) durchgeführt, in der Schweiz. Die Ergebnisse zeigen, dass zwar die Produktion von reaktiven Sauerstoffspezies in den Zellen ausgelöst wird, diese sich aber weiterhin vermehren können.
Style APA, Harvard, Vancouver, ISO itp.
40

Kalapu, Chakrapani. "Synthesis, Physiochemical And Electrochemical Studies On Iridium, Osmium And Graphene Oxide-Based Nanostructures". Thesis, 2013. http://etd.iisc.ernet.in/handle/2005/2631.

Pełny tekst źródła
Streszczenie:
Nanoscience dominates almost all areas of science and technology in the 21st century. Nanoparticles are of fundamental interest since they possess unique size dependent properties (optical, electrical, mechanical, chemical, magnetic etc.), which are quite different from the bulk and the atomic state. The research work presented in the thesis is on the preparation, characterization and studies on Ir, Os and graphene oxide-based systems. Interconnected Ir and Os nanochains are prepared under environmentally friendly conditions in aqueous media and subsequently used as substrates for surface enhanced Raman scaterring studies and also as electrocatalysts for oxygen reduction and formaldehyde oxidation. Ir and IrOx nanostructures are prepared using borohydride at different temperatures. The nature of interaction of heme proteins with IrOx is studied using spectroscopic techniques. Electrochemical studies on reduced graphene oxide include sensing of biomolecules with high sensitivity and oxygen reduction reaction (ORR) in aqueous alkaline medium. rGO is also used as support for anchoring Ir nanoparticles and the catalyst is used for the oxidation of benzyl amines to corresponding imines. The thesis is divided in to seven chapters and details are given below. Chapter 1 gives an introduction about the synthetic strategies and properties of metal nanostructures. This is followed by literature survey on Ir, Os and graphene oxide-based systems relevant to the present study. Aim and scope of the present investigation is given at the end. Chapter 2 discusses the experimental procedures and characterization techniques used in the present study. Chapter 3 involves the preparation, characterization and studies on interconnected Ir nanochains. Assemblies of small sized nanoparticles forming network-like structures have attracted enormous interest and different metal nanoassemblies have been reported using different procedures. Ir3+ reduction is kinetically not a very favourable process and hence there are not many attempts to synthesize Ir-based nanostructures. Assemblies of interconnected Ir nanoparticles have been synthesized in the present studies using borohydride as reducing agent and ascorbic acid as capping agent, at high temperatures. Polyfunctional capping molecules such as ascorbic acid and vitamin P play important role for the formation of network- like Ir nanostructures. Optical properties of the networks are probed using UV-Vis spectroscopy and evolution of coupled plasmon of Ir nanochains at 418 nm (figure 1) is observed. The nanochains are used as substrates for SERS studies while the catalytic activity is followed for the reduction of nitroaromatics. Electrocatalytic activity of Ir nanochains is exemplified using oxygen reduction and formaldehyde oxidation. Ir nanochains show better electrocatalytic activities than nanoparticles as shown in figure 2. Figure 1. Time dependent UV-Vis absorption spectra of Ir nanoparticles recorded at various time intervals of (a) 5; (b) 15; (c) 30 and (d) 60 minutes of reduction of Ir3+ using borohydride and the corresponding TEM images. Figure 2. Polarization curves for oxygen reduction on (i) Ir nanochains and (ii) Ir nanoparticles in (A) 0.5 M H2SO4 and (B) 0.1 M KOH at a scan rate of 0.005 V/s. Rotation speed used is 1000 rpm. Chapter 4 discusses the preparation of Ir and IrOx using borohydride. The reaction temperature determines the product. Various physicochemical, microscopic and spectroscopic techniques have been used to understand the evolution of nanostructures. Borohydride reduces Ir3+ at high temperatures to form high surface area foams, while at 25oC, it results in an alkaline environment that helps in the hydrolysis of the Ir precursor to form IrOx nanoparticles. Porous IrOx is formed when Ir foams are annealed at high temperatures. Water oxidation has been demonstrated using IrOx nanoparticles and foams. Biocompatibility of IrOx is used to study the nature of interaction of heme proteins and the formation of bioconjugates using spectroscopic techniques. IrOx forms bioconjugates with substantial changes observed in secondary and tertiary structures of proteins. Chapter 5 explores the synthesis of interconnected ultrafine Os nanoclusters and the nanostructured materials are used as SERS substrates. Os nanochains are prepared under environmentally friendly conditions using polyfunctional molecules like ascorbic acid and vitamin P as both reducing agent and capping agent in aqueous media. Small sized (1-1.5 nm) Os nanoparticles spontaneously self-assemble to form clusters of few tens of nm that in turn self-organize to form branched nanochains of several microns in size. The as-formed nanochains show surface plasmon absorption in the visible region 540 nm which make them active substrates for surface enhanced Raman scattering (SERS) studies. High SERS activity is observed for fluorescent analyte, rhodamine 6G and non-fluorescent analyte, mercaptopyridine, with different laser excitation sources. Efficient energy transfer from fluorescent R6G dye to Os nanochains is observed based on steady state and time resolved fluorescence measurements.Figure 3. (I) Time dependent UV-Vis absorption spectra of Os nanochains recorded at different time intervals of (a) 5; (b) 7; (c) 15; (d) 30 and (e) 60 minutes. Inset shows the TEM images of Os nanochains after 60 minutes of reduction. (II) SERS spectra of 4-MPy adsorbed on Os nanochains from (a) 1 mM; (b) 10 µM and (c) 1 µM solutions using 514 nm laser excitation. Chapter 6 discusses the studies based on reduced graphene oxide. Reduced graphene oxide (rGO) is explored as electrodes for simultaneous determination of dopamine (DA), ascorbic acid (AA) and uric acid (UA) at low concentrations useful in medical diagnostics (figure 4A). It is also used as metal-free electrocatalyst for ORR (figure 4B). The use of rGO as a support for anchoring Ir nanoparticles is probed and subsequently the Ir/rGO is used as catalyst for direct aerobic oxidation of benzyl amine derivatives to corresponding imines. Chapter 7 describes the summary of the work and scope for further studies. Appendix 1 discusses the preparation of different Ir nanostructures using simple galvanic displacement reaction on copper foil while appendix 2 describes the preparation of different sized Ir nanoparticles and their electrocatalytic activity towards oxygen reduction reaction
Style APA, Harvard, Vancouver, ISO itp.
41

Kalapu, Chakrapani. "Synthesis, Physiochemical And Electrochemical Studies On Iridium, Osmium And Graphene Oxide-Based Nanostructures". Thesis, 2013. https://etd.iisc.ac.in/handle/2005/2631.

Pełny tekst źródła
Streszczenie:
Nanoscience dominates almost all areas of science and technology in the 21st century. Nanoparticles are of fundamental interest since they possess unique size dependent properties (optical, electrical, mechanical, chemical, magnetic etc.), which are quite different from the bulk and the atomic state. The research work presented in the thesis is on the preparation, characterization and studies on Ir, Os and graphene oxide-based systems. Interconnected Ir and Os nanochains are prepared under environmentally friendly conditions in aqueous media and subsequently used as substrates for surface enhanced Raman scaterring studies and also as electrocatalysts for oxygen reduction and formaldehyde oxidation. Ir and IrOx nanostructures are prepared using borohydride at different temperatures. The nature of interaction of heme proteins with IrOx is studied using spectroscopic techniques. Electrochemical studies on reduced graphene oxide include sensing of biomolecules with high sensitivity and oxygen reduction reaction (ORR) in aqueous alkaline medium. rGO is also used as support for anchoring Ir nanoparticles and the catalyst is used for the oxidation of benzyl amines to corresponding imines. The thesis is divided in to seven chapters and details are given below. Chapter 1 gives an introduction about the synthetic strategies and properties of metal nanostructures. This is followed by literature survey on Ir, Os and graphene oxide-based systems relevant to the present study. Aim and scope of the present investigation is given at the end. Chapter 2 discusses the experimental procedures and characterization techniques used in the present study. Chapter 3 involves the preparation, characterization and studies on interconnected Ir nanochains. Assemblies of small sized nanoparticles forming network-like structures have attracted enormous interest and different metal nanoassemblies have been reported using different procedures. Ir3+ reduction is kinetically not a very favourable process and hence there are not many attempts to synthesize Ir-based nanostructures. Assemblies of interconnected Ir nanoparticles have been synthesized in the present studies using borohydride as reducing agent and ascorbic acid as capping agent, at high temperatures. Polyfunctional capping molecules such as ascorbic acid and vitamin P play important role for the formation of network- like Ir nanostructures. Optical properties of the networks are probed using UV-Vis spectroscopy and evolution of coupled plasmon of Ir nanochains at 418 nm (figure 1) is observed. The nanochains are used as substrates for SERS studies while the catalytic activity is followed for the reduction of nitroaromatics. Electrocatalytic activity of Ir nanochains is exemplified using oxygen reduction and formaldehyde oxidation. Ir nanochains show better electrocatalytic activities than nanoparticles as shown in figure 2. Figure 1. Time dependent UV-Vis absorption spectra of Ir nanoparticles recorded at various time intervals of (a) 5; (b) 15; (c) 30 and (d) 60 minutes of reduction of Ir3+ using borohydride and the corresponding TEM images. Figure 2. Polarization curves for oxygen reduction on (i) Ir nanochains and (ii) Ir nanoparticles in (A) 0.5 M H2SO4 and (B) 0.1 M KOH at a scan rate of 0.005 V/s. Rotation speed used is 1000 rpm. Chapter 4 discusses the preparation of Ir and IrOx using borohydride. The reaction temperature determines the product. Various physicochemical, microscopic and spectroscopic techniques have been used to understand the evolution of nanostructures. Borohydride reduces Ir3+ at high temperatures to form high surface area foams, while at 25oC, it results in an alkaline environment that helps in the hydrolysis of the Ir precursor to form IrOx nanoparticles. Porous IrOx is formed when Ir foams are annealed at high temperatures. Water oxidation has been demonstrated using IrOx nanoparticles and foams. Biocompatibility of IrOx is used to study the nature of interaction of heme proteins and the formation of bioconjugates using spectroscopic techniques. IrOx forms bioconjugates with substantial changes observed in secondary and tertiary structures of proteins. Chapter 5 explores the synthesis of interconnected ultrafine Os nanoclusters and the nanostructured materials are used as SERS substrates. Os nanochains are prepared under environmentally friendly conditions using polyfunctional molecules like ascorbic acid and vitamin P as both reducing agent and capping agent in aqueous media. Small sized (1-1.5 nm) Os nanoparticles spontaneously self-assemble to form clusters of few tens of nm that in turn self-organize to form branched nanochains of several microns in size. The as-formed nanochains show surface plasmon absorption in the visible region 540 nm which make them active substrates for surface enhanced Raman scattering (SERS) studies. High SERS activity is observed for fluorescent analyte, rhodamine 6G and non-fluorescent analyte, mercaptopyridine, with different laser excitation sources. Efficient energy transfer from fluorescent R6G dye to Os nanochains is observed based on steady state and time resolved fluorescence measurements.Figure 3. (I) Time dependent UV-Vis absorption spectra of Os nanochains recorded at different time intervals of (a) 5; (b) 7; (c) 15; (d) 30 and (e) 60 minutes. Inset shows the TEM images of Os nanochains after 60 minutes of reduction. (II) SERS spectra of 4-MPy adsorbed on Os nanochains from (a) 1 mM; (b) 10 µM and (c) 1 µM solutions using 514 nm laser excitation. Chapter 6 discusses the studies based on reduced graphene oxide. Reduced graphene oxide (rGO) is explored as electrodes for simultaneous determination of dopamine (DA), ascorbic acid (AA) and uric acid (UA) at low concentrations useful in medical diagnostics (figure 4A). It is also used as metal-free electrocatalyst for ORR (figure 4B). The use of rGO as a support for anchoring Ir nanoparticles is probed and subsequently the Ir/rGO is used as catalyst for direct aerobic oxidation of benzyl amine derivatives to corresponding imines. Chapter 7 describes the summary of the work and scope for further studies. Appendix 1 discusses the preparation of different Ir nanostructures using simple galvanic displacement reaction on copper foil while appendix 2 describes the preparation of different sized Ir nanoparticles and their electrocatalytic activity towards oxygen reduction reaction
Style APA, Harvard, Vancouver, ISO itp.
42

Biswas, Kanishka. "Synthesis, Characterization, Properties And Growth Of Inorganic Nanomaterials". Thesis, 2008. https://etd.iisc.ac.in/handle/2005/706.

Pełny tekst źródła
Streszczenie:
The thesis consists of eight chapters of which the first chapter presents a brief overview of inorganic nanostructures. Synthesis and magnetic properties of MnO and NiO nanocrystals are described in Chapter 2, with emphasis on the low-temperature ferromagnetic interactions in these antiferromagnetic oxides. Chapter 3 deals with the synthesis and characterizations of nanocrystals of ReO3, RuO2 and IrO2 which are oxides with metallic properties. Pressure-induced phase transitions of ReO3 nanocrystals and the use of the nanocrystals for carrying out surface-enhanced Raman spectroscopy of the molecules form Chapter 4. Use of ionic liquids to synthesize different nanostructures of semiconducting metal sulfides and selenides is described in Chapter 5. Synthesis of Mn-doped GaN nanocrystals and their magnetic properties are described in Chapter 6. A detailed investigation has been carried out on the growth kinetics of nanostructures of a few inorganic materials by using small-angle X-ray scattering and other techniques (Chapter 7). The study includes the growth kinetics of nanocrystals of Au, CdS and CdSe as well as of nanorods of ZnO. Results of a synchrotron X-ray study of the formation of nanocrystalline gold films at the organic-aqueous interface are also included in this chapter. Chapter 8 discuses the use of the organic-aqueous interface to generate Janus nanocrystalline films of inorganic materials where one side of the film is hydrophobic and other side is hydrophilic. This chapter also includes the formation of nanostructured peptide fibrils at the organic-aqueous interface and their use as templates to prepare inorganic nanotubes.
Style APA, Harvard, Vancouver, ISO itp.
43

Biswas, Kanishka. "Synthesis, Characterization, Properties And Growth Of Inorganic Nanomaterials". Thesis, 2008. http://hdl.handle.net/2005/706.

Pełny tekst źródła
Streszczenie:
The thesis consists of eight chapters of which the first chapter presents a brief overview of inorganic nanostructures. Synthesis and magnetic properties of MnO and NiO nanocrystals are described in Chapter 2, with emphasis on the low-temperature ferromagnetic interactions in these antiferromagnetic oxides. Chapter 3 deals with the synthesis and characterizations of nanocrystals of ReO3, RuO2 and IrO2 which are oxides with metallic properties. Pressure-induced phase transitions of ReO3 nanocrystals and the use of the nanocrystals for carrying out surface-enhanced Raman spectroscopy of the molecules form Chapter 4. Use of ionic liquids to synthesize different nanostructures of semiconducting metal sulfides and selenides is described in Chapter 5. Synthesis of Mn-doped GaN nanocrystals and their magnetic properties are described in Chapter 6. A detailed investigation has been carried out on the growth kinetics of nanostructures of a few inorganic materials by using small-angle X-ray scattering and other techniques (Chapter 7). The study includes the growth kinetics of nanocrystals of Au, CdS and CdSe as well as of nanorods of ZnO. Results of a synchrotron X-ray study of the formation of nanocrystalline gold films at the organic-aqueous interface are also included in this chapter. Chapter 8 discuses the use of the organic-aqueous interface to generate Janus nanocrystalline films of inorganic materials where one side of the film is hydrophobic and other side is hydrophilic. This chapter also includes the formation of nanostructured peptide fibrils at the organic-aqueous interface and their use as templates to prepare inorganic nanotubes.
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii