Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Nanoparticle Surface.

Książki na temat „Nanoparticle Surface”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych książek naukowych na temat „Nanoparticle Surface”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj książki z różnych dziedzin i twórz odpowiednie bibliografie.

1

1945-, Więckowski Andrzej, Savinova Elena R. 1950- i Vayenas C. G, red. Catalysis and electrocatalysis at nanoparticle surfaces. New York: Marcel Dekker, 2003.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Mittal, Vikas, red. Surface Modification of Nanoparticle and Natural Fiber Fillers. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527670260.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Wang, Jianpeng. Study of the Peptide-Peptide and Peptide-Protein Interactions and Their Applications in Cell Imaging and Nanoparticle Surface Modification. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-53399-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Marie-Isabelle, Baraton, red. Synthesis, functionalization and surface treatment of nanoparticles. Stevenson Ranch, Calif: American Scientific Publishers, 2003.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

1943-, Schwarz James A., i Contescu Cristian I. 1948-, red. Surfaces of nanoparticles and porous materials. New York: Marcel Dekker, 1999.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

H, Fendler Janos, Dékány Imre, North Atlantic Treaty Organization. Scientific Affairs Division. i NATO Advanced Research Workshop on Nanoparticles in Solids and Solutions--an Integrated Approach to Their Preparation and Characterization (1996 : Szeged, Hungary), red. Nanoparticles in solids and solutions. Dordrecht: Kluwer Academic Publishers, 1996.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Fiorani, Dino, red. Surface Effects in Magnetic Nanoparticles. Boston, MA: Springer US, 2005. http://dx.doi.org/10.1007/b136494.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Media, Springer Science+Business, red. Surface effects in magnetic nanoparticles. New York: Springer, 2005.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Advanced polymer nanoparticles: Synthesis and surface modifications. Boca Raton: Taylor & Francis, 2011.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Characterization & control of interfaces for high quality advanced materials: Proceedings of the International Conference on the Characterization and Control of Interfaces for High Quality Advanced Materials (ICCCI 2003), Kurashiki, Japan, 2003. Westerville, OH: American Ceramic Society, 2005.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Pathak, Yashwant V., red. Surface Modification of Nanoparticles for Targeted Drug Delivery. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-06115-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Marie-Isabelle, Baraton, Uvarova Irina i NATO Advanced Study Institute on Functional Gradient Materials and Surface Layers Prepared by Fine Particles Technology (2000 : Kiev, Ukraine), red. Functional gradient materials and surface layers prepared by fine particles technology. Dordrecht: Kluwer Academic Publishers, 2001.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Gräfe, Wolfgang. Quantum Mechanical Models of Metal Surfaces and Nanoparticles. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19764-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

library, Wiley online, red. Chirality at the nanoscale: Nanoparticles, surfaces, materials and more. Weinheim: Wiley-VCH, 2009.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Osovet︠s︡kiĭ, B. M. Nanoskulʹptura poverkhnosti zolota: Monografii︠a︡. Permʹ: Redakt︠s︡ionno-izdatelʹskiĭ otdel Permskogo gosudarstvennogo nat︠s︡ionalʹnogo issledovatelskogo universiteta, 2012.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Heilmann, Andreas. Polymer Films with Embedded Metal Nanoparticles. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Superparamagnetic iron oxide nanoparticles: Synthesis, surface engineering, cytotoxicity, and biomedical applications. New York: Nova Science Publishers, 2011.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Waseda, Yoshio. Morphology Control of Materials and Nanoparticles: Advanced Materials Processing and Characterization. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Michaela, Kendall, Rehfeldt Florian i SpringerLink (Online service), red. Adhesion of Cells, Viruses and Nanoparticles. Dordrecht: Springer Science+Business Media B.V., 2011.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Calif.) Plasmonics in Biology and Medicine (Conference) (10th 2013 San Francisco. Plasmonics in biology and medicine X: 3-4 February 2013, San Francisco, California, United States. Redaktorzy Vo-Dinh Tuan editor, Lakowicz Joseph R. editor, SPIE (Society) i SPIE Photonics West (Conference) (2013 : San Francisco, Calif.). Bellingham, Washington: SPIE, 2013.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Roca, Alejandro G., Paolo Mele, Hanae Kijima-Aoki, Elvira Fantechi, Jana K. Vejpravova, Martin Kalbac, Satoru Kaneko i Tamio Endo, red. Surfaces and Interfaces of Metal Oxide Thin Films, Multilayers, Nanoparticles and Nano-composites. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-74073-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Engineered carbohydrate-based materials for biomedical applications: Polymers, surfaces, dendrimers, nanoparticles, and hydrogels. Hoboken, N.J: Wiley, 2011.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

International Conference on the Characterization and Control of Interfaces for High Quality Advanced Materials, and Joining Technology for New Metallic Glasses and Inorganic Materials (3rd 2009 Kurashiki, Japan). Characterization and control of interfaces for high quality advanced materials: Proceedings of the Third International Conference on the Characterization and Control of Interfaces for High Quality Advanced Materials, Kurashiki, Japan (2009). Hoboken, N.J: Wiley, 2010.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

International, Conference on the Characterization and Control of Interfaces for High Quality Advanced Materials and Joining Technology for New Metallic Glasses and Inorganic Materials (2nd 2006 Kurashiki Japan). Characterization and control of interfaces for high quality advanced materials. Hoboken, N.J: Wiley, 2007.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Polonina, Elena, Sergey Leonovich, Sergey Fedosov i Valeriy Yaglov. Structural concrete with a complex addition of hydrothermal nanosilicon and carbon nanotubes. ru: INFRA-M Academic Publishing LLC., 2023. http://dx.doi.org/10.12737/1981690.

Pełny tekst źródła
Streszczenie:
The monograph is devoted to improving the methods of directed and controlled regulation of the C — S — H-gel structure by varying the doses, sizes, physical and chemical characteristics of the surface, and the nanoparticles used. The authors have developed an additive that additionally contains a superplasticizer to reduce the water demand of the concrete mixture and stabilize the nanoparticles. The dependences of the strength growth of cement stone and structural heavy concrete on the components of the complex additive are revealed. Experimental confirmation of the mechanism of action of a combined nano—additive with a reduced consumption of nanoparticles on the structure of C — S - H-gel was obtained based on the results of the application of a set of methods. It is revealed that the use of a complex additive contributes to a proportional increase in the reduced modulus of elasticity, hardness, and mechanical characteristics of Portland cement stone and concrete. The study of the additive in the conditions of the construction site showed the prospects of its application for construction, ensuring a reduction in the cost of the technology of nanomodification of concrete relative to the effect of improving performance. For specialists of research, construction and design organizations dealing with the modification of concrete with nanomaterials, as well as for students, undergraduates, postgraduates, teachers who work on the problems of building materials science.
Style APA, Harvard, Vancouver, ISO itp.
26

Unimolecular and supramolecular electronics: Chemistry and physics meet at metal-molecule interfaces. Heidelberg: Springer, 2012.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Dieter, Bimberg, red. Semiconductor nanostructures. Berlin: Springer, 2008.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Stockman, Mark I. Plasmonics: Metallic nanostructures and their optical properties VII : 2-6 August 2009, San Diego, California, United States. Redaktor SPIE (Society). Bellingham, Wash: SPIE, 2009.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Gupta, Abhishek. Nanoparticle Surface and Curvature. Arcler Education Inc, 2017.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

(Editor), Andrzej Wieckowski, Elena R. Savinova (Editor) i Constantinos G. Vayenas (Editor), red. Catalysis and Electrocatalysis at Nanoparticle Surfaces. CRC, 2003.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Mittal, Vikas. Surface Modification of Nanoparticle and Natural Fiber Fillers. Wiley & Sons, Incorporated, John, 2015.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Mittal, Vikas. Surface Modification of Nanoparticle and Natural Fiber Fillers. Wiley & Sons, Limited, John, 2015.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Mittal, Vikas. Surface Modification of Nanoparticle and Natural Fiber Fillers. Wiley & Sons, Incorporated, John, 2015.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Mittal, Vikas. Surface Modification of Nanoparticle and Natural Fiber Fillers. Wiley & Sons, Incorporated, John, 2016.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Mittal, Vikas. Surface Modification of Nanoparticle and Natural Fiber Fillers. Wiley-VCH Verlag GmbH, 2015.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Fasolato, Claudia. Surface Enhanced Raman Spectroscopy for Biophysical Applications: Using Plasmonic Nanoparticle Assemblies. Springer, 2018.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Wang, Jianpeng. Study of the Peptide-Peptide and Peptide-Protein Interactions and Their Applications in Cell Imaging and Nanoparticle Surface Modification. Springer, 2018.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Wang, Jianpeng. Study of the Peptide-Peptide and Peptide-Protein Interactions and Their Applications in Cell Imaging and Nanoparticle Surface Modification. Springer, 2016.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Baraton, Marie-Isabelle. Synthesis, Functionalization and Surface Treatment of Nanoparticles. American Scientific Publishers, 2002.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Fendler, Janos H., i Imre Dekany. Nanoparticles in Solids and Solutions. Springer, 2010.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Netzer, Falko P., i Claudine Noguera. Oxide Thin Films and Nanostructures. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780198834618.001.0001.

Pełny tekst źródła
Streszczenie:
Nanostructured oxide materials ultra-thin films, nanoparticles and other nanometer-scale objects play prominent roles in many aspects of our every-day life, in nature and in technological applications, among which is the all-oxide electronics of tomorrow. Due to their reduced dimensions and dimensionality, they strongly interact with their environment gaseous atmosphere, water or support. Their novel physical and chemical properties are the subject of this book from both a fundamental and an applied perspective. It reviews and illustrates the various methodologies for their growth, fabrication, experimental and theoretical characterization. The role of key parameters such as film thickness, nanoparticle size and support interactions in driving their fundamental properties is underlined. At the ultimate thickness limit, two-dimensional oxide materials are generated, whose functionalities and potential applications are described. The emerging field of cation mixing is mentioned, which opens new avenues for engineering many oxide properties, as witnessed by natural oxide nanomaterials such as clay minerals, which, beyond their role at the Earth surface, are now widely used in a whole range of human activities. Oxide nanomaterials are involved in many interdisciplinary fields of advanced nanotechnologies: catalysis, photocatalysis, solar energy materials, fuel cells, corrosion protection, and biotechnological applications are amongst the areas where they are making an impact; prototypical examples are outlined. A cautious glimpse into future developments of scientific activity is finally ventured to round off the treatise.
Style APA, Harvard, Vancouver, ISO itp.
42

Mittal, Vikas. Advanced Polymer Nanoparticles. Taylor & Francis Group, 2010.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Wieckowski, Andrzej, Constantinos G. Vayenas i Elena R. Savinova. Catalysis and Electrocatalysis at Nanoparticle Surfaces. Taylor & Francis Group, 2003.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Wieckowski, Andrzej, Constantinos G. Vayenas i Elena R. Savinova. Catalysis and Electrocatalysis at Nanoparticle Surfaces. Taylor & Francis Group, 2003.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Wieckowski, Andrzej, Constantinos G. Vayenas i Elena R. Savinova. Catalysis and Electrocatalysis at Nanoparticle Surfaces. Taylor & Francis Group, 2003.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Wieckowski, Andrzej, Constantinos G. Vayenas i Elena R. Savinova. Catalysis and Electrocatalysis at Nanoparticle Surfaces. Taylor & Francis Group, 2003.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Wieckowski, Andrzej, Constantinos G. Vayenas i Elena R. Savinova. Catalysis and Electrocatalysis at Nanoparticle Surfaces. Taylor & Francis Group, 2019.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Wieckowski, Andrzej, Constantinos G. Vayenas i Elena R. Savinova. Catalysis and Electrocatalysis at Nanoparticle Surfaces. Taylor & Francis Group, 2003.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Nagarajan, Ramanathan. Self-Assembly: From Surfactants to Nanoparticles. Wiley & Sons, Incorporated, John, 2018.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Nagarajan, Ramanathan. Self-Assembly: From Surfactants to Nanoparticles. Wiley & Sons, Incorporated, John, 2018.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii