Artykuły w czasopismach na temat „Nanostructure - Graphene”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Nanostructure - Graphene”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Fan, Jiakang. "The realization of a broadband light absorber via the synergistic effect of graphene and silicon nanostructures". Journal of Physics: Conference Series 2285, nr 1 (1.06.2022): 012001. http://dx.doi.org/10.1088/1742-6596/2285/1/012001.
Pełny tekst źródłaAvila, Antonio F., Aline M. de Oliveira, Viviane C. Munhoz i Glaucio C. Pereira. "Graphene-CNTs into Neuron-Synapse Like Configuration a New Class of Hybrid Nanocomposites". Advanced Materials Research 1119 (lipiec 2015): 116–20. http://dx.doi.org/10.4028/www.scientific.net/amr.1119.116.
Pełny tekst źródłaWallace, Steaphan M., Thiyagu Subramani, Wipakorn Jevasuwan i Naoki Fukata. "Conversion of Amorphous Carbon on Silicon Nanostructures into Similar Shaped Semi-Crystalline Graphene Sheets". Journal of Nanoscience and Nanotechnology 21, nr 9 (1.09.2021): 4949–54. http://dx.doi.org/10.1166/jnn.2021.19329.
Pełny tekst źródłaFujii, Shintaro, Maxim Ziatdinov, Misako Ohtsuka, Koichi Kusakabe, Manabu Kiguchi i Toshiaki Enoki. "Role of edge geometry and chemistry in the electronic properties of graphene nanostructures". Faraday Discuss. 173 (2014): 173–99. http://dx.doi.org/10.1039/c4fd00073k.
Pełny tekst źródłaWu, Shiyun, Kaimin Fan, Minpin Wu i Guangqiang Yin. "Two-dimensional MnO2/graphene hybrid nanostructures as anode for lithium ion batteries". International Journal of Modern Physics B 30, nr 27 (17.10.2016): 1650208. http://dx.doi.org/10.1142/s0217979216502088.
Pełny tekst źródłaTamm, Aile, Tauno Kahro, Helle-Mai Piirsoo i Taivo Jõgiaas. "Atomic-Layer-Deposition-Made Very Thin Layer of Al2O3, Improves the Young’s Modulus of Graphene". Applied Sciences 12, nr 5 (27.02.2022): 2491. http://dx.doi.org/10.3390/app12052491.
Pełny tekst źródłaWang, Wei, Shirui Guo, Isaac Ruiz, Mihrimah Ozkan i Cengiz S. Ozkan. "Synthesis of Three Dimensional Carbon Nanostructure Foams for Supercapacitors". MRS Proceedings 1451 (2012): 85–90. http://dx.doi.org/10.1557/opl.2012.1330.
Pełny tekst źródłaBi, Kaixi, Jiliang Mu, Wenping Geng, Linyu Mei, Siyuan Zhou, Yaokai Niu, Wenxiao Fu, Ligang Tan, Shuqi Han i Xiujian Chou. "Reliable Fabrication of Graphene Nanostructure Based on e-Beam Irradiation of PMMA/Copper Composite Structure". Materials 14, nr 16 (17.08.2021): 4634. http://dx.doi.org/10.3390/ma14164634.
Pełny tekst źródłaLi, Jia Ye, Jin Feng Zhu i Qing H. Liu. "Tunable Properties of Three-Dimensional Graphene-Loaded Plasmonic Absorber Using Plasmonic Nanoparticles". Materials Science Forum 860 (lipiec 2016): 29–34. http://dx.doi.org/10.4028/www.scientific.net/msf.860.29.
Pełny tekst źródłaLoginos, Panagiotis, Anastasios Patsidis i Vasilios Georgakilas. "UV-Cured Poly(Ethylene Glycol) Diacrylate/Carbon Nanostructure Thin Films. Preparation, Characterization, and Electrical Properties". Journal of Composites Science 4, nr 1 (1.01.2020): 4. http://dx.doi.org/10.3390/jcs4010004.
Pełny tekst źródłaHsu, Chih-Hung, Jia-Ren Wu, Lung-Chien Chen, Po-Shun Chan i Cheng-Chiang Chen. "Enhanced Performance of Dye-Sensitized Solar Cells with Nanostructure Graphene Electron Transfer Layer". Advances in Materials Science and Engineering 2014 (2014): 1–4. http://dx.doi.org/10.1155/2014/107352.
Pełny tekst źródłaBarra, Ana, Cláudia Nunes, Eduardo Ruiz-Hitzky i Paula Ferreira. "Green Carbon Nanostructures for Functional Composite Materials". International Journal of Molecular Sciences 23, nr 3 (6.02.2022): 1848. http://dx.doi.org/10.3390/ijms23031848.
Pełny tekst źródłaWiwatowski, Kamil, Paweł Podlas, Magdalena Twardowska i Sebastian Maćkowski. "Fluorescence Studies of the Interplay between Metal-Enhanced Fluorescence and Graphene-Induced Quenching". Materials 11, nr 10 (9.10.2018): 1916. http://dx.doi.org/10.3390/ma11101916.
Pełny tekst źródłaRoy, Souradeep, Sourav Sain, Shikha Wadhwa, Ashish Mathur, Santosh Dubey i Susanta S. Roy. "Electrochemical impedimetric analysis of different dimensional (0D–2D) carbon nanomaterials for effective biosensing of L-tyrosine". Measurement Science and Technology 33, nr 1 (27.10.2021): 014002. http://dx.doi.org/10.1088/1361-6501/ac2cf3.
Pełny tekst źródłaNecolau, Mădălina-Ioana, i Andreea-Mădălina Pandele. "Recent Advances in Graphene Oxide-Based Anticorrosive Coatings: An Overview". Coatings 10, nr 12 (25.11.2020): 1149. http://dx.doi.org/10.3390/coatings10121149.
Pełny tekst źródłaZeng, B., Z. G. Li i W. J. Zeng. "N-doped graphene-cadmium sulfide nanoplates and their improved photocatalytic performance". Digest Journal of Nanomaterials and Biostructures 16, nr 2 (2021): 627–33. http://dx.doi.org/10.15251/djnb.2021.162.627.
Pełny tekst źródłaXu, Yangyang, Jinyang Liu, Chuandong Zuo, Hongbing Cai, Ping Wu, Zhigao Huang, Fachun Lai, Limei Lin, Weifeng Zheng i Yan Qu. "The Role of Hydrogen on the Growth of Graphene Nanostructure Using a Two-Step Method". Journal of Nanoscience and Nanotechnology 19, nr 11 (1.11.2019): 7294–300. http://dx.doi.org/10.1166/jnn.2019.16652.
Pełny tekst źródłaJoseph, J., i Y. C. Lu. "Effect of graphene layer thickness on effective modulus of 3D CNT/Graphene nanostructures". International Journal of Computational Materials Science and Engineering 04, nr 02 (czerwiec 2015): 1550010. http://dx.doi.org/10.1142/s2047684115500104.
Pełny tekst źródłaSarigamala, Karthik Kiran, Shobha Shukla, Alexander Struck i Sumit Saxena. "Graphene-Based Coronal Hybrids for Enhanced Energy Storage". Energy Material Advances 2021 (20.02.2021): 1–15. http://dx.doi.org/10.34133/2021/7273851.
Pełny tekst źródłaWang, Wei, Xing Wu i Jian Zhang. "Graphene and Other 2D Material Components Dynamic Characterization and Nanofabrication at Atomic Scale". Journal of Nanomaterials 2015 (2015): 1–6. http://dx.doi.org/10.1155/2015/198126.
Pełny tekst źródłaLu, Yang-Ming, Chi-Feng Tseng, Bing-Yi Lan i Chia-Fen Hsieh. "Fabrication of Graphene/Zinc Oxide Nano-Heterostructure for Hydrogen Sensing". Materials 14, nr 22 (17.11.2021): 6943. http://dx.doi.org/10.3390/ma14226943.
Pełny tekst źródłaBai, Xiaoyan, Tianqi Cao, Tianyu Xia, Chenxiao Wu, Menglin Feng, Xinru Li, Ziqing Mei i in. "MoS2/NiSe2/rGO Multiple-Interfaced Sandwich-like Nanostructures as Efficient Electrocatalysts for Overall Water Splitting". Nanomaterials 13, nr 4 (16.02.2023): 752. http://dx.doi.org/10.3390/nano13040752.
Pełny tekst źródłaPark, Kwang Hyun, Byung Gon Kim i Sung Ho Song. "Synergistic Effect of a Defect-Free Graphene Nanostructure as an Anode Material for Lithium Ion Batteries". Nanomaterials 10, nr 1 (18.12.2019): 9. http://dx.doi.org/10.3390/nano10010009.
Pełny tekst źródłaKim, Hyun-Kyung, Ali Reza Kamali, Kwang Chul Roh, Kwang-Bum Kim i Derek John Fray. "Dual coexisting interconnected graphene nanostructures for high performance supercapacitor applications". Energy & Environmental Science 9, nr 7 (2016): 2249–56. http://dx.doi.org/10.1039/c6ee00815a.
Pełny tekst źródłaA A Alhilo, Zaman, Vladimir Pershin i Aleksey Osipov. "Kinetics of liquid-phase shear exfoliation of graphite in synthetic oils". MATEC Web of Conferences 315 (2020): 06003. http://dx.doi.org/10.1051/matecconf/202031506003.
Pełny tekst źródłaGuo, Quanquan, Yongyue Luo, Jize Liu, Xinxing Zhang i Canhui Lu. "A well-organized graphene nanostructure for versatile strain-sensing application constructed by a covalently bonded graphene/rubber interface". Journal of Materials Chemistry C 6, nr 8 (2018): 2139–47. http://dx.doi.org/10.1039/c7tc05758j.
Pełny tekst źródłaSethi, Yogesh A., Aniruddha K. Kulkarni, Anuradha A. Ambalkar, Rajendra P. Panmand, Milind V. Kulkarni, Suresh W. Gosavi i Bharat B. Kale. "Efficient solar light-driven hydrogen generation using an Sn3O4 nanoflake/graphene nanoheterostructure". RSC Advances 11, nr 48 (2021): 29877–86. http://dx.doi.org/10.1039/d1ra05617d.
Pełny tekst źródłaTrusova, Elena A., Dmitrii D. Titov, Asya M. Afzal i Sergey S. Abramchuk. "Influence of Graphene Sheets on Compaction and Sintering Properties of Nano-Zirconia Ceramics". Materials 15, nr 20 (20.10.2022): 7342. http://dx.doi.org/10.3390/ma15207342.
Pełny tekst źródłaSaji, Viswanathan S. "Carbon nanostructure-based superhydrophobic surfaces and coatings". Nanotechnology Reviews 10, nr 1 (1.01.2021): 518–71. http://dx.doi.org/10.1515/ntrev-2021-0039.
Pełny tekst źródłaOliveira, Pâmella Schramm, Aline Rossato, Larissa da Silva Silveira, Cristian Mafra Ledur, Walter Paixão de Sousa Filho, Claudir Gabriel Kaufmann Junior, Sergio Roberto Mortari i in. "GRAPHENE OXIDE AND REDUCED GRAPHENE OXIDE". International Journal for Innovation Education and Research 9, nr 12 (1.12.2021): 142–69. http://dx.doi.org/10.31686/ijier.vol9.iss12.3572.
Pełny tekst źródłaSharma, Monika, Jue-Hyuk Jang, Dong Yun Shin, Jeong An Kwon, Dong-Hee Lim, Daeil Choi, Hukwang Sung i in. "Work function-tailored graphene via transition metal encapsulation as a highly active and durable catalyst for the oxygen reduction reaction". Energy & Environmental Science 12, nr 7 (2019): 2200–2211. http://dx.doi.org/10.1039/c9ee00381a.
Pełny tekst źródłaAthithya, Seenidurai, Valparai Surangani Manikandan, Santhana Krishnan Harish, Kuppusamy Silambarasan, Shanmugam Gopalakrishnan, Hiroya Ikeda, Mani Navaneethan i Jayaram Archana. "Plasmon Effect of Ag Nanoparticles on TiO2/rGO Nanostructures for Enhanced Energy Harvesting and Environmental Remediation". Nanomaterials 13, nr 1 (23.12.2022): 65. http://dx.doi.org/10.3390/nano13010065.
Pełny tekst źródłaGalstyan, Vardan, Elisabetta Comini, Iskandar Kholmanov, Andrea Ponzoni, Veronica Sberveglieri, Nicola Poli, Guido Faglia i Giorgio Sberveglieri. "A composite structure based on reduced graphene oxide and metal oxide nanomaterials for chemical sensors". Beilstein Journal of Nanotechnology 7 (10.10.2016): 1421–27. http://dx.doi.org/10.3762/bjnano.7.133.
Pełny tekst źródłaChen, Hsin-Yu, Yi-Hong Xiao, Lin-Jiun Chen, Chi-Ang Tseng i Chuan-Pei Lee. "Low-Dimensional Nanostructures for Electrochemical Energy Applications". Physics 2, nr 3 (11.09.2020): 481–502. http://dx.doi.org/10.3390/physics2030027.
Pełny tekst źródłaLi, Dayu, Yuling Lu i Chao Zhang. "Superhydrophobic and Electrochemical Performance of CF2-Modified g-C3N4/Graphene Composite Film Deposited by PECVD". Nanomaterials 12, nr 24 (9.12.2022): 4387. http://dx.doi.org/10.3390/nano12244387.
Pełny tekst źródłaRozel, Petr, Darya Radziuk, Lubov Mikhnavets, Evgenij Khokhlov, Vladimir Shiripov, Iva Matolínová, Vladimír Matolín, Alexander Basaev, Nikolay Kargin i Vladimir Labunov. "Properties of Nitrogen/Silicon Doped Vertically Oriented Graphene Produced by ICP CVD Roll-to-Roll Technology". Coatings 9, nr 1 (19.01.2019): 60. http://dx.doi.org/10.3390/coatings9010060.
Pełny tekst źródłaGerasimenko, Alexander Yu, Artem V. Kuksin, Yury P. Shaman, Evgeny P. Kitsyuk, Yulia O. Fedorova, Denis T. Murashko, Artemiy A. Shamanaev i in. "Hybrid Carbon Nanotubes–Graphene Nanostructures: Modeling, Formation, Characterization". Nanomaterials 12, nr 16 (16.08.2022): 2812. http://dx.doi.org/10.3390/nano12162812.
Pełny tekst źródłaRahimi Mamaghani, Kaveh, Seyed Morteza Naghib, Alireza Zahedi, Amir Hossein Zeinali Kalkhoran i Mehdi Rahmanian. "Fast synthesis of methacrylated graphene oxide: a graphene‐functionalised nanostructure". Micro & Nano Letters 13, nr 2 (luty 2018): 195–97. http://dx.doi.org/10.1049/mnl.2017.0461.
Pełny tekst źródłaOzawa, Hiroaki, i Masa-aki Haga. "Soft nano-wrapping on graphene oxide by using metal–organic network films composed of tannic acid and Fe ions". Physical Chemistry Chemical Physics 17, nr 14 (2015): 8609–13. http://dx.doi.org/10.1039/c5cp00264h.
Pełny tekst źródłaZhang, Hongfen, Baiyan Zhang, Anjia Chen i Yong Qin. "Controllable n-Fe2O3@graphene nanomaterials by ALD applied in an aptasensor with enhanced electrochemical performance for thrombin detection". Dalton Transactions 46, nr 23 (2017): 7434–40. http://dx.doi.org/10.1039/c7dt01184a.
Pełny tekst źródłaZhou, Hengjie, Shaojian Su, Weibin Qiu, Zeyang Zhao, Zhili Lin, Pingping Qiu i Qiang Kan. "Multiple Fano Resonances with Tunable Electromagnetic Properties in Graphene Plasmonic Metamolecules". Nanomaterials 10, nr 2 (29.01.2020): 236. http://dx.doi.org/10.3390/nano10020236.
Pełny tekst źródłaRazzaq, Abdul, i Su-Il In. "TiO2 Based Nanostructures for Photocatalytic CO2 Conversion to Valuable Chemicals". Micromachines 10, nr 5 (15.05.2019): 326. http://dx.doi.org/10.3390/mi10050326.
Pełny tekst źródłaSASAKI, Ryo, i Kazuhito SHINTANI. "Indentation simulation of a pillared-graphene nanostructure". Proceedings of Mechanical Engineering Congress, Japan 2016 (2016): G0300505. http://dx.doi.org/10.1299/jsmemecj.2016.g0300505.
Pełny tekst źródłaZhang Hui-Zhen, Li Jin-Tao, L Wen-Gang, Yang Hai-Fang, Tang Cheng-Chun, Gu Chang-Zhi i Li Jun-Jie. "Fabrication of graphene nanostructure and bandgap tuning". Acta Physica Sinica 66, nr 21 (2017): 217301. http://dx.doi.org/10.7498/aps.66.217301.
Pełny tekst źródłaDienel, Thomas, Shigeki Kawai, Hajo Söde, Xinliang Feng, Klaus Müllen, Pascal Ruffieux, Roman Fasel i Oliver Gröning. "Resolving Atomic Connectivity in Graphene Nanostructure Junctions". Nano Letters 15, nr 8 (20.07.2015): 5185–90. http://dx.doi.org/10.1021/acs.nanolett.5b01403.
Pełny tekst źródłaZhang, Qingtian, i Kwok Sum Chan. "Pure valley current generation in graphene nanostructure". Physics Letters A 386 (styczeń 2021): 126990. http://dx.doi.org/10.1016/j.physleta.2020.126990.
Pełny tekst źródłaCho, Hak Dong, Deuk Young Kim i Jong-Kwon Lee. "ZnO Nanorod/Graphene Hybrid-Structures Formed on Cu Sheet by Self-Catalyzed Vapor-Phase Transport Synthesis". Nanomaterials 11, nr 2 (10.02.2021): 450. http://dx.doi.org/10.3390/nano11020450.
Pełny tekst źródłaIbrahim Alabid, Khalil, i Hajar Nasser. "Synthesis and Characterization Graphene- Carbon Nitride Nanostructure in One Step". Ibn AL-Haitham Journal For Pure and Applied Sciences 36, nr 3 (20.07.2023): 260–72. http://dx.doi.org/10.30526/36.3.3103.
Pełny tekst źródłaAlharbi, Raed, i Mustafa Yavuz. "Promote Localized Surface Plasmonic Sensor Performance via Spin-Coating Graphene Flakes over Au Nano-Disk Array". Photonics 6, nr 2 (25.05.2019): 57. http://dx.doi.org/10.3390/photonics6020057.
Pełny tekst źródłaFarmani, Homa, i Ali Farmani. "Graphene sensing nanostructure for exact graphene layers identification at terahertz frequency". Physica E: Low-dimensional Systems and Nanostructures 124 (październik 2020): 114375. http://dx.doi.org/10.1016/j.physe.2020.114375.
Pełny tekst źródła