Gotowa bibliografia na temat „Nanostructure - Graphene”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Nanostructure - Graphene”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Nanostructure - Graphene"
Fan, Jiakang. "The realization of a broadband light absorber via the synergistic effect of graphene and silicon nanostructures". Journal of Physics: Conference Series 2285, nr 1 (1.06.2022): 012001. http://dx.doi.org/10.1088/1742-6596/2285/1/012001.
Pełny tekst źródłaAvila, Antonio F., Aline M. de Oliveira, Viviane C. Munhoz i Glaucio C. Pereira. "Graphene-CNTs into Neuron-Synapse Like Configuration a New Class of Hybrid Nanocomposites". Advanced Materials Research 1119 (lipiec 2015): 116–20. http://dx.doi.org/10.4028/www.scientific.net/amr.1119.116.
Pełny tekst źródłaWallace, Steaphan M., Thiyagu Subramani, Wipakorn Jevasuwan i Naoki Fukata. "Conversion of Amorphous Carbon on Silicon Nanostructures into Similar Shaped Semi-Crystalline Graphene Sheets". Journal of Nanoscience and Nanotechnology 21, nr 9 (1.09.2021): 4949–54. http://dx.doi.org/10.1166/jnn.2021.19329.
Pełny tekst źródłaFujii, Shintaro, Maxim Ziatdinov, Misako Ohtsuka, Koichi Kusakabe, Manabu Kiguchi i Toshiaki Enoki. "Role of edge geometry and chemistry in the electronic properties of graphene nanostructures". Faraday Discuss. 173 (2014): 173–99. http://dx.doi.org/10.1039/c4fd00073k.
Pełny tekst źródłaWu, Shiyun, Kaimin Fan, Minpin Wu i Guangqiang Yin. "Two-dimensional MnO2/graphene hybrid nanostructures as anode for lithium ion batteries". International Journal of Modern Physics B 30, nr 27 (17.10.2016): 1650208. http://dx.doi.org/10.1142/s0217979216502088.
Pełny tekst źródłaTamm, Aile, Tauno Kahro, Helle-Mai Piirsoo i Taivo Jõgiaas. "Atomic-Layer-Deposition-Made Very Thin Layer of Al2O3, Improves the Young’s Modulus of Graphene". Applied Sciences 12, nr 5 (27.02.2022): 2491. http://dx.doi.org/10.3390/app12052491.
Pełny tekst źródłaWang, Wei, Shirui Guo, Isaac Ruiz, Mihrimah Ozkan i Cengiz S. Ozkan. "Synthesis of Three Dimensional Carbon Nanostructure Foams for Supercapacitors". MRS Proceedings 1451 (2012): 85–90. http://dx.doi.org/10.1557/opl.2012.1330.
Pełny tekst źródłaBi, Kaixi, Jiliang Mu, Wenping Geng, Linyu Mei, Siyuan Zhou, Yaokai Niu, Wenxiao Fu, Ligang Tan, Shuqi Han i Xiujian Chou. "Reliable Fabrication of Graphene Nanostructure Based on e-Beam Irradiation of PMMA/Copper Composite Structure". Materials 14, nr 16 (17.08.2021): 4634. http://dx.doi.org/10.3390/ma14164634.
Pełny tekst źródłaLi, Jia Ye, Jin Feng Zhu i Qing H. Liu. "Tunable Properties of Three-Dimensional Graphene-Loaded Plasmonic Absorber Using Plasmonic Nanoparticles". Materials Science Forum 860 (lipiec 2016): 29–34. http://dx.doi.org/10.4028/www.scientific.net/msf.860.29.
Pełny tekst źródłaLoginos, Panagiotis, Anastasios Patsidis i Vasilios Georgakilas. "UV-Cured Poly(Ethylene Glycol) Diacrylate/Carbon Nanostructure Thin Films. Preparation, Characterization, and Electrical Properties". Journal of Composites Science 4, nr 1 (1.01.2020): 4. http://dx.doi.org/10.3390/jcs4010004.
Pełny tekst źródłaRozprawy doktorskie na temat "Nanostructure - Graphene"
France-Lanord, Arthur. "Transport électronique et thermique dans des nanostructures". Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS566/document.
Pełny tekst źródłaThe perpetual shrinking of microelectronic devices makes it crucial to have a proper understanding of transport mechanisms at the nanoscale. While simple effects are now well understood in homogeneous materials, the understanding of nanoscale transport in heterosystems needs to be improved. For instance, the relationship between current, resistance, and heat flux in nanostructures remains to be clarified. In this context, the subject of the thesis is centered around the development and application of advanced numerical methods used to predict electronic and thermal conductivities of nanomaterials. This manuscript is divided into three parts. We begin with the parameterization of a classical interatomic potential, suitable for the description of multicomponent systems, in order to model the structural, vibrational, and thermal transport properties of both silica and silicon. A well-defined, reproducible, and automated optimization procedure is derived. As an example, we evaluate the temperature dependence of the Kapitza resistance between amorphous silica and crystalline silicon, and highlight the importance of an accurate description of the structure of the interface. Then, we have studied thermal transport in graphene supported on amorphous silica, by evaluating the mode-wise decomposition of thermal conductivity. The influence of hydroxylation on heat transport, as well as the significant role played by collective excitations of phonons, have come to light. Finally, electronic transport properties of graphene supported on quasi-two-dimensional silica, a system recently observed experimentally, have been investigated. The influence on transport properties of ripples in the graphene sheet or in the substrate, which often occur in samples and whose amplitude and wavelength can be controlled, has been evaluated. We have also modeled electrostatic gating, and its impact on electronic transport
Celis, Retana Arlensiú Eréndira. "Gap en graphène sur des surfaces nanostructurées de SiC et des surfaces vicinales de métaux nobles". Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS417/document.
Pełny tekst źródłaThe major challenge for graphene-based electronic applications is the absence of the band-gap necessary to switch between on and off logic states. Graphene nanoribbons provide a route to open a band-gap, though it is challenging to produce atomically precise nanoribbon widths and well-ordered edges. A particularly elegant method to open a band-gap is by electronic confinement, which can in principle be tuned by adjusting the nanoribbon width. This thesis is dedicated to understanding the ways of opening band-gaps by nanostructuration. We have used two approaches: the introduction of a superperiodic potential in graphene on vicinal noble metal substrates and the electronic confinement in artificially patterned nanoribbons on SiC. Superperiodic potentials on graphene have been introduced by two nanostructured substrates, Ir(332) and a multivicinal curved Pt(111) substrate. The growth of graphene modifies the original steps of the pristine substrates and transforms them into an array of (111) terraces and step bunching areas, as observed by STM. This nanostructuration of the underlying substrate induces the superperiodic potential on graphene that opens mini-gaps on the π band as observed by ARPES and consistent with the structural periodicity observed in STM and LEED. The mini-gaps are satisfactorily explained by a Dirac-hamiltonian model, that allows to retrieve the potential strength at the junctions between the (111) terraces and the step bunching. The potential strength depends on the substrate, the surface periodicity and the type of step-edge (A or B type). The surface potential has also been modified by intercalating Cu on Ir(332), that remains preferentially on the step bunching areas, producing there n-doped ribbons, while the non-intercalated areas remain p-doped, giving rise to an array of n- and p- doped nanoribbons on a single continuous layer. In the second approach to control the gap, we have studied the gap opening by electronic confinement in graphene nanoribbons grown on SiC. These ribbons are grown on an array of stabilized sidewalls on SiC. As a band-gap opening with unclear atomic origin had been observed by ARPES, we carried-out a correlated study of the atomic and electronic structure to identify the band gap origin. We performed the first atomically resolved study by STM, demonstrating the smoothness and chirality of the edges, finding the precise location of the metallic graphene nanoribbon on the sidewalls and identifying an unexpected mini-faceting on the substrate. To understand the coupling of graphene to the substrate, we performed a cross-sectional study by STEM/EELS, complementary of our ARPES and STM/STS studies. We observe that the (1-107) SiC sidewall facet is sub-faceted both at its top and bottom edges. The subfacetting consists of a series of (0001) miniterraces and (1-105) minifacets. Graphene is continuous on the whole subfacetting region, but it is coupled to the substrate on top of the (0001) miniterraces, rendering it there semiconducting. On the contrary, graphene is decoupled on top of the (1-105) minifacets but exhibits a bandgap, observed by EELS and compatible with ARPES observations. Such bandgap is originated by electronic confinement in the 1 - 2 nm width graphene nanoribbons that are formed over the (1-105) minifacets
Chernozatonskii, L. A., i V. A. Demin. "Nanotube Connections in Bilayer Graphene with Elongated Holes". Thesis, Sumy State University, 2013. http://essuir.sumdu.edu.ua/handle/123456789/35460.
Pełny tekst źródłaDas, Santanu. "Carbon Nanostructure Based Electrodes for High Efficiency Dye Sensitize Solar Cell". FIU Digital Commons, 2012. http://digitalcommons.fiu.edu/etd/678.
Pełny tekst źródłaRhoads, Daniel Joseph. "A Mathematical Model of Graphene Nanostructures". University of Akron / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=akron1438978423.
Pełny tekst źródłaFederspiel, Francois. "Etude optique du transfert d'énergie entre une nanostructure semiconductrice unique et un feuillet de graphène". Thesis, Strasbourg, 2015. http://www.theses.fr/2015STRAE015/document.
Pełny tekst źródłaMy PhD subject is the FRET interaction (Förster-like resonant energy transfer) between single colloidal semiconductor nanostructures and graphene. The first part is about the development of the interaction theory with the graphene for several types of nanostructures. Then comes the experimental part, and firstly the optical setup together with the analysis methods, for both spectroscopy and photoluminescence. After that, we describe our results about different types of spherical nanocrystals directly interacting with graphene (which can be multilayer) : the energy transfer has a huge effect on the photoluminescence, as well as the blinking behaviour of the nanocrystals. Then we measure the dependency of the energy transfer as a function the distance ; in the case of quantum dots, we observe a 1/z^4 law. On another hand, in the case of nanoplatelets, the function is more complex and depends on the temperature
CURCIO, DAVIDE. "Growth and Properties of Graphene-Based Materials". Doctoral thesis, Università degli Studi di Trieste, 2017. http://hdl.handle.net/11368/2908114.
Pełny tekst źródłaSeo, Michael. "Plasma-assisted nanofabrication of vertical graphene- and silicon-based nanomaterials and their applications". Thesis, The University of Sydney, 2014. http://hdl.handle.net/2123/12285.
Pełny tekst źródłaKim, Junseok. "Improved Properties of Poly (Lactic Acid) with Incorporation of Carbon Hybrid Nanostructure". Thesis, Virginia Tech, 2016. http://hdl.handle.net/10919/81415.
Pełny tekst źródłaMaster of Science
Geng, Yan. "Preparation and characterization of graphite nanoplatelet, graphene and graphene-polymer nanocomposites /". View abstract or full-text, 2009. http://library.ust.hk/cgi/db/thesis.pl?MECH%202009%20GENG.
Pełny tekst źródłaKsiążki na temat "Nanostructure - Graphene"
Mikhailov, Sergey. Physics and applications of graphene: Theory. Rijeka, Croatia: InTech, 2011.
Znajdź pełny tekst źródłaJorio, A. Raman spectroscopy in graphene related systems. Weinheim, Germany: Wiley-VCH, 2011.
Znajdź pełny tekst źródłaKābon nanochūbu, gurafen. Tōkyō: Kyōritsu Shuppan, 2012.
Znajdź pełny tekst źródłaPribat, Didier, Young Hee Lee i M. Razeghi. Carbon nanotubes, graphene, and associated devices III: 1-2 and 4 August 2010, San Diego, California, United States. Redaktor SPIE (Society). Bellingham, Wash: SPIE, 2010.
Znajdź pełny tekst źródłaSusumo, Saitō, i Zettl Alex, red. Carbon nanotubes: Quantum cylinders of graphene. Amsterdam, The Netherlands: Elsevier, 2008.
Znajdź pełny tekst źródłaEnoki, Toshiaki, C. N. R. Rao i Swapan K. Pati. Graphene and its fascinating attributes. New Jersey: World Scientific, 2011.
Znajdź pełny tekst źródłaAli, Nasar, Mahmood Aliofkhazraei, William I. Milne, Cengiz S. Ozkan i Stanislaw Mitura. Graphene Science Handbook: Nanostructure and Atomic Arrangement. Taylor & Francis Group, 2016.
Znajdź pełny tekst źródłaAli, Nasar, Mahmood Aliofkhazraei, William I. Milne, Cengiz S. Ozkan i Stanislaw Mitura. Graphene Science Handbook: Nanostructure and Atomic Arrangement. Taylor & Francis Group, 2016.
Znajdź pełny tekst źródłaBanadaki, Yaser M., i Safura Sharifi. Graphene Nanostructures. Jenny Stanford Publishing, 2019. http://dx.doi.org/10.1201/9780429022210.
Pełny tekst źródłaGraphene Nanostructures. Taylor & Francis Group, 2019.
Znajdź pełny tekst źródłaCzęści książek na temat "Nanostructure - Graphene"
Terasawa, Tomo-o., i Koichiro Saiki. "Graphene: Synthesis and Functionalization". W Nanostructure Science and Technology, 101–32. Tokyo: Springer Japan, 2017. http://dx.doi.org/10.1007/978-4-431-56496-6_4.
Pełny tekst źródłaHatakeyama, Kazuto, Shinya Hayami i Yasumichi Matsumoto. "Graphene Oxide Based Electrochemical System for Energy Generation". W Nanostructure Science and Technology, 331–46. Tokyo: Springer Japan, 2017. http://dx.doi.org/10.1007/978-4-431-56496-6_12.
Pełny tekst źródłaMansouri, N., i S. Bagheri. "Graphene Hydrogel Novel Nanostructure as a Scaffold". W IFMBE Proceedings, 99–102. Singapore: Springer Singapore, 2015. http://dx.doi.org/10.1007/978-981-10-0266-3_20.
Pełny tekst źródłaLu, An-Hui, Guang-Ping Hao, Qiang Sun, Xiang-Qian Zhang i Wen-Cui Li. "Chemical Synthesis of Carbon Materials with Intriguing Nanostructure and Morphology". W Chemical Synthesis and Applications of Graphene and Carbon Materials, 115–57. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2016. http://dx.doi.org/10.1002/9783527648160.ch7.
Pełny tekst źródłaTalat, Mahe, i O. N. Srivastava. "Deployment of New Carbon Nanostructure: Graphene for Drug Delivery and Biomedical Applications". W Advances in Nanomaterials, 383–95. New Delhi: Springer India, 2016. http://dx.doi.org/10.1007/978-81-322-2668-0_11.
Pełny tekst źródłaNaseem, Z., K. Sagoe-Crentsil i W. Duan. "Graphene-Induced Nano- and Microscale Modification of Polymer Structures in Cement Composite Systems". W Lecture Notes in Civil Engineering, 527–33. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-3330-3_56.
Pełny tekst źródłaOrtega-Amaya, R., M. A. Pérez-Guzmán i M. Ortega-López. "Chapter 2. Production of Carbon Nanostructure/Graphene Oxide Composites by Self-assembly and Their Applications". W All-carbon Composites and Hybrids, 31–52. Cambridge: Royal Society of Chemistry, 2021. http://dx.doi.org/10.1039/9781839162718-00031.
Pełny tekst źródłaKouini, Benalia, i Hossem Belhamdi. "Graphene and Graphene Oxide as Nanofiller for Polymer Blends". W Carbon Nanostructures, 231–57. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-30207-8_9.
Pełny tekst źródłaKholmanov, I. N., C. Soldano, G. Faglia i G. Sberveglieri. "Engineering of Graphite Bilayer Edges by Catalyst-Assisted Growth of Curved Graphene Structures". W Carbon Nanostructures, 209–13. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-20644-3_26.
Pełny tekst źródłaSilva, Martin Kássio Leme, i Ivana Cesarino. "Graphene Functionalization and Nanopolymers". W Carbon Nanostructures, 157–78. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9057-0_6.
Pełny tekst źródłaStreszczenia konferencji na temat "Nanostructure - Graphene"
Resnick, Alex, Jungkyu Park, Biya Haile i Eduardo B. Farfán. "Three-Dimensional Printing of Carbon Nanostructures". W ASME 2019 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/imece2019-11411.
Pełny tekst źródłaChu, Hung-Yao, Judy M. Obliosca, Pen-Cheng Wang i Fan-Gang Tseng. "Strong SERS biosensor with gold nanostructure sandwiched on graphene". W 2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS). IEEE, 2013. http://dx.doi.org/10.1109/memsys.2013.6474394.
Pełny tekst źródłaTrenikhin, M. V., i V. A. Drozdov. "Nanostructure analysis of the graphene layers of carbon black". W 21ST CENTURY: CHEMISTRY TO LIFE. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5122909.
Pełny tekst źródłaNakarmi, Sushan, i V. U. Unnikrishnan. "Influence of Strain States on the Thermal Transport Properties of Single and Multiwalled Carbon Nanostructures". W ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-88620.
Pełny tekst źródłaRahman, Shaharin Fadzli Abd, Abd Manaf Hashim i Seiya Kasai. "Fabrication and transport performance of three-branch junction graphene nanostructure". W 2012 International Conference on Enabling Science and Nanotechnology (ESciNano). IEEE, 2012. http://dx.doi.org/10.1109/escinano.2012.6149707.
Pełny tekst źródłaGhadiri, Yashar, i Mohammad Najafi. "Giant Kerr nonlinearity in a quantized four-level graphene nanostructure". W Novel Optical Materials and Applications. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/noma.2016.notu3d.6.
Pełny tekst źródłaJunjun Cheng, Jinfeng Zhu, Shuang Yan, Lirong Zhang i Qinghuo Liu. "A novel electro-optic modulator with metal/dielectric/graphene nanostructure: Simulation of isotropic and anisotropic graphene". W 2016 Progress in Electromagnetic Research Symposium (PIERS). IEEE, 2016. http://dx.doi.org/10.1109/piers.2016.7735311.
Pełny tekst źródłaPeng, Jingyang, Benjamin P. Cumming i Min Gu. "MIR spin angular momentum detection by a chiral graphene plasmonic nanostructure". W Frontiers in Optics. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/fio.2018.fw5e.4.
Pełny tekst źródłaBalois, Maria Vanessa C., Norihiko Hayazawa, Satoshi Yasuda, Katsuyoshi Ikeda, Bo Yang, Emiko Kazuma, Yasayuki Yokota, Yousoo Kim i Takuo Tanaka. "Plasmon activated forbidden phonon modes in defect-free graphene by tip-enhanced nano-confined light". W JSAP-OSA Joint Symposia. Washington, D.C.: Optica Publishing Group, 2018. http://dx.doi.org/10.1364/jsap.2018.18a_211b_5.
Pełny tekst źródłaOhnishi, Masato, Katsuya Ohsaki, Yusuke Suzuki, Ken Suzuki i Hideo Miura. "Nanostructure Dependence of the Electronic Conductivity of Carbon Nanotubes and Graphene Sheets". W ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-37277.
Pełny tekst źródłaRaporty organizacyjne na temat "Nanostructure - Graphene"
Kim, Ki W. Graphene Nanostructures for Novel Spin Magnetic Device Applications. Fort Belvoir, VA: Defense Technical Information Center, grudzień 2012. http://dx.doi.org/10.21236/ada580335.
Pełny tekst źródłaMcCarty, Keven F., Xiaowang Zhou, Donald K. Ward, Peter A. Schultz, Michael E. Foster i Norman Charles Bartelt. Predicting growth of graphene nanostructures using high-fidelity atomistic simulations. Office of Scientific and Technical Information (OSTI), wrzesień 2015. http://dx.doi.org/10.2172/1221517.
Pełny tekst źródła