Gotowa bibliografia na temat „Nanoscale Dimensions”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Nanoscale Dimensions”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Nanoscale Dimensions"
Menozzi, Edoardo, Hideki Onagi, Arnold L. Rheingold i Julius Rebek. "Extended Cavitands of Nanoscale Dimensions". European Journal of Organic Chemistry 2005, nr 17 (wrzesień 2005): 3633–36. http://dx.doi.org/10.1002/ejoc.200500342.
Pełny tekst źródłaXU, JINZE, KELIU WU, RAN LI, ZANDONG LI, JING LI, QILU XU, LINKAI LI i ZHANGXIN CHEN. "NANOSCALE PORE SIZE DISTRIBUTION EFFECTS ON GAS PRODUCTION FROM FRACTAL SHALE ROCKS". Fractals 27, nr 08 (1.11.2019): 1950142. http://dx.doi.org/10.1142/s0218348x19501421.
Pełny tekst źródłaWang, Fuyong, Peiqing Lian, Liang Jiao, Zhichao Liu, Jiuyu Zhao i Jian Gao. "Fractal Analysis of Microscale and Nanoscale Pore Structures in Carbonates Using High-Pressure Mercury Intrusion". Geofluids 2018 (7.06.2018): 1–15. http://dx.doi.org/10.1155/2018/4023150.
Pełny tekst źródłaLücking, Ulrich, Fabio C. Tucci, Dmitry M. Rudkevich i Julius Rebek. "Self-Folding Cavitands of Nanoscale Dimensions". Journal of the American Chemical Society 122, nr 37 (wrzesień 2000): 8880–89. http://dx.doi.org/10.1021/ja001562l.
Pełny tekst źródłaKroto, Harold. "Mechanisms of Self Assembly at Nanoscale Dimensions". Journal of Nanoscience and Nanotechnology 10, nr 9 (1.09.2010): 5911. http://dx.doi.org/10.1166/jnn.2010.2557.
Pełny tekst źródłaSingh, Bharti, B. R. Mehta, Deepak Varandani, Andreea Veronica Savu i Juergen Brugger. "Exploring Nanoscale Electrical Properties of CuO-Graphene Based Hybrid Interfaced Memory Device by Conductive Atomic Force Microscopy". Journal of Nanoscience and Nanotechnology 16, nr 4 (1.04.2016): 4044–51. http://dx.doi.org/10.1166/jnn.2016.10713.
Pełny tekst źródłaHalas, N. J. "Connecting the dots: Reinventing optics for nanoscale dimensions". Proceedings of the National Academy of Sciences 106, nr 10 (10.03.2009): 3643–44. http://dx.doi.org/10.1073/pnas.0900796106.
Pełny tekst źródłaOzbay, E. "Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions". Science 311, nr 5758 (13.01.2006): 189–93. http://dx.doi.org/10.1126/science.1114849.
Pełny tekst źródłaEbrahimi, Nader. "Assessing a Linear Nanosystem's Limiting Reliability from its Components". Journal of Applied Probability 45, nr 3 (wrzesień 2008): 879–87. http://dx.doi.org/10.1239/jap/1222441834.
Pełny tekst źródłaEbrahimi, Nader. "Assessing a Linear Nanosystem's Limiting Reliability from its Components". Journal of Applied Probability 45, nr 03 (wrzesień 2008): 879–87. http://dx.doi.org/10.1017/s0021900200004757.
Pełny tekst źródłaRozprawy doktorskie na temat "Nanoscale Dimensions"
Pugsley, Lisa M. "Extraordinary Magnetoresistance in Two and Three Dimensions: Geometrical Optimization". Digital WPI, 2012. https://digitalcommons.wpi.edu/etd-theses/333.
Pełny tekst źródłaWard, Edmund Peter William. "Three-dimensional analysis of nanoscale structures using electron tomography". Thesis, University of Cambridge, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.611984.
Pełny tekst źródłaJeong, Jae Young. "Heat Transfer in Low Dimensional Materials Characterized by Micro/Nanoscale Thermometry". Thesis, University of North Texas, 2008. https://digital.library.unt.edu/ark:/67531/metadc1248488/.
Pełny tekst źródłaWeyland, Matthew. "Two and three dimensional nanoscale analysis : new techniques and applications". Thesis, University of Cambridge, 2001. https://www.repository.cam.ac.uk/handle/1810/272098.
Pełny tekst źródłaMa, Fengxian. "Computational exploration of structure and electronic functionality in nanoscale materials". Thesis, Queensland University of Technology, 2017. https://eprints.qut.edu.au/112361/1/Fengxian_Ma_Thesis.pdf.
Pełny tekst źródłaJeong, Jae Young. "Heat Transfer in Low Dimensional Materials Characterized by Micro/Nanoscae Thermometry". Thesis, University of North Texas, 2018. https://digital.library.unt.edu/ark:/67531/metadc1248488/.
Pełny tekst źródłaZhang, Yi. "Three dimensional atom probe tomography of nanoscale thin films, interfaces and particles". [Ames, Iowa : Iowa State University], 2009.
Znajdź pełny tekst źródłaSoumyanarayanan, Anjan. "A nanoscale probe of the quasiparticle band structure for two dimensional electron systems". Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/83821.
Pełny tekst źródłaPage 138 blank. Cataloged from PDF version of thesis.
Includes bibliographical references (pages 121-137).
The advent of a broad class of two-dimensional (2D) electronic materials has provided avenues to create and study designer electronic quantum phases. The coexistence of superconductivity, magnetism, density waves, and other ordered phases on the surfaces and interfaces of these 2D materials are governed by interactions which can be experimentally tuned with increasing precision. This motivates the need to develop spectroscopic probes that are sensitive to these tuning parameters, with the objective of studying the electronic properties and emergence of order in these materials. In the first part of this thesis, we report on spectroscopic studies of the topological semimetal antimony (Sb). Our simultaneous observation of Landau quantization and quasiparticle interference phenomena on this material enables their quantitative reconciliation - after two decades of their study on various materials. We use these observations to establish momentum-resolved scanning tunneling microscopy (MR-STM) as a robust nanoscale band structure probe, and reconstruct the multi-component dispersion of Sb(111) surface states. We quantify surface state parameters relevant to spintronics applications, and clarify the relationship between bulk conductivity and surface state robustness. At low momentum, we find a crossover in the single particle behavior from massless Dirac to massive Rashba character - a unique signature of topological surface states. In the second part of this thesis, we report on the spectroscopic study of charge density wave (CDW) order in the dichalcogenide 2H-NbSe2 - a model system for understanding the interplay of coexisting CDW and superconducting phases. We detail the observation of a previously unknown unidirectional (stripe) CDW smoothly interfacing with the familiar triangular CDW on this material. Our low temperature measurements rule out thermal fluctuations and point to local strain as the tuning parameter for this quantum phase transition. The distinct wavelengths and tunneling spectra of the two CDWs, in conjunction with band structure calculations, enable us to resolve two longstanding debates about the anomalous spectroscopic gap and the role of Fermi surface nesting in the CDW phase of NbSe2. Our observations motivate further spectroscopic studies of the phase evolution of the CDW, and of NbSe 2 as a prototypical strong coupling density wave system in the vicinity of a quantum critical point.
by Anjan Soumyanarayanan.
Ph.D.
Larkin, Adam Lyston. "The Design of Three-Dimensional Multicellular Liver Models Using Detachable, Nanoscale Polyelectrolyte Multilayers". Diss., Virginia Tech, 2012. http://hdl.handle.net/10919/77190.
Pełny tekst źródłaPh. D.
Nasseri, Mohsen. "NANOSCALE DEVICES CONSISTING OF HETEROSTRUCTURES OF CARBON NANOTUBES AND TWO-DIMENSIONAL LAYERED MATERIALS". UKnowledge, 2018. https://uknowledge.uky.edu/physastron_etds/59.
Pełny tekst źródłaKsiążki na temat "Nanoscale Dimensions"
Meeting, Materials Research Society, i Symposium II, "Probing Mechanics at Nanoscale Dimensions" (2009 : San Francisco, Calif.), red. Probing mechanics at nanoscale dimensions: Symposium held April 14-17, 2009, San Francisco, California, U.S.A. Warrendale, PA: Materials Research Society, 2009.
Znajdź pełny tekst źródłaÜnlü, Hilmi, i Norman J. M. Horing, red. Progress in Nanoscale and Low-Dimensional Materials and Devices. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-93460-6.
Pełny tekst źródłaLi, Zhenyu. One-Dimensional nanostructures: Electrospinning Technique and Unique Nanofibers. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.
Znajdź pełny tekst źródłaÜnlü, Hilmi. Low Dimensional Semiconductor Structures: Characterization, Modeling and Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.
Znajdź pełny tekst źródłaGünter, Wilkening, i Koenders Ludger, red. Nanoscale calibration standards and methods: Dimensional and related measurements in the micro- and nanometer range. Weinheim: Wiley-VCH, 2005.
Znajdź pełny tekst źródłaFilatov, D. O. Two-dimensional periodic nanoscale patterning of solid surfaces by four-beam standing wave excimer laser lithography. New York: Nova Science Pub. Inc., 2010.
Znajdź pełny tekst źródłaIsotope low-dimensional structures: Elementary excitations and applications. Heidelberg: Springer, 2012.
Znajdź pełny tekst źródłaBhattacharya, Sitangshu. Effective Electron Mass in Low-Dimensional Semiconductors. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.
Znajdź pełny tekst źródłaFriedman, Lawrence, Nobumichi Taumura, Andrew Minor i Conal Murray. Probing Mechanics at Nanoscale Dimensions: Volume 1185. University of Cambridge ESOL Examinations, 2014.
Znajdź pełny tekst źródłaTiwari, Sandip. Nanoscale transistors. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198759874.003.0002.
Pełny tekst źródłaCzęści książek na temat "Nanoscale Dimensions"
Chakraborty, Tapash. "Down to low dimensions". W Nanoscale Quantum Materials, 9–46. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003090908-2.
Pełny tekst źródłaAshrafuzzaman, Mohammad. "Cell Transport at Nanoscale Dimensions". W Nanoscale Biophysics of the Cell, 237–78. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-77465-7_6.
Pełny tekst źródłaChakraborty, Tapash. "Quantum dots: In the abyss of no dimensions". W Nanoscale Quantum Materials, 47–86. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003090908-3.
Pełny tekst źródłaHachtel, Jordan A. "Probing Plasmons in Three Dimensions". W The Nanoscale Optical Properties of Complex Nanostructures, 75–90. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-70259-9_5.
Pełny tekst źródłaBaek, Rock-Hyun, i Jun-Sik Yoon. "Characterization of Silicon FinFETs under Nanoscale Dimensions". W Semiconductor Devices and Technologies for Future Ultra Low Power Electronics, 115–28. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003200987-5.
Pełny tekst źródłaKumar, Arvind, Swati, Manish Kumar, Neelabh Srivastava i Anadi Krishna Atul. "Nanoscale Characterization". W Fundamentals of Low Dimensional Magnets, 245–68. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003197492-13.
Pełny tekst źródłaMenoni, C. S., I. Kuznetsov, T. Green, W. Chao, E. R. Bernstein, D. C. Crick i J. J. Rocca. "Soft X-Ray Laser Ablation Mass Spectrometry for Chemical Composition Imaging in Three Dimensions (3D) at the Nanoscale". W Springer Proceedings in Physics, 221–30. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73025-7_34.
Pełny tekst źródłaMa, Long, i Yong Ni. "CHAPTER 2. Nanoscale Buckling Mechanics of Ultrathin Sheets". W Inorganic Two-dimensional Nanomaterials, 35–55. Cambridge: Royal Society of Chemistry, 2017. http://dx.doi.org/10.1039/9781788010306-00035.
Pełny tekst źródłaPeng, Bei, Yugang Sun, Yong Zhu, Hsien-Hau Wang i Horacio Espinosa. "Nanoscale Testing of One-Dimensional Nanostructures". W Micro and Nano Mechanical Testing of Materials and Devices, 280–304. Boston, MA: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-78701-5_11.
Pełny tekst źródłaBuban, Tabea, Sarah Puhl, Peter Burger, Marc H. Prosenc i Jürgen Heck. "Magnetic Properties of One-Dimensional Stacked Metal Complexes". W Atomic- and Nanoscale Magnetism, 89–116. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99558-8_5.
Pełny tekst źródłaStreszczenia konferencji na temat "Nanoscale Dimensions"
Iafrate, Gerald J. "Physics of nanoscale and mesoscopic dimensions: nanoelectronics, beyond and revisited". W New York - DL tentative, redaktorzy Daniel L. Akins i Robert R. Alfano. SPIE, 1992. http://dx.doi.org/10.1117/12.56735.
Pełny tekst źródłaIafrate, Gerald J. "The physics of nanoscale and mesoscopic dimensions; nanoelectronics, beyond and revisited". W Recent Advances in the Uses of Light in Physics, Chemistry, Engineering, and Medicine. SPIE, 1992. http://dx.doi.org/10.1117/12.2322274.
Pełny tekst źródłaSobhan, C. B., Muhsin M. Ameen i Praveen P. Abraham. "Numerical Modeling of Micro Fin Arrays Using Slip Flow and Temperature Jump Boundary Conditions". W ASME 2008 First International Conference on Micro/Nanoscale Heat Transfer. ASMEDC, 2008. http://dx.doi.org/10.1115/mnht2008-52215.
Pełny tekst źródłaVelez, Maximiliano A., i Amador M. Guzman. "Study of the Effect of Photonic Crystals on Absorptance and Efficiency of Absorption of Two Organic Photovoltaic Cells by the Finite Element Method". W ASME 2012 Third International Conference on Micro/Nanoscale Heat and Mass Transfer. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/mnhmt2012-75316.
Pełny tekst źródłaZhang, Conan, i Carlos H. Hidrovo. "Nanoscale Wicking Structures". W ASME 2009 Heat Transfer Summer Conference collocated with the InterPACK09 and 3rd Energy Sustainability Conferences. ASMEDC, 2009. http://dx.doi.org/10.1115/ht2009-88416.
Pełny tekst źródłaBennett, Jean M., Mecky Puiu, Van A. Hodgkin i Thomas McWaid. "Step Height Standards for Calibrating an AFM/STM". W Microphysics of Surfaces: Nanoscale Processing. Washington, D.C.: Optica Publishing Group, 1995. http://dx.doi.org/10.1364/msnp.1995.mthd4.
Pełny tekst źródłaMontazeri, Kimia, Penghui Cao i Yoonjin Won. "Molecular Dynamics Investigation of Water Behavior Through Nanopores". W ASME 2020 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/ipack2020-2699.
Pełny tekst źródłaMarrian, Christie R. K. "Electron Beam Nanolithography". W Microphysics of Surfaces: Nanoscale Processing. Washington, D.C.: Optica Publishing Group, 1995. http://dx.doi.org/10.1364/msnp.1995.mthb1.
Pełny tekst źródłaYoo, Gwan Min, Jae Hwa Seo, Young Jun Yoon, Young Jae Kim, Sung Yoon Kim, Hye Su Kang, Hye Rim Eun i in. "Dependence of device performances on fin dimensions in AlGaN/GaN recessed-gate nanoscale FinFET". W 2014 International Symposium on Consumer Electronics (ICSE). IEEE, 2014. http://dx.doi.org/10.1109/isce.2014.6884475.
Pełny tekst źródłaChaudhri, Anuj, i Jennifer R. Lukes. "Multicomponent Energy Conserving Dissipative Particle Dynamics: A General Framework for Mesoscopic Heat Transfer Applications". W ASME 2008 First International Conference on Micro/Nanoscale Heat Transfer. ASMEDC, 2008. http://dx.doi.org/10.1115/mnht2008-52218.
Pełny tekst źródłaRaporty organizacyjne na temat "Nanoscale Dimensions"
Miao, Jianwei. Three-dimensional imaging of nanoscale materials by using coherent x-rays. Office of Scientific and Technical Information (OSTI), kwiecień 2011. http://dx.doi.org/10.2172/1011392.
Pełny tekst źródłaNurmikko, Arto V. Optically Active 3-Dimensional Semiconductor Quantum Dot Assemblies in Heterogeneous Nanoscale Hosts. Office of Scientific and Technical Information (OSTI), maj 2017. http://dx.doi.org/10.2172/1355658.
Pełny tekst źródłaHong, Xia. Final Report on "Nanoscale Ferroelectric Control of Novel Electronic States in Layered Two-Dimensional Materials". Office of Scientific and Technical Information (OSTI), marzec 2023. http://dx.doi.org/10.2172/1964211.
Pełny tekst źródła