Gotowa bibliografia na temat „Nanoparticle Surface”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Nanoparticle Surface”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Nanoparticle Surface"
Semchuk, O. Yu, O. O. Havryliuk i A. A. Biliuk. "Kinetic theory of surface plasmon resonance in metal nanoparticles". Surface 12(27) (30.12.2020): 3–19. http://dx.doi.org/10.15407/surface.2020.12.003.
Pełny tekst źródłaAlbarki, Mohammed A., i Maureen D. Donovan. "Uptake of Cationic PAMAM-PLGA Nanoparticles by the Nasal Mucosa". Scientia Pharmaceutica 90, nr 4 (25.11.2022): 72. http://dx.doi.org/10.3390/scipharm90040072.
Pełny tekst źródłaZhang, Fei Hu, Xiao Zong Song, Yong Zhang i Dian Rong Luan. "Polishing of Ultra Smooth Surface with Nanoparticle Colloid Jet". Key Engineering Materials 404 (styczeń 2009): 143–48. http://dx.doi.org/10.4028/www.scientific.net/kem.404.143.
Pełny tekst źródłaLee, Hwankyu. "Molecular Modeling of Protein Corona Formation and Its Interactions with Nanoparticles and Cell Membranes for Nanomedicine Applications". Pharmaceutics 13, nr 5 (29.04.2021): 637. http://dx.doi.org/10.3390/pharmaceutics13050637.
Pełny tekst źródłaSit, Izaac, Haibin Wu i Vicki H. Grassian. "Environmental Aspects of Oxide Nanoparticles: Probing Oxide Nanoparticle Surface Processes Under Different Environmental Conditions". Annual Review of Analytical Chemistry 14, nr 1 (5.06.2021): 489–514. http://dx.doi.org/10.1146/annurev-anchem-091420-092928.
Pełny tekst źródłaMukha, Iu P., N. V. Vityuk, A. M. Eremenko i M. A. Skoryk. "Stabilization of metal nanoparticles in highly concentrated colloids". Surface 12(27) (30.12.2020): 337–45. http://dx.doi.org/10.15407/surface.2020.12.337.
Pełny tekst źródłaZobel, Mirijam. "Observing structural reorientations at solvent–nanoparticle interfaces by X-ray diffraction – putting water in the spotlight". Acta Crystallographica Section A Foundations and Advances 72, nr 6 (6.10.2016): 621–31. http://dx.doi.org/10.1107/s2053273316013516.
Pełny tekst źródłaKim, Ji-Su, Byung-Kook Kim i Yeong-Cheol Kim. "Effect of Cu Alloying on S Poisoning of Ni Surfaces and Nanoparticle Morphologies Using Ab-Initio Thermodynamics Calculations". Journal of Nanoscience and Nanotechnology 15, nr 10 (1.10.2015): 8205–10. http://dx.doi.org/10.1166/jnn.2015.11287.
Pełny tekst źródłaZhu, Chunxiao, Hugh Daigle i Steven L. Bryant. "Paramagnetic nanoparticles as nuclear magnetic resonance contrast agents in sandstone: Importance of nanofluid-rock interactions". Interpretation 4, nr 2 (1.05.2016): SF55—SF65. http://dx.doi.org/10.1190/int-2015-0137.1.
Pełny tekst źródłaXu, Chang, Albert Wan, Xianchang Gong, N. V. S. Dinesh K. Bhupathiraju, James D. Batteas i Charles Michael Drain. "Reorganization of porphyrin nanoparticle morphology driven by surface energetics". Journal of Porphyrins and Phthalocyanines 20, nr 01n04 (styczeń 2016): 438–43. http://dx.doi.org/10.1142/s1088424616500292.
Pełny tekst źródłaRozprawy doktorskie na temat "Nanoparticle Surface"
Hoff, Richard. "Iron Oxide Nanoparticle Surface Modification: Synthesis and Characterization". Master's thesis, Temple University Libraries, 2019. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/592997.
Pełny tekst źródłaM.S.
Multifunctional nanomaterials can be engineered to aid in the diagnosis of diseases, enable efficient drug delivery, monitor treatment progress over time, and evaluate treatment outcomes. This strategy, known as theranostics, focuses on the combination of diagnostic and therapeutic techniques to provide new clinically safe and efficient personalized treatments. The evaluation of different nanomaterials’ properties and their customization for specific medical applications has therefore been a significant area of interest within the scientific community. Iron oxide nanoparticles, specifically those based on iron (II, III) oxide (magnetite, Fe3O4), have been prominently investigated for biomedical, theranostic applications due to their documented superparamagnetism, high biocompatibility, and other unique physicochemical properties. The aim of this thesis is to establish a viable set of methods for preparing magnetite (iron oxide) nanoparticles through hydrothermal synthesis and modifying their surfaces with organic functional groups in order to both modulate surface chemistry and facilitate the attachment of molecules such as peptides via covalent bond formations. Modifying their surfaces with biomolecules such as peptides can further increase their uptake into cells, which is a necessary step in the mechanisms of their desired biomedical applications. The methods of nanoparticle synthesis, surface functionalization, and characterization involving electron microscopy (e.g., SEM, TEM), zeta potential measurements, size analysis (i.e., DLS), and FT-IR spectroscopy will be presented.
Temple University--Theses
D'ALICARNASSO, MARCO. "SURFACE FUNCTIONALIZED GOLD NANOPARTICLES AS ATTACHMENT INHIBITORS FOR HEPARAN SULFATE-BINDING VIRUSES". Doctoral thesis, Università degli Studi di Milano, 2016. http://hdl.handle.net/2434/366392.
Pełny tekst źródłaBrazzale, Chiara. "Gold nanoparticle surface tuning for multimodal treatment of cancer". Doctoral thesis, Università degli studi di Padova, 2016. http://hdl.handle.net/11577/3424441.
Pełny tekst źródłaLo scopo del presente progetto di dottorato è stato quello di produrre e caratterizzare dal punto di vista chimico-fisico e biologico un nanocarrier per il direzionamento selettivo di farmaci antitumorali a tumori sovraesprimenti il recettore per l’acido folico. Sono stati compiuti studi approfonditi per verificare come la densità dell’agente di targeting influenzasse l’efficienza d’internalizzazione del sistema. Inoltre studi di trafficking intracellulare hanno verificato come particelle d’oro direzionate con agente di targeting Folato-PEG vengano internalizzate mediante meccanismo clatrina-indipendente. Si è inoltre indagata la capacità di nanoparticelle d’oro come sensibilizzanti alla terapia sonodinamica al fine di poter combinare un trattamento farmacologico ad un approccio fisico. Un ulteriore sviluppo del progetto ha riguardato la modifica di nanoparticelle d’oro direzionate con Folato-PEG con una seconda componente pH responsiva in grado di passare da una conformazione estesa a pH fisiologico di 7.4 ad una forma idrofobica globulare a pH 6.5, condizione tipica del tessuto tumorale. In questo modo é possibile modulare il mascheramento/esposizione dell’agente di targeting e ridurre il bio-riconoscimento aspecifico a favore della sito-specificità. Tra gli sviluppi futuri del progetto, vi è la decorazione di nanoparticelle d’oro con un polimero dotato di gruppi idrazinici coniugati a Doxorubicina mediante legame idrazonico. In virtù delle proprietà del legame idrazonico, la Doxorubicina sarà rilasciata esclusivamente nei comparti endosomiali e lisosomiali, in seguito all'uptake cellulare mediato dal recettore FR per l’acido folico.
Thorn, Angie Sue (Morris). "The impact of nanoparticle surface chemistry on biological systems". Diss., University of Iowa, 2017. https://ir.uiowa.edu/etd/5659.
Pełny tekst źródłaDolci, Mathias. "Design of magnetic iron oxide nanoparticle assemblies supported onto gold thin films for SPR biosensor applications". Thesis, Strasbourg, 2018. http://www.theses.fr/2018STRAE001/document.
Pełny tekst źródłaBiomolecular detection based on the surface plasmon resonance phenomenon allow detecting species by using the optics properties of metallic thin films. This kind of biosensors require the increase of their performances in order to detect low concentration analyte in complex medium. The assembly of iron oxide nanoparticles on gold substrates by using specific complementary groups via the “click” chemistry technique allows controlling their spatial distribution on the substrate surface. The magnetic properties carried by the nanoparticles are studied as function of their inter-particle distances and their sizes. Moreover, the surface plasmon of the substrate is directly influenced by the nanoparticle assembly and the control of the sensor sensitivity will be possible in order to study the detection of different biomolecules implies in biological processes. The presence of nanoparticles increases the intrinsic optical properties at the substrate surface and the geometry of the assembly allow increasing the number of biomolecules detected
Ranjan, Rajesh. "Surface Modification of Silica Nanoparticles". University of Akron / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=akron1206558086.
Pełny tekst źródłaJayalath, Mudiyanselage Sanjaya Dilantha. "Surface adsorption of natural organic matter on engineered nanoparticles". Diss., University of Iowa, 2018. https://ir.uiowa.edu/etd/6440.
Pełny tekst źródłaKulkarni, Amit. "Surface Modification of Carboxyl-functionalized Polymeric Nanoparticles for Attachment of Targeting Peptides". University of Cincinnati / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1242986910.
Pełny tekst źródłaAustin, Lauren Anne. "Exploring some aspects of cancer cell biology with plasmonic nanoparticles". Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/54236.
Pełny tekst źródłaNguyen, Van Bac. "Prédiction des morphologies de nanoparticules métalliques à partir de calculs DFT des interactions surface-ligand". Thesis, Toulouse 3, 2016. http://www.theses.fr/2016TOU30299/document.
Pełny tekst źródłaNanoparticles are one of the most important families of functional materials due to their nanometric size. This size reduction, associated to their composition, surfaces orientation and morphology has contributed to the emergence of new important properties such as electronic, magnetic, catalytic, optic, etc. To control the morphology of NPs, many efforts have been devoted to understand their formation mechanism and the origin of their stability. Among metallic nanoparticles, cobalt, with its hexagonal closed-packed (hcp) structure, is particularly interesting because of the possibility to grow "naturally" anisotropic shaped nanocrystals. Using chemical synthesis in liquid environment, various morphologies such as disks, plates, rods, wires and cubes have been obtained by controlling the precursor type, the reducing agent, the stabilizing ligands as well as their concentration, the temperature or the rate of precursor injection. Even if these synthesis conditions have been rationalized, few is known concerning the growth mechanisms at the atomic scale. In this work, we have developed two quantitative morphology prediction models, one based on the final thermodynamic equilibrium state, while another is controlled by the kinetics. These models require the knowledge of the adsorption behaviors of stabilizing molecules as a function of surface coverage on preferential facets of NPs. To this end, density functional theory (DFT) calculations were performed on a series of stabilizing molecules (CH3NH2 , CH3COO C5H11OO and C11H23COO) adsorbed on the different Co and Ni surfaces. The shape of the Co NPs obtained by these two models was compared to experimental morphologies and other theoretical results from the literature. The variety of forms predicted by the kinetic model agrees better with the NPs morphologies obtained under the different synthesis conditions. This confirms that the morphology control of NPs is mostly driven by the kinetics
Książki na temat "Nanoparticle Surface"
1945-, Więckowski Andrzej, Savinova Elena R. 1950- i Vayenas C. G, red. Catalysis and electrocatalysis at nanoparticle surfaces. New York: Marcel Dekker, 2003.
Znajdź pełny tekst źródłaMittal, Vikas, red. Surface Modification of Nanoparticle and Natural Fiber Fillers. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527670260.
Pełny tekst źródłaWang, Jianpeng. Study of the Peptide-Peptide and Peptide-Protein Interactions and Their Applications in Cell Imaging and Nanoparticle Surface Modification. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-53399-4.
Pełny tekst źródłaMarie-Isabelle, Baraton, red. Synthesis, functionalization and surface treatment of nanoparticles. Stevenson Ranch, Calif: American Scientific Publishers, 2003.
Znajdź pełny tekst źródła1943-, Schwarz James A., i Contescu Cristian I. 1948-, red. Surfaces of nanoparticles and porous materials. New York: Marcel Dekker, 1999.
Znajdź pełny tekst źródłaH, Fendler Janos, Dékány Imre, North Atlantic Treaty Organization. Scientific Affairs Division. i NATO Advanced Research Workshop on Nanoparticles in Solids and Solutions--an Integrated Approach to Their Preparation and Characterization (1996 : Szeged, Hungary), red. Nanoparticles in solids and solutions. Dordrecht: Kluwer Academic Publishers, 1996.
Znajdź pełny tekst źródłaFiorani, Dino, red. Surface Effects in Magnetic Nanoparticles. Boston, MA: Springer US, 2005. http://dx.doi.org/10.1007/b136494.
Pełny tekst źródłaMedia, Springer Science+Business, red. Surface effects in magnetic nanoparticles. New York: Springer, 2005.
Znajdź pełny tekst źródłaAdvanced polymer nanoparticles: Synthesis and surface modifications. Boca Raton: Taylor & Francis, 2011.
Znajdź pełny tekst źródłaCharacterization & control of interfaces for high quality advanced materials: Proceedings of the International Conference on the Characterization and Control of Interfaces for High Quality Advanced Materials (ICCCI 2003), Kurashiki, Japan, 2003. Westerville, OH: American Ceramic Society, 2005.
Znajdź pełny tekst źródłaCzęści książek na temat "Nanoparticle Surface"
Wang, Yuling, i Erkang Wang. "Nanoparticle SERS Substrates". W Surface Enhanced Raman Spectroscopy, 39–69. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527632756.ch2.
Pełny tekst źródłaSeibert, A., S. Stumpf, T. Gouder, D. Schild i M. A. Denecke. "Actinide Thin Films as Surface Models". W Actinide Nanoparticle Research, 275–313. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-11432-8_10.
Pełny tekst źródłaKhetani, Altaf, Ali Momenpour, Vidhu S. Tiwari i Hanan Anis. "Surface Enhanced Raman Scattering (SERS) Using Nanoparticles". W Silver Nanoparticle Applications, 47–70. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-11262-6_3.
Pełny tekst źródłaWebster, Linden R., K. Suhling i D. Richards. "Single Nanoparticle Surface Enhanced Fluorescence". W NATO Science for Peace and Security Series B: Physics and Biophysics, 457–58. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-5313-6_60.
Pełny tekst źródłaXie, Jin, Jinhao Gao, Mark Michalski i Xiaoyuan Chen. "Nanoparticle Surface Modification and Bioconjugation". W Nanoplatform-Based Molecular Imaging, 47–73. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9780470767047.ch3.
Pełny tekst źródłaHuh, Chun, Hugh Daigle, Valentina Prigiobbe i Maša Prodanović. "Nanoparticle Synthesis and Surface Coating". W Practical Nanotechnology for Petroleum Engineers, 13–44. Boca Raton : Taylor & Francis a CRC title, part of the Taylor & Francis imprint, a member of the Taylor & Francis Group, the academic division of T&F Informa, plc, 2019.: CRC Press, 2019. http://dx.doi.org/10.1201/9781351210362-2.
Pełny tekst źródłaSchlücker, Sebastian. "SERS Microscopy: Nanoparticle Probes and Biomedical Applications". W Surface Enhanced Raman Spectroscopy, 263–83. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527632756.ch12.
Pełny tekst źródłaIglesias, Òscar, i Hamid Kachkachi. "Single Nanomagnet Behaviour: Surface and Finite-Size Effects". W New Trends in Nanoparticle Magnetism, 3–38. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-60473-8_1.
Pełny tekst źródłaOliveira, M. M., D. Zanchet, D. Ugarte i A. J. G. Zarbin. "Synthesis and characterization of silver nanoparticle/polyaniline nanocomposites". W Surface and Colloid Science, 126–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/b97108.
Pełny tekst źródłaBoulmer-Leborgne, Chantal, Ratiba Benzerga i Jacques Perrière. "Nanoparticle Formation by Femtosecond Laser Ablation". W Laser-Surface Interactions for New Materials Production, 125–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03307-0_6.
Pełny tekst źródłaStreszczenia konferencji na temat "Nanoparticle Surface"
Rajendran, Silambarasan. "Consequence of Nanoparticle Physiognomies on Heat Transfer Characteristics of Heat Exchanger". W International Conference on Advances in Design, Materials, Manufacturing and Surface Engineering for Mobility. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2020. http://dx.doi.org/10.4271/2020-28-0462.
Pełny tekst źródłaPilch, Iris, Nils Brenning, Ulf Helmersson i Daniel Söderström. "High Power Pulsed Hollow Cathode for Nanoparticle Synthesis". W 13th International Conference on Plasma Surface Engineering September 10 - 14, 2012, in Garmisch-Partenkirchen, Germany. Linköping University Electronic Press, 2013. http://dx.doi.org/10.3384/wcc2.118-121.
Pełny tekst źródłaZhang, Feini, i Anthony M. Jacobi. "Metal Surface Wettability Manipulation by Nanoparticle Deposition During Nanofluid Boiling". W ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels collocated with the ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/icnmm2015-48687.
Pełny tekst źródłaKim, Seontae, Hyungmo Kim, Hyung Dae Kim, Ho Seon Ahn, Moo Hwan Kim, Joonwon Kim i Goon-Cherl Park. "Experimental Investigation of Critical Heat Flux Enhancement by Micro/Nanoscale Surface Modification in Pool Boiling". W ASME 2008 6th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2008. http://dx.doi.org/10.1115/icnmm2008-62289.
Pełny tekst źródłaChang, Sehoon, Shannon L. Eichmann i Wei Wang. "Nanoparticle Tracers in Reservoir-On-A-chip by Surface-Enhanced Raman Scattering - Fluorescence SERS-SEF Imaging Technology". W SPE Middle East Oil & Gas Show and Conference. SPE, 2021. http://dx.doi.org/10.2118/204704-ms.
Pełny tekst źródłaLei, Yong, i Gerhard Wilde. "The UTAM Nano-Patterning: A New Surface Nano-Patterning Technique in Fabricating Ordered Arrayed Surface Nanostructures". W 2007 First International Conference on Integration and Commercialization of Micro and Nanosystems. ASMEDC, 2007. http://dx.doi.org/10.1115/mnc2007-21628.
Pełny tekst źródłaAlfakher, Ahmad M., i David A. DiCarlo. "Reduced Carbon Dioxide Mobility in Experimental Core Flood Using Surface Coated Silica Nanoparticles as a Foaming Agent". W Offshore Technology Conference. OTC, 2023. http://dx.doi.org/10.4043/32382-ms.
Pełny tekst źródłaYinhua Lei, Wei Wang, Wengang Wu i Zhihong Li. "Surface charge sensitive suspended nanoparticle crystal". W 2010 Ninth IEEE Sensors Conference (SENSORS 2010). IEEE, 2010. http://dx.doi.org/10.1109/icsens.2010.5690975.
Pełny tekst źródłaSoni, Sanjeev, Himanshu Tyagi, Robert A. Taylor i Amod Kumar. "Effect of Nanoparticle Concentration on Thermal Damage in Nanoparticle-Assisted Thermal Therapy". W ASME 2016 5th International Conference on Micro/Nanoscale Heat and Mass Transfer. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/mnhmt2016-6418.
Pełny tekst źródłaVafaei, Saeid, Dongsheng Wen, Ganapathiraman Ramanath i Theodorian Borca-Tasciuc. "Surface Wettability Through Asymptotic Contact Angle". W ASME 2009 Fluids Engineering Division Summer Meeting. ASMEDC, 2009. http://dx.doi.org/10.1115/fedsm2009-78361.
Pełny tekst źródłaRaporty organizacyjne na temat "Nanoparticle Surface"
Bratko, Dusan. Hydration Mechanisms in Nanoparticle Interaction and Surface Energetics. Office of Scientific and Technical Information (OSTI), sierpień 2020. http://dx.doi.org/10.2172/1648411.
Pełny tekst źródłaMYERS, Jr, SAMUEL M., DAVID M. FOLLSTAEDT i JAMES A. KNAPP. Surface Hardening by Nanoparticle Precipitation in Ni(Al,O). Office of Scientific and Technical Information (OSTI), kwiecień 2001. http://dx.doi.org/10.2172/780314.
Pełny tekst źródłaHa, Ji Won. Single Molecule and Nanoparticle Imaging in Biophysical, Surface, and Photocatalysis Studies. Office of Scientific and Technical Information (OSTI), styczeń 2013. http://dx.doi.org/10.2172/1116723.
Pełny tekst źródłaChefetz, Benny, Baoshan Xing i Yona Chen. Interactions of engineered nanoparticles with dissolved organic matter (DOM) and organic contaminants in water. United States Department of Agriculture, styczeń 2013. http://dx.doi.org/10.32747/2013.7699863.bard.
Pełny tekst źródłaChoudhary, Ruplal, Victor Rodov, Punit Kohli, Elena Poverenov, John Haddock i Moshe Shemesh. Antimicrobial functionalized nanoparticles for enhancing food safety and quality. United States Department of Agriculture, styczeń 2013. http://dx.doi.org/10.32747/2013.7598156.bard.
Pełny tekst źródłaChung, Po-Wen. Synthesis, characterization, and application of surface-functionalized ordered mesoporous nanoparticles. Office of Scientific and Technical Information (OSTI), styczeń 2009. http://dx.doi.org/10.2172/985161.
Pełny tekst źródłaMurphy, Catherine J. Nanoparticles and Nanostructured Surfaces: Novel Reporters with Biological Applications. Fort Belvoir, VA: Defense Technical Information Center, styczeń 2001. http://dx.doi.org/10.21236/ada409010.
Pełny tekst źródłaChoudhary, Ruplal, Victor Rodov, Punit Kohli, John D. Haddock i Samir Droby. Antimicrobial and antioxidant functionalized nanoparticles for enhancing food safety and quality: proof of concept. United States Department of Agriculture, wrzesień 2012. http://dx.doi.org/10.32747/2012.7597912.bard.
Pełny tekst źródłaMarye Anne Fox, James K. Whitesell. Functionalized Nanoparticles and Surfaces for Controlled Chemical Catalysis and Effective Light Harvesting. Office of Scientific and Technical Information (OSTI), listopad 2012. http://dx.doi.org/10.2172/1054069.
Pełny tekst źródłaYuwen, Jing. Polymer-Based Photoactive Surface for the Efficient Immobilization of Nanoparticles, Polymers, Graphene and Carbohydrates. Portland State University Library, styczeń 2000. http://dx.doi.org/10.15760/etd.413.
Pełny tekst źródła