Rozprawy doktorskie na temat „Nanostructure - Graphene”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych rozpraw doktorskich naukowych na temat „Nanostructure - Graphene”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj rozprawy doktorskie z różnych dziedzin i twórz odpowiednie bibliografie.
France-Lanord, Arthur. "Transport électronique et thermique dans des nanostructures". Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS566/document.
Pełny tekst źródłaThe perpetual shrinking of microelectronic devices makes it crucial to have a proper understanding of transport mechanisms at the nanoscale. While simple effects are now well understood in homogeneous materials, the understanding of nanoscale transport in heterosystems needs to be improved. For instance, the relationship between current, resistance, and heat flux in nanostructures remains to be clarified. In this context, the subject of the thesis is centered around the development and application of advanced numerical methods used to predict electronic and thermal conductivities of nanomaterials. This manuscript is divided into three parts. We begin with the parameterization of a classical interatomic potential, suitable for the description of multicomponent systems, in order to model the structural, vibrational, and thermal transport properties of both silica and silicon. A well-defined, reproducible, and automated optimization procedure is derived. As an example, we evaluate the temperature dependence of the Kapitza resistance between amorphous silica and crystalline silicon, and highlight the importance of an accurate description of the structure of the interface. Then, we have studied thermal transport in graphene supported on amorphous silica, by evaluating the mode-wise decomposition of thermal conductivity. The influence of hydroxylation on heat transport, as well as the significant role played by collective excitations of phonons, have come to light. Finally, electronic transport properties of graphene supported on quasi-two-dimensional silica, a system recently observed experimentally, have been investigated. The influence on transport properties of ripples in the graphene sheet or in the substrate, which often occur in samples and whose amplitude and wavelength can be controlled, has been evaluated. We have also modeled electrostatic gating, and its impact on electronic transport
Celis, Retana Arlensiú Eréndira. "Gap en graphène sur des surfaces nanostructurées de SiC et des surfaces vicinales de métaux nobles". Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS417/document.
Pełny tekst źródłaThe major challenge for graphene-based electronic applications is the absence of the band-gap necessary to switch between on and off logic states. Graphene nanoribbons provide a route to open a band-gap, though it is challenging to produce atomically precise nanoribbon widths and well-ordered edges. A particularly elegant method to open a band-gap is by electronic confinement, which can in principle be tuned by adjusting the nanoribbon width. This thesis is dedicated to understanding the ways of opening band-gaps by nanostructuration. We have used two approaches: the introduction of a superperiodic potential in graphene on vicinal noble metal substrates and the electronic confinement in artificially patterned nanoribbons on SiC. Superperiodic potentials on graphene have been introduced by two nanostructured substrates, Ir(332) and a multivicinal curved Pt(111) substrate. The growth of graphene modifies the original steps of the pristine substrates and transforms them into an array of (111) terraces and step bunching areas, as observed by STM. This nanostructuration of the underlying substrate induces the superperiodic potential on graphene that opens mini-gaps on the π band as observed by ARPES and consistent with the structural periodicity observed in STM and LEED. The mini-gaps are satisfactorily explained by a Dirac-hamiltonian model, that allows to retrieve the potential strength at the junctions between the (111) terraces and the step bunching. The potential strength depends on the substrate, the surface periodicity and the type of step-edge (A or B type). The surface potential has also been modified by intercalating Cu on Ir(332), that remains preferentially on the step bunching areas, producing there n-doped ribbons, while the non-intercalated areas remain p-doped, giving rise to an array of n- and p- doped nanoribbons on a single continuous layer. In the second approach to control the gap, we have studied the gap opening by electronic confinement in graphene nanoribbons grown on SiC. These ribbons are grown on an array of stabilized sidewalls on SiC. As a band-gap opening with unclear atomic origin had been observed by ARPES, we carried-out a correlated study of the atomic and electronic structure to identify the band gap origin. We performed the first atomically resolved study by STM, demonstrating the smoothness and chirality of the edges, finding the precise location of the metallic graphene nanoribbon on the sidewalls and identifying an unexpected mini-faceting on the substrate. To understand the coupling of graphene to the substrate, we performed a cross-sectional study by STEM/EELS, complementary of our ARPES and STM/STS studies. We observe that the (1-107) SiC sidewall facet is sub-faceted both at its top and bottom edges. The subfacetting consists of a series of (0001) miniterraces and (1-105) minifacets. Graphene is continuous on the whole subfacetting region, but it is coupled to the substrate on top of the (0001) miniterraces, rendering it there semiconducting. On the contrary, graphene is decoupled on top of the (1-105) minifacets but exhibits a bandgap, observed by EELS and compatible with ARPES observations. Such bandgap is originated by electronic confinement in the 1 - 2 nm width graphene nanoribbons that are formed over the (1-105) minifacets
Chernozatonskii, L. A., i V. A. Demin. "Nanotube Connections in Bilayer Graphene with Elongated Holes". Thesis, Sumy State University, 2013. http://essuir.sumdu.edu.ua/handle/123456789/35460.
Pełny tekst źródłaDas, Santanu. "Carbon Nanostructure Based Electrodes for High Efficiency Dye Sensitize Solar Cell". FIU Digital Commons, 2012. http://digitalcommons.fiu.edu/etd/678.
Pełny tekst źródłaRhoads, Daniel Joseph. "A Mathematical Model of Graphene Nanostructures". University of Akron / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=akron1438978423.
Pełny tekst źródłaFederspiel, Francois. "Etude optique du transfert d'énergie entre une nanostructure semiconductrice unique et un feuillet de graphène". Thesis, Strasbourg, 2015. http://www.theses.fr/2015STRAE015/document.
Pełny tekst źródłaMy PhD subject is the FRET interaction (Förster-like resonant energy transfer) between single colloidal semiconductor nanostructures and graphene. The first part is about the development of the interaction theory with the graphene for several types of nanostructures. Then comes the experimental part, and firstly the optical setup together with the analysis methods, for both spectroscopy and photoluminescence. After that, we describe our results about different types of spherical nanocrystals directly interacting with graphene (which can be multilayer) : the energy transfer has a huge effect on the photoluminescence, as well as the blinking behaviour of the nanocrystals. Then we measure the dependency of the energy transfer as a function the distance ; in the case of quantum dots, we observe a 1/z^4 law. On another hand, in the case of nanoplatelets, the function is more complex and depends on the temperature
CURCIO, DAVIDE. "Growth and Properties of Graphene-Based Materials". Doctoral thesis, Università degli Studi di Trieste, 2017. http://hdl.handle.net/11368/2908114.
Pełny tekst źródłaSeo, Michael. "Plasma-assisted nanofabrication of vertical graphene- and silicon-based nanomaterials and their applications". Thesis, The University of Sydney, 2014. http://hdl.handle.net/2123/12285.
Pełny tekst źródłaKim, Junseok. "Improved Properties of Poly (Lactic Acid) with Incorporation of Carbon Hybrid Nanostructure". Thesis, Virginia Tech, 2016. http://hdl.handle.net/10919/81415.
Pełny tekst źródłaMaster of Science
Geng, Yan. "Preparation and characterization of graphite nanoplatelet, graphene and graphene-polymer nanocomposites /". View abstract or full-text, 2009. http://library.ust.hk/cgi/db/thesis.pl?MECH%202009%20GENG.
Pełny tekst źródłaGarcia, Ana Maria Valencia. "Estudo ab initio de nanoestruturas de grafeno: defeitos intrínsecos e interação com água". Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/43/43134/tde-21112017-170853/.
Pełny tekst źródłaIn this work, computational ab initio methods based on density functional theory (DFT) are used to simulate on an atomistic level the structural, electronic and magnetic properties of graphene nanostructures. We study pristine graphene nanoflakes (GNFs), and GNFs with intrinsic defects (monovacancy, divacancy, Stone-Wales). We design GNFs with different terminations and shapes and also studied stacked forms -biflakes- in different compositions. We employed two DFT approaches, plain generalized gradient approximation in the Perdew-Burke-Ernzerhof (PBE) level of the theory, and hybrid PBE (PBEh) incorporating a fraction of Hartree-Fock exchange. All calculations were performed with the all-electron code AIMS, including van der Waals corrections. Our GNFs were chosen from three symmetry groups: D2h, D3h and D6h, and with different edges, armchair (AC), zigzag (ZZ) and a mixture of both. Our chosen D6h- hexagonal flakes present an energy gap and no spin, while perfect trigonal zigzag and mixed edges GNFs have an intrinsic spin. This non-zero spin is due to the graphene sublattice imbalance (Liebs imbalance). Defects are common in carbon materials, and have been experimentally and theoretically studied in graphene. Here, the single vacancy in graphene was studied, by cluster and supercell approaches, finding that the vacancy induces a magnetic moment = 2B (Bohr magneton). We show that conflicting results for the magnetic moment coming from theoretical studies come from the self-interaction error present in plain PBE, cured through the use of PBEh. Using the same methodology we studied the interaction of carbon nanostructures with water molecules, focusing on structural properties. Graphite is a hydrophobic material but nanostructuring could favor the interaction with water. We obtained that small water groups are adsorbed on the surface of GNFs and biflakes, however the inclusion of these groups in the internal region of biflakes is highly unfavorable, thus we can expect these stacked nanostructures to be also hydrophobic.
Li, Yanguang. "Nanostructured Materials for Energy Applications". The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1275610758.
Pełny tekst źródłaPoole, Timothy. "Acoustoelectric properties of graphene and graphene nanostructures". Thesis, University of Exeter, 2017. http://hdl.handle.net/10871/29838.
Pełny tekst źródłaVieitas, de Amaral Dias Ana Inês. "Plasma based assembly and engineering of advanced carbon nanostructures". Thesis, Orléans, 2018. http://www.theses.fr/2018ORLE2019/document.
Pełny tekst źródłaPlasma environments constitute powerful tools in materials science by allowing the creation of innovative materials and the enhancement of long existing materials that would not otherwise be achievable. The remarkable plasma potential derives from its ability to simultaneously provide dense fluxes of charged particles, chemically active molecules, radicals, heat and photons which may strongly influence the assembly pathways across different temporal and space scales, including the atomic one.In this thesis, microwave plasma-based methods have been applied to the synthesis of advanced carbon nanomaterials including graphene, nitrogen-doped graphene (N-graphene) and diamond-like structures. To this end, the focus was placed on the optimization of the production processes of two-dimensional (2D) carbon nanostructures, such as graphene and N-graphene, by further elaboration and refinement of the microwave plasma-based method developed at the Plasma Engineering Laboratory (PEL). The scaling up of the synthesis process for high-quality graphene using surface-wave plasmas operating at atmospheric pressure and argon-ethanol mixtures was successfully achieved. Moreover, N-graphene was synthetized via a single-step process, by adding nitrogen to the argon-ethanol mixture, and via two-step process, by submitting previously synthetized graphene to the remote region of a low-pressure argon-nitrogen plasma. Nitrogen atoms were usefully incorporated into the hexagonal graphene lattice, mainly as pyrrolic, pyridinic and quaternary bonds. A doping level of 25% was attained.Different types of carbon nanostructures, including graphene and diamond-like nanostructures, were also produced by using methane and carbon dioxide as carbon precursors in an argon plasma.Additionally, capacitively-coupled radio-frequency plasmas have been employed in the functionalization of graphene and in the synthesis of Polyaniline (PANI)-graphene composites. The potential uses of these materials were studied, with both showing favourable characteristics for their applicability in biosensing applications
Pijeat, Joffrey. "Anthracenylporphyrin based building blocks for the bottom-up fabrication of nitrogen-doped graphene nanostructures". Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS346/document.
Pełny tekst źródłaThe synthesis of graphene via bottom-up approach is a hot topic of research that aims to control the electronic and optical properties of this material by the fabrication of atomically precised nanostructures. Moreover, the control of dopant in graphene is of great interest to modulate the properties of the material. In this context, the contribution of porphyrins with a controlled content of nitrogen is attractive in this context. Because of structural similarities with graphene quantum dots (GQDs), π-extented porphyrins can be regarded as nitrogen-doped GQD with promising NIR properties. Porphyrins are convenient building blocks for the synthesis on surface of nanoarchitectures of graphene called nitrogen-doped Graphene Nanoribbons (GNRs) and Graphene NanoMeshes (GNMs). This thesis aims to develop the synthesis of symmetrical and robust porphyrins with anthracenes and to use them as precursors for the fabrication of nanostructures. The first part of this thesis is dedicated to the organic synthesis of variety of anthracenylporphyrins and the study of their assemblies on surface in a chamber of a Scanning Tunneling Microscope. The second part is dedicated to the study of formation of π-extended porphyrins via a method of flash pyrolysis able to thermally activate dehydrogenative coupling reactions between Polycyclic Aromatic Hydrocarbons (PAHs) and porphyrins. The last part is dedicated to the post synthetic modification of a tetrabromoanthracenylporphyrin with additional PAHs via Suzuki-Miyaura coupling and the characterization of the optical properties of the resulting porphyrins
Chu, Hua-Wei. "Development of solution-processed methods for graphene synthesis and device fabrication". Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/44738.
Pełny tekst źródłaRisley, Mason J. "Surfactant-assisted exfoliation and processing of graphite and graphene". Thesis, Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/48980.
Pełny tekst źródłaHong, Jeongmin. "Characteristics of graphitic films for carbon based magnetism and electronics". Diss., [Riverside, Calif.] : University of California, Riverside, 2009. http://proquest.umi.com/pqdweb?index=0&did=1957308731&SrchMode=2&sid=2&Fmt=2&VInst=PROD&VType=PQD&RQT=309&VName=PQD&TS=1269014102&clientId=48051.
Pełny tekst źródłaIncludes abstract. Available via ProQuest Digital Dissertations. Title from first page of PDF file (viewed March 19, 2010). Includes bibliographical references. Also issued in print.
Belchi, Raphaëlle. "Architectures à base de nanostructures de carbone et TiO₂pour le photovoltaïque". Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS329/document.
Pełny tekst źródłaPhotovoltaic is a promising renewable energy to tackle global warming and the depletion of fossil resources. The emerging field of perovskite solar cells (3rd generation photovoltaic) is very attractive because it uses abundant and easy-processing materials (low-cost technology) and provides competitive efficiencies.Still, efforts remain to be performed to develop this technology, especially concerning the improvement of efficient and reliable charge transporting electrodes. Titanium dioxide layer, commonly used for electron extraction, presents defects that limit the performance and lifetime of the perovskite solar cells.This work proposes the use of materials based on TiO₂ and carbon nanostructures to improve the electron transport and collection within the solar cells, in order to enhance the power conversion efficiency. The singular technique of laser pyrolysis, which is a continuous process of nanoparticles synthesis, was adapted to produce TiO₂/graphene nanocomposites with well-controlled properties. These materials have been characterized and integrated into perovskite solar cells that demonstrate an improved efficiency in presence of graphene.Besides, this work presents an innovating architecture based on vertically aligned carbon nanotubes for the electron collection of a perovskite solar cell. We show then the strong potential of carbon materials for optoelectronic, especially 3rd generation photovoltaic
Song, Zhimin. "Fabrication and Characterization of Nanopatterned Epitaxial Graphene Films for Carbon Based Electronics". Diss., Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/13943.
Pełny tekst źródłaRodriguez-Nieva, Joaquin F. (Joaquin Francisco). "Novel electronic behaviors in graphene nanostructures". Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/107041.
Pełny tekst źródłaCataloged from PDF version of thesis.
Includes bibliographical references (pages 167-185).
Recently, it has been shown that graphene can be combined with a variety of nanoscale systems, such as other two-dimensional crystals, to form novel electronic nanostructures. These systems inherit the unique characteristics of graphene, such as high mobility, Berry phase, photoresponse mediated by hot carriers, and at the same time acquire new features due to nanoscale heterogenities. In this thesis, I explore the novel electronic behaviors which emerge in this fashion. I focus on two types of systems: (i) vertically-stacked structures in which graphene layers are interspaced with insulating materials and (ii) in-plane structures formed by spatially-varying electrostatic potentials in graphene. The outline of this thesis is as follows: first, I show that the vertical structures grant access to distinct transport behaviors and new kinds of photoresponse. Those include, in particular, photo-induced negative differential resistance, bistability, and hysteretic I-V characteristics. This wide variety of behaviors is enabled by a number of interesting physical phenomena which can be accessed in these structures, such as resonant tunneling, thermionic emission and field emission. I explore the different knobs which are available to control these phenomena and new ways to employ them to design the I-V response. Second, I study in-plane nanostructures such as pn junction rings induced by local charges, and show that they enable confinement of electronic states in graphene. Confined states in these graphene quantum dots arise due to constructive interference of electronic waves scattered at the pn junction and inward-reflected from the ring by the so-called Klein scattering process. Key fingerprints of confined states are resonances appearing periodically in scanning tunneling spectroscopy maps. Besides the novel mechanism for confinement, I also demonstrate that graphene quantum dots can be exploited for accessing exotic and potentially useful behavior which is not available in conventional quantum dots. An example of such behavior is a giant non-reciprocal effect of quantum dot resonances which is induced by the Berry phase. Third, I study manifestations of defects in the Raman spectral maps of disordered graphene systems. Two salient Raman features, namely the D and D' bands, provide useful information about the nature of defects. I perform a detailed analysis of the origin of the Raman scattering cross section which is routinely measured in experiments and discuss how it can be used to obtain information about defects. Overall, this thesis demonstrates the versatility of graphene nanostructures. This is manifested in numerous phenomena which have implications both in basic science, e.g. Berry phase effects, as well as in applied research, e.g. photodetection in graphene Schottky junctions. Furthermore, several of the ideas discussed here can be extended to achieve other interesting and potentially useful effects, such as localized valley-polarized states in graphene quantum dots and exciton confinement.
by Joaquin F. Rodriguez-Nieva.
Ph. D.
Hu, Tao. "Non-covalent functionalization of carbon nanostructures : a DFT study". Thesis, Toulouse, INSA, 2013. http://www.theses.fr/2013ISAT0011/document.
Pełny tekst źródłaNon-covalent doping of carbon nanostructures by charge transfer from/to donor/acceptor molecules (EDA) or by H2SO4 molecules, be it with holes or electrons, is usually thought as potentially interesting for many applications of carbon based nano-devices. However, from a theoretical point of view, little is known about such “charge transfer” processes.Employing first-principles method based on Density Functional Theory (DFT), we have studied in details, and proposed a model to rationalize, the interaction between a prototypical donor molecule the tetrathiafulvalene (TTF), a standard acceptor organic molecule, tetracyanoethylene (TCNE) and carbon nanostructures: graphene layer and SWNTs with various chiral indices. Main results concern structural and thermodynamic aspects including dispersion forces effects, and evidently electronic structure modifications of the nanostructures. Various adsorption modes and concentration effects have been investigated. At very low coverage values, we have reported a charge transfer between graphene and TCNE or TTF. Moreover, we have shown that the charge transfer can be enhanced by increasing the concentration of those two EDA molecules, as it has been demonstrated experimentally. Those results are beneficial for comprehending the nonchemical doping mechanism in graphene structure by means of charge transfers. Considering the interaction between these prototypical molecules and carbon nanotubes, we have found that charge transfers tend to decrease while the curvature of nanotube is increasing. Besides, a strong influence of the metallic/semi-conductor character of the SWNTs can be observed and be explained by the change of polarisability of the curved carboneous substrates. Additionally, we have studied the adsorption properties of sulfuric acid molecules, in its non-hydrated form, on carboneous nanostructures. Against the common believe, no charge transfer is observed in the H2SO4@graphene or H2SO4@CNTs cases, even at very high concentrations. Instead, in order to elucidate the origin of p-doping observed experimentally, we have proposed that molecule is responsible of the reversible doping. Besides we have shown that a proton transfer could cause the experimental phenomenon of crystallization of H2SO4 molecules on SWNT’s surface. Finally in such process, defects like vacancy are of first importance, since they could provide anchorage points for hydrogen atoms. The results of the present work will certainly help to understand the charge transfer and doping mechanism of carbon nanostructures by means of non-covalent functionalization, which is a promising method for their future applications
Gao, Pengcheng. "Matériaux carbonés nanostructurés pour supercapacités électrochimiques". Thesis, Montpellier 2, 2014. http://www.theses.fr/2014MON20028/document.
Pełny tekst źródłaVarious nanostructured carbon materials were synthesized and further served as active materials of electrical double layer capacitor or substrates of pseudocapacitive materials in order to improve power capability of corresponding supercapacitor. On the one hand, a simple synthesis of porous silicon carbides (SiCs) was achieved by performing a topotactic thermal reduction by magnesium (Mg) of a silica/ carbon composite. Thanks to the low synthetic temperature (below 800 ºC), the SiCs well preserved the pristine skeletons of their silica/carbon precursors. Successively, the SiCs with diverse porous structures from their silica/carbon precursor emerged, e.g. ordered tunable mesoporous SiCs, 3D-hierarchical meso and macroporous SiC, SiC nanosheet and SiC nanofiber. Furthermore, the porous SiCs derived from magnesio-thermal reduction were reduced to hierarchical carbons with newborn narrow distributed microporosity by chlorination. In an organic electrolyte, the hierarchical carbon combines the high specific capacitance from narrow distributed microporosity and the outstanding rate capability from ordered-arranged meso or macroporosity that make it promising for high power and energy density capacitor. On the other hand, a “benzyl alcohol route” has been used to decorate RGO nanosheets with FeOx nanoparticles. The resulting FeOx/ RGO composite, due to their hybrid nanostructure, combine both EDLC capacitive and pseudocapacitive bahaviors of RGO and FeOx, respectively. Thanks to the laminated RGO and nano FeOx particles film, the resulting composite gains the same power capability as RGO and a higher energy density than raw FeOx. Furthermore, mesoporous carbon was introduced to adorn the CNF surface through self-assemble of resol, carbon nanofiber(CNF) and Pluronic@127. After further coating with birnessite-MnO2, the composite electrode gains extra capacitance and power improvement in presence of superficially coating mesoporous carbon with pore size larger than 10nm
Förster, Georg Daniel. "Modélisation atomique de nanoparticules métalliques sur substrats carbonés et graphène épitaxié sur métaux". Thesis, Lyon 1, 2015. http://www.theses.fr/2015LYO10150/document.
Pełny tekst źródłaApplications of metal nanoparticles require monodisperse and stable assemblies on a substrate such as graphene or graphite. Epitaxial graphene on metal (GOM) has attracted research interest because it contributes to the self-organisation of adsorbates. The difference in the lattice constants of graphene and metal leads to a moiré that contains certain regions that are favorable for adsorption. This work is mainly concerned with the Ru-C and Pt-C systems where we were interested in the bare substrate of GOM, adsorbates deposited thereon and metal clusters on graphite. Bond order potentials allow to carry out molecular dynamics studies for systems of realistic size and at finite temperature. In the case of the Pt-C, a parametrization is available in the literature. However, for Ru-C systems a custom parametrization effort based on data from electronic structure calculations was necessary. This atomistic model neglects long ranged dispersion forces that are important for adsorption phenomena on extended substrates. Based on the Grimme models, we developed an implicit description that takes the layered structure and the semi-infinite extension of the substrate into account. Also, screening effects that are important for metal materials are taken into account. Based on this force field, we show results concerning the properties of adsorbates on carbon substrates while evaluating the dispersion model. With the help of molecular dynamics simulations, the stability of adsorbates and graphene has been studied in the context of vibrational and diffusion dynamics. In agreement with experiments, the mobility of the adsorbates on graphite is high in comparison with adsorbates on GOM
Huppert, Simon. "Transport non-linéaire et génération Terahertz dans des systèmes bidimensionnels sous forte irradiation optique". Thesis, Paris 6, 2014. http://www.theses.fr/2014PA066217/document.
Pełny tekst źródłaThis thesis treats of nonlinear behaviors in two different types of bidimensional systems: semiconductor heterostructures as well as a monolayer material, graphene. It consists into two main parts: the study Wannier-Stark quantification in electrically biased quantum well superlattices, and the modelling of new effects for electromagnetic wave generation in the Terahertz range. In quantum well superlattices under an external voltage, the electric field induces bidimensional confinement of the charge carriers, this effect is known as Wannier-Stark quantification. We examine two interesting consequences of this confinement: the strong photocurrent nonlinearities induced when the superlattice is placed between thick tunnel barriers, and the possibility to control light-matter coupling as well as Terahertz gain in superlattices coupled to a semiconductor microcavity. In a second part of this work, we study quantitatively two new nonlinear effects for Terahertz generation. The first one is Terahertz emission exaltation in a polaritonic system reaching the polariton lasing regime. We model precisely this effect and suggest a new scheme using a double microcavity and providing very significant reduction of the diffusion losses. The second effect is photon drag in graphene under pulsed excitation. We build a microscopic and predictive model for this phenomenon which provides a comprehensive insight on the relevant parameters for the optimisation of the Terahertz generation. This theoretical work was done in tight collaboration with several experimental groups
Musheghyan, Avetisyan Arevik. "Synthesis and characterization of multilayer graphene nanostructures". Doctoral thesis, Universitat de Barcelona, 2019. http://hdl.handle.net/10803/667645.
Pełny tekst źródłaEl grafeno, como material basado en el carbono, es un logro del desarrollo y los avances de la Nanotecnología. La síntesis directa de grafeno sin catálisis sobre sustratos dieléctricos, compatible con la tecnología de los semiconductores complementarios de óxido metálico, es una tarea estimulante pero compleja. La técnica PECVD, permite la síntesis directa de nanoestructuras de carbono a temperaturas más bajas y es el método principal utilizado en esta tesis. El objetivo de esta tesis es la síntesis y optimización de nanoparedes verticales de grafeno y su posible extensión a aplicaciones en sistemas que requieran superficies macroscópicas. Para ello, se han realizado diferentes tareas: a) Se ha diseñado y construido un reactor prototipo con plasma remoto en el laboratorio PECVD-FEMAN de la Facultad de Física (Universidad de Barcelona) con el fin último de crecer grafeno en forma de paredes/tabiques verticales nanométricos mediante la técnica PECVD. b) Se ha desarrollado un proceso PECVD modificado con el fin de mejorar los resultados actuales en términos de: 1) el tiempo de crecimiento, 2) la temperatura, 3) la naturaleza del substrato, 4) la presión, y 5) la cantidad de gas precursor para crecer grafeno vertical. Las muestras obtenidas fueron caracterizadas mediante microscopía TEM, SEM, XPS, XRD y mayormente mediante espectroscopia Raman, con el objetivo de optimizar el proceso y las propiedades físico-químicas y del grafeno vertical. c) Se ha desarrollado una estructura híbrida con nanoparedes y nanotubos de carbono. Para ello, se utilizaron tres equipos: el reactor “PEDRO” para la preparación del substrato, el reactor “CNTs” para el crecimiento de nanotubos de carbono y el reactor ICP-CVD para el crecimiento de nanoparedes de grafeno. En esta tesis se investigaron las caracterizaciones morfológicas y electroquímicas, pero aún se necesitan más estudios para confirmar posibles futuras aplicaciones. d) Para mejorar las propiedades de los supercapacitores basados en los electrodos desarrolladas con nanoparedes de grafeno y acero inoxidable, se ha realizado el crecimiento de capas delgadas de MnO2 mediante el método de electrodeposición. El efecto de la temperatura de recocido (annealing) en las propiedades electroquímicas de las muestras se ha estudiado en el rango de 70° C a 650° C.
Poole, Christopher J. "Electronic and transport properties of graphene nanostructures". Thesis, Lancaster University, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.654742.
Pełny tekst źródłaMANGADLAO, JOEY DACULA. "Multifunctional Materials from Nanostructured Graphene and Derivatives". Case Western Reserve University School of Graduate Studies / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=case1448279230.
Pełny tekst źródłaZedan, Abdallah. "GRAPHENE-BASED SEMICONDUCTOR AND METALLIC NANOSTRUCTURED MATERIALS". VCU Scholars Compass, 2013. http://scholarscompass.vcu.edu/etd/457.
Pełny tekst źródłaBerrahal, Quentin. "Étude par STM de nanostructures métalliques dans le graphène : croissance, propriétés et défauts induits". Thesis, Université de Paris (2019-....), 2019. http://www.theses.fr/2019UNIP7030.
Pełny tekst źródłaGraphene, the first purely bidimensionnal crystal to be obtained holds unique electronic properties thanks to its "Dirac cones" band structure. Beyond the possible modifications of its intrinsic properties, it is now crucial to study its interactions with a diverse set of environments to create new applications: molecules functionnalization, as a substrate for molecules or metal adatoms, chemical or structural defect engineering or crafting of multilayered new materials such as van der Waals heterostructures.From a fundamental point of view, graphene synthesised on silicon carbide (SiC) is ideal. It provides a subtrate suited for scanning tunneling microscopy (STM) and physical deposition of metals as its synthesis takes place under vacuum through the evaporation of silicon.We studied the Gr/SiC(000-1) (carbon-rich face) at the local scale using STM and tunnel spectroscopy (STS) to analyse on one hand the effect of metal deposition on the graphene as a substrate and on the other hand the effects of the same deposition before the synthesis on the creation of defects in the graphene
Ghosh, Suchismita. "Thermal conduction in graphene and graphene multilayers". Diss., [Riverside, Calif.] : University of California, Riverside, 2009. http://proquest.umi.com/pqdweb?index=0&did=1957308711&SrchMode=2&sid=2&Fmt=2&VInst=PROD&VType=PQD&RQT=309&VName=PQD&TS=1268427434&clientId=48051.
Pełny tekst źródłaIncludes abstract. Available via ProQuest Digital Dissertations. Title from first page of PDF file (viewed March 12, 2010). Includes bibliographical references (p. 96-107). Also issued in print.
Espeland, Erlend. "Gold Nanostructures on Graphite". Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for fysikk, 2013. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-22433.
Pełny tekst źródłaGong, Chuncheng. "Atomic structure and dynamics study of defects in graphene by aberration-corrected transmission electron microscope". Thesis, University of Oxford, 2016. https://ora.ox.ac.uk/objects/uuid:53bd9a04-71ad-4da8-b982-cb45a005e791.
Pełny tekst źródłaJean, Fabien. "Growth and structure of graphene on metal and growth of organized nanostructures on top". Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GREAY097/document.
Pełny tekst źródłaGraphene, a monolayer of graphite, is composed of carbon atoms arranged in a honeycomb lattice. Its exceptional properties have attracted a worldwide interest, including the Novel Prize in Physics in 2010. Epitaxial graphene on a metal was rapidly identified as an efficient method for large-area production of high quality graphene, and also was the matter of intense activities exploiting surface science approaches to address the various properties of graphene and of advanced systems based on graphene, for instance ordered lattice of metal nanoparticles on graphene. This resulted in the study of growth, structure and defects of epitaxial graphene on a wide variety of substrates with various techniques such as scanning tunneling microscopy, angle-resolved photoemission spectroscopy or low-energy electron microscopy. This work focuses on graphene grown on the (111) surface of iridium in ultra-high vacuum conditions and studied with several diffraction techniques (surface X-ray diffraction, grazing incidence X-ray diffraction, X-ray reflectivity, and reflection-high energy electron diffraction). These experiments were performed at the European Synchrotron Radiation Facility in Grenoble, France. The first step in our study was to determine the structure of graphene at the atomic scale. The system was found to have a tendency to commensurability, but that the precise structure depends on temperature and on preparation conditions. Moreover, with the combination of high resolution diffraction techniques, a precise characterization about the debated structure of graphene perpendicular to the surface was unveiled. The system, exhibits a superstructure, typical of epitaxial graphene, called a moiré, as an equivalent of the moiré effect in optics. This is used as a template to grown nanoparticles on top of the system to achieve the self-organisation of monodisperse nanoparticles. In this study, three type of nanoparticles were investigated, two different size of pure platinum ones and bimetallic ones, platinum and cobalt. These hybrid systems show very high degree of order, partly inherited by the superstructure lattice. The nanoparticles were found to strongly bond to their support, experience substantial surface strain related to their small size, and that bimetallic ones grown in a sequential manner retain a chemically layered structure
Mazaleyrat, Estelle. "Croissance, structure et propriétés électroniques du graphène épitaxié sur rhénium, vers une plateforme bidimensionnelle et supraconductrice". Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAY079.
Pełny tekst źródłaThe realization of graphene-based hybrid structures, where graphene is associated with other materials, offers a promising avenue for testing a variety of phenomena. In particular, one can induce properties in graphene by proximity effects. Here, the targeted graphene-based system consists of a quasi free-standing graphene platform with induced superconducting character and in close vicinity to magnetic impurities. According to recent theoretical articles, such a sample could exhibit unconventional Yu-Shiba-Rusinov (YSR) states.Although the targeted graphene-based system was not fabricated yet, we have addressed, with the help of surface science tools, all three ingredients required for its realization (quasi-free standing graphene, induced superconducting character and proximity to magnetic impurities).As previously demonstrated, graphene can be rendered superconducting by growing it directly on top of a superconducting material such as rhenium. Structural aspects related to graphene grown on Re(0001) were investigated. In particular, we showed that increasing the number of annealing cycles positively contributes to growing high-quality extended graphene domains. The structure of a surface rhenium carbide, which constitutes a usually ill-characterized object, was studied as well.Additionnally, a defect appearing as a depression in the nanorippled structure of graphene on strongly interacting metals such as Re(0001) and Ru(0001) was investigated and ascribed to stacking faults either in graphene or in the metal substrate.Using superconducting graphene grown on Re(0001) as a starting point for the fabrication of the targeted graphene-based system, we recovered the quasi free-standing character of graphene (lost due to its strong interaction with the rhenium substrate) via intercalation of sub-monolayer to few layers of gold atoms. A high density of defects observed in gold-intercalated graphene on Re(0001) was attributed to the intercalation process itself. Besides, we demonstrated that the rhenium-induced superconducting character in graphene was not affected by gold intercalation. At this point, two of the three requirements for realizing the targeted graphene-based system were fulfilled.Provided that we bring magnetic impurities in close proximity to such a sample, few-nanometers extended YSR states could be observed. Preliminary results involving two original magnetic verdazyl compounds were presented, one of which was deposited on a model system, namely Cu(111). Before turning to quasi-free standing superconducting graphene as a hosting material for these magnetic compounds, further investigations on model systems are needed. Indeed, we could not resolve the precise structure of the molecular assemblies covering the Cu(111) surface yet, and the thermal stability of the compounds was discussed
Droth, Matthias [Verfasser]. "Spins and Phonons in Graphene Nanostructures / Matthias Droth". Konstanz : Bibliothek der Universität Konstanz, 2015. http://d-nb.info/1081551984/34.
Pełny tekst źródłaMayorov, Alexander. "Tunnelling and noise in GaAs and graphene nanostructures". Thesis, University of Exeter, 2008. http://hdl.handle.net/10036/46914.
Pełny tekst źródłaGorbachev, Roman. "Fabrication and transport properties of graphene-based nanostructures". Thesis, University of Exeter, 2009. http://hdl.handle.net/10036/89275.
Pełny tekst źródłaWu, Ying. "Computational studies of graphene on nanostructured ionic substrates". Thesis, University of Bath, 2016. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.683543.
Pełny tekst źródłaMishra, Shantanu, Thorsten G. Lohr, Carlo A. Pignedoli, Junzhi Liu, Reinhard Berger, JoséI Urgel, Klaus Müllen, Xinliang Feng, Pascal Ruffieux i Roman Fasel. "Tailoring Bond Topologies in Open-Shell Graphene Nanostructures". ACS Publications, 2018. https://tud.qucosa.de/id/qucosa%3A36585.
Pełny tekst źródłaFrizera, Borghi Fabricio. "Fabrication And Biological Applications Of Graphene-Based Nanostructures". Thesis, The University of Sydney, 2016. http://hdl.handle.net/2123/15657.
Pełny tekst źródłaMendes, Rafael Gregorio. "Synthesis, characterization and toxicological evaluation of carbon-based nanostructures". Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-186839.
Pełny tekst źródłaDie Herstellung, Charakterisierung und biologische Auswertung von verschiedenen Graphen-basierten Nanopartikeln mit einer potenziellen biomedizinischen Anwendung wurden erforscht. Die vorgestellten Ergebnisse im Rahmen dieser Arbeit zeigen, dass eukaryotische Zellen unterschiedlich reagieren können, wenn sie mit Nanopartikeln unterschiedlicher Morphologie interagieren. Die Zellen können geringe Unterschiede in der Morphologie, insbesondere der Größe der Nanopartikeln, identifizieren. Dies unterstreicht den Einfluss der Herstellungsmethoden und die Notwendigkeit einer gründlichen Charakterisierung, um ein effektives Design von Nanopartikeln für biologische Anwendungen zu erreichen. Um den Einfluss der Größe von Graphen-basierten Nanopartikel auf das Zellverhalten zu erforschen, wurden verschiedene Graphen-beschichte Eisenoxid-Nanopartikelproben durch eine kolloidchemische Methode hergestellt. Dieses Herstellungsverfahren ermöglicht die Synthese von Nanopartikeln mit engen Größenverteilungen, die als monodispers gelten können. Vier Proben mit unterschiedlichen Durchmessern (von 10 bis 20 nm) wurden hergestellt und vor den biologischen Untersuchungen systematisch charakterisiert. Die Probencharakterisierung deutet auf eine Mischung aus Magnetit- und Maghemit-Kristallphasen hin, außerdem besitzen die Nanopartikel eine dünne Graphitschicht. Die spektroskopischen Ergebnisse auch zeigen außerdem, dass alle Proben funktionelle Gruppen auf ihrer Oberfläche besitzen, sodass sie in allen Aspekten, außer Morphologie (Durchmesser), ähnlich sind. Die biologischen Untersuchungen deuten darauf hin, dass Zellen unterschiedliche Größen von Eisenoxid-Nanopartikeln reagieren können. Ein in situ Untersuchung der Beschichtung der Eisenoxid-Nanopartikel wurde mit einem Transmissionelektronenmikroskop durchgeführt. Die Ergebnisse zeigen, dass eine dünne Schicht von Ölsäure aus dem Syntheseprozess auf den Nanopartikeln verbleibt. Diese Schicht kann mit einem Elektronstrahl in Graphen umgewandelt werden. Die Dicke der Graphitschicht auf den Nanopartikeln kann durch die Menge der eingesetzten Ölsäure kontrolliert werden. Die in situ Beobachtungen der Graphenumwandlung konnte durch erhitzen der Nanopartikeln in einem dynamischen Vakuum reproduziert werden. Das Brennen der Eisenoxid-Nanopartikel ermöglicht nicht nur die Graphitisierung der Ölsäure, sondern auch eine Verbesserung der magnetischen Eigenschaften der Nanopartikel für weitere Anwendungen, z. B. der Hyperthermie. Die Umwandlung der Ölsäure in Graphen konnte so als relativ einfaches Verfahren der Beschichtung von zweidimensionalen (2D) Substraten etabliert werden. Die Herstellung von Nanographenoxid mit unterschiedlichen Größen wurde mit der Hummers-Method durchgeführt. Die unterschiedlichen Größen der Nanographenoxidpartikel wurde durch eine Behandlung in Ultraschallbad erreicht. Zwei Proben mit deutlicher Verteilung wurden mit mehreren Verfahren charakterisiert. Beide Proben haben Nanographenoxid Nanoteilchen mit verschiedenen funktionellen Gruppen. Die biologische Charakterisierung deutet darauf hin, dass unterschiedliche Größen des Nanographens ein unterschiedliches Zellverhalten auslösen. Abschließend, wurde die Herstellung, Charakterisierung und biologische Auswertung von Graphen-Nanoschalen durchgeführt. Die Graphen-Nanoschalen wurden mit Magnesiumoxid-Nanopartikeln als Template hergestellt. Die Beschichtung des Magnesia mit Graphen erforgte durch die chemische Gasphasenabscheidung. Die Nanoschalen wurden durch Entfernen des Magnesia-Kerns erhalten. Die Größe der Nanohüllen ist durch die Größe der Magnesia-Kerns bestimmt und zeigt eine breite Verteilung, da der Durchmesser der Magnesiumoxid-Nanopartikel gegeben war. Die Nanoschalen wurden ebenfalls mit Infrarot- und Röntgen Photoemissionspektroskopie charakterisiert und die biologische Bewertung wurde im Eidgenössische Materialprüfungs- und Forschungsanstalt (EMPA) durchgeführt, in der Schweiz. Die Ergebnisse zeigen, dass zwar die Produktion von reaktiven Sauerstoffspezies in den Zellen ausgelöst wird, diese sich aber weiterhin vermehren können
Calizo, Irene Gonzales. "Raman nanometrology of graphene". Diss., [Riverside, Calif.] : University of California, Riverside, 2009. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3359892.
Pełny tekst źródłaIncludes abstract. Available via ProQuest Digital Dissertations. Title from first page of PDF file (viewed March 8, 2010). Includes bibliographical references (p. 59-64). Also issued in print.
Faizy, Namarvar Omid. "Structure électronique et transport quantique dans les nanostructures de Graphène". Phd thesis, Université de Grenoble, 2012. http://tel.archives-ouvertes.fr/tel-00870405.
Pełny tekst źródłaSolouki, Bonab Vahab. "Polyurethane (PU) Nanocomposites; Interplay of Composition, Morphology, and Properties". Case Western Reserve University School of Graduate Studies / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=case1542634359353501.
Pełny tekst źródłaMilana, Silvia. "Light interaction with graphene, related materials and plasmonic nanostructures". Thesis, University of Cambridge, 2015. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.708643.
Pełny tekst źródłaTahmassebi, Amirhessam. "Fluid Flow Through Carbon Nanotubes And Graphene Based Nanostructures". University of Akron / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=akron1436545689.
Pełny tekst źródłaDragomirova, Ralitsa L. "Spin-dependent shot noise in semiconductor and graphene nanostructures". Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 140 p, 2009. http://proquest.umi.com/pqdweb?did=1674099571&sid=2&Fmt=2&clientId=8331&RQT=309&VName=PQD.
Pełny tekst źródłaDI, PIERRO ALESSANDRO. "Computational modeling of thermal interfaces in graphene based nanostructures". Doctoral thesis, Politecnico di Torino, 2019. http://hdl.handle.net/11583/2742543.
Pełny tekst źródłaWang, Shu Jun. "Applications of graphene for transparent conductors and polymer nanocomposites /". View abstract or full-text, 2009. http://library.ust.hk/cgi/db/thesis.pl?MECH%202009%20WANGS.
Pełny tekst źródła