Gotowa bibliografia na temat „Nanomedicine-drug delivery applications”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Nanomedicine-drug delivery applications”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Nanomedicine-drug delivery applications"
Vandervoort, Jo, i Annick Ludwig. "Ocular drug delivery: nanomedicine applications". Nanomedicine 2, nr 1 (luty 2007): 11–21. http://dx.doi.org/10.2217/17435889.2.1.11.
Pełny tekst źródłaJoginder, Nagar, i Anupama Anand. "Recent Application of Nanotechnology in Drug Delivery System". Scholars Academic Journal of Pharmacy 11, nr 9 (20.09.2022): 155–60. http://dx.doi.org/10.36347/sajp.2022.v11i09.006.
Pełny tekst źródłaAfzal, Obaid, Abdulmalik S. A. Altamimi, Muhammad Shahid Nadeem, Sami I. Alzarea, Waleed Hassan Almalki, Aqsa Tariq, Bismillah Mubeen i in. "Nanoparticles in Drug Delivery: From History to Therapeutic Applications". Nanomaterials 12, nr 24 (19.12.2022): 4494. http://dx.doi.org/10.3390/nano12244494.
Pełny tekst źródłaErmakov, Alexey V., Ekaterina V. Lengert i Sergey B. Venig. "Nanomedicine and Drug Delivery Strategies for Theranostics Applications". Izvestiya of Saratov University. New series. Series: Physics 20, nr 2 (2020): 116–24. http://dx.doi.org/10.18500/1817-3020-2020-20-2-116-124.
Pełny tekst źródłaSun, Michael, i Anirban Sen Gupta. "Vascular Nanomedicine: Current Status, Opportunities, and Challenges". Seminars in Thrombosis and Hemostasis 46, nr 05 (14.06.2019): 524–44. http://dx.doi.org/10.1055/s-0039-1692395.
Pełny tekst źródłaAzandaryani, Abbas H., Soheila Kashanian i Tahereh Jamshidnejad-Tosaramandani. "Recent Insights into Effective Nanomaterials and Biomacromolecules Conjugation in Advanced Drug Targeting". Current Pharmaceutical Biotechnology 20, nr 7 (8.08.2019): 526–41. http://dx.doi.org/10.2174/1389201020666190417125101.
Pełny tekst źródłaCurley, Paul, Neill J. Liptrott i Andrew Owen. "Advances in nanomedicine drug delivery applications for HIV therapy". Future Science OA 4, nr 1 (styczeń 2018): FSO230. http://dx.doi.org/10.4155/fsoa-2017-0069.
Pełny tekst źródłaVallet-Regí, María. "Mesoporous Silica Nanoparticles: Their Projection in Nanomedicine". ISRN Materials Science 2012 (16.08.2012): 1–20. http://dx.doi.org/10.5402/2012/608548.
Pełny tekst źródłaYuan, Zhao, i Lu Zhang. "Photoinduced Controlled-Release Drug Delivery Systems for Applications in Nanomedicine". Current Organic Chemistry 20, nr 17 (31.05.2016): 1768–85. http://dx.doi.org/10.2174/1385272820666160112001944.
Pełny tekst źródłaNikzamir, Mohammad, Younes Hanifehpour, Abolfazl Akbarzadeh i Yunes Panahi. "Applications of Dendrimers in Nanomedicine and Drug Delivery: A Review". Journal of Inorganic and Organometallic Polymers and Materials 31, nr 6 (24.02.2021): 2246–61. http://dx.doi.org/10.1007/s10904-021-01925-2.
Pełny tekst źródłaRozprawy doktorskie na temat "Nanomedicine-drug delivery applications"
Hilder, Tamsyn A. "Modelling nanostructures as nano-oscillators for applications in nanomedicine". Access electronically, 2008. http://www.library.uow.edu.au/adt-NWU/public/adt-NWU20080918.101103/index.html.
Pełny tekst źródłaGuduru, Rakesh. "Bionano Electronics: Magneto-Electric Nanoparticles for Drug Delivery, Brain Stimulation and Imaging Applications". FIU Digital Commons, 2013. http://digitalcommons.fiu.edu/etd/979.
Pełny tekst źródłaScarberry, Kenneth Edward. "Biomedical applications of cobalt-spinel ferrite nanoparticles for cancer cell extraction and drug delivery". Diss., Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/33951.
Pełny tekst źródłaVivo, Llorca Gema. "Mesoporous silica and gold-based nanodevices: new controlled delivery platforms for biomedical applications". Doctoral thesis, Universitat Politècnica de València, 2021. http://hdl.handle.net/10251/172713.
Pełny tekst źródła[CA] La present tesi doctoral titulada "Mesoporous silica and gold-based nanodevices: new controlled delivery platforms for biomedical applications" se centra en el disseny, síntesi, caracterització i avaluació de diferents nanodispositius híbrids orgànic-inorgànics. En concret, s'utilitzen com a suport nanopartícules mesoporoses de sílice i nanopartícules d'or per a la seua aplicació biomèdica, en concret en el camp del càncer de mama. En el primer capítol s'introdueix el marc general en el qual s'engloben els estudis realitzats. Es presenten els conceptes relacionats amb la nanotecnologia i nanomedicina, així com la interacció de les nanopartícules a nivell biològic amb l'organisme i les cèl·lules. Finalment, s'introdueixen conceptes bàsics del càncer de mama i l'aplicació de nanomaterials com a teràpia. A continuació, en el segon capítol, s'exposen els objectius de la present tesi doctoral que són abordats en els següents capítols experimentals. En el tercer capítol es descriu el primer nanomaterial utilitzat per a l'alliberament controlat de dos inhibidors (navitoclax i S63845) de les proteïnes anti-apoptòtiques de la família Bcl-2. Aquest sistema s'ha dissenyat amb l'objectiu de superar la resistència a navitoclax en un model cel·lular de càncer de mama triple negatiu. En concret, s'han preparat nanopartícules mesoporoses de sílice carregades amb navitoclax i S63845, i funcionalitzades amb un aptàmer dirigit a la proteïna de superfície MUC1, que actua com a porta molecular. En aquest treball hem demostrat que les nanopartícules dissenyades són internalitzades preferentment per cèl·lules tumorals de càncer de mama. També hem demostrat la capacitat de les nanopartícules de revertir la resistència a navitoclax en un model cel·lular de càncer de mama triple negatiu. A més, posem de manifest la disminució del principal efecte advers (trombocitopènia) associat a l'administració del navitoclax en la seua formulació lliure, gràcies a l'encapsulació en les nanopartícules. En el capítol quatre es presenta un sistema sensible a pH per a l'alliberament controlat d'una càrrega fluorescent i la maquinària d'edició gènica basada en el sistema CRISPR/Cas9, dirigit a l'edició gènica del gen codificant de la proteïna fluorescent verda (GFP, del anglés gren fluorescent protein). El nanodispositiu està constituït per nanopartícules mesoporoses de sílice carregades amb rodamina B, funcionalitzades amb polietilenimina i revestides amb el plàsmid codificant del sistema CRISPR/Cas9. En aquest treball s'ha demostrat la fuga lisosomal de les nanopartícules, mediat per l'efecte esponja de protons de la PEI. Així mateix, vam mostrar un nanodispositiu pioner en el seu camp, basat en nanopartícules mesoporoses de sílice, capaç de realitzar la doble funció de dur a terme l'edició del gen codificant de la GFP i l'alliberament exitós de la càrrega fluorescent. En el cinqué i últim capítol experimental es proposa una nova aproximació per a realitzar una teràpia enzimàtica prodroga emprant nanopartícules d'or com a transportadors enzimàtics. En aquest cas, s'aborda la funcionalització de nanopartícules d'or amb l'enzim peroxidasa de rave (HRP, del anglés horseradish peroxidase), capaç de transformar la prodroga innòcua àcid indol-3-acètic en espècies radicals que resulten tòxiques per a les cèl·lules tumorals. En aquest capítol s'ha demostrat l'efecte terapèutic del nanodispositiu en combinació amb la prodroga en models cel·lulars de càncer de mama dels subtipus luminal A i triple negatiu. A més, s'ha confirmat l'eficàcia terapèutica del sistema en esferoides tumorals formats per cèl·lules de càncer de mama triple negatiu. Finalment, en el capítol sis es presenten les conclusions extretes del desenvolupament d'aquesta tesi doctoral. Els resultats obtinguts en aquesta tesi contriburan al desenvolupament de nous nanomaterials intel·ligents amb aplicació en diverses àrees de la nanomedicina.
[EN] This Ph.D. thesis entitled "Mesoporous silica and gold-based nanodevices: new controlled delivery platforms for biomedical applications" is focused on the design, synthesis, characterisation, and evaluation of several hybrid organic-inorganic nanomaterials. We have developed mesoporous silica nanoparticles and gold nanoparticles for biomedical applications, specifically in the breast cancer area. The first chapter includes an overview of the concepts related to the research performed. Introductory notions about nanotechnology and biomedicine are presented, as well as the basis of the interactions of nanoparticles with biological systems. Finally, breast cancer disease and the application of nanomaterials as therapy are described. Next, in the second chapter, the objectives addressed in the following experimental chapters are displayed. In the third chapter, we present the first nanomaterial for the controlled delivery of two inhibitors (navitoclax and S63845) of the Bcl-2 anti-apoptotic proteins. This nanosystem has been designed to overcome navitoclax resistance in a triple-negative breast cancer cellular model. We have prepared mesoporous silica nanoparticles loaded with navitoclax and S63845 and functionalised with an aptamer targeting MUC1 surface protein as a molecular gate. In this work, the specific targeting of the nanodevice to breast cancer cells has been demonstrated. The ability to overcome navitoclax resistance has been shown in navitoclax-resistant triple-negative breast cancer cells. Furthermore, navitoclax encapsulation in the nanoparticles has proved to reduce the main adverse effect (thrombocytopenia) associated with free formulated drug administration. In the fourth chapter, we describe a pH-responsive nanosystem for the controlled co-delivery of a fluorescent cargo and the genome-editing machinery based on CRISPR/Cas9, which targets the green fluorescent protein (GFP) coding gene. The nanodevice consists of mesoporous silica nanoparticles loaded with rhodamine B, functionalised with polyethyleneimine, and capped with the CRISPR/Cas9 plasmid. In the present work, we have shown the lysosomal scape capacity of the nanodevice enhanced by the proton sponge effect of PEI. We have also demonstrated a pioneering mesoporous silica-based nanodevice efficient in the simultaneous genome editing of the GFP gene (as a model gene) and the successful release of a fluorescent cargo (as a model drug). In the fifth and last experimental chapter, we propose a new approximation to develop enzyme prodrug therapy using gold nanoparticles as enzyme carriers. In this case, we use gold nanoparticles functionalised with the enzyme horseradish peroxidase (HRP), which transforms the non-toxic prodrug indol-3-acetic acid into radical species toxic to tumour cells. In this chapter, the therapeutic effect of the nanodevice in combination with the prodrug has been demonstrated in two breast cancer cell subtypes (luminal A and triple-negative breast cancers). Also, the therapeutic effect of the material has been corroborated in multicellular tumour spheroid-like cultures formed by triple-negative breast cancer cells. Finally, in the sixth chapter, the conclusions derived from the presented studies and the general conclusions of this Ph.D. thesis are released. The obtained results will promote the development of new smart nanomaterials with diverse biomedical applications.
Gema Vivo-Llorca thanks the Generalitat Valenciana for her fellowship ACIF/2017/072. Vicente Candela-Noguera thanks the Spanish Government for his fellowship FPU15/02753. We would like to thank Servier for the workart used in the figures of this manuscript (Servier Medical Art https://smart.servier.com/). We thank the Spanish Government (project RTI2018-100910-B-C41 (MCUI/AEI/FEDER, UE); SAF2017-84689-R-B (MCUI/AEI/FEDER, UE)) and the Generalitat Valenciana (project PROMETEO/2018/024 and PROMETEO/2019/065) for support.
Vivo Llorca, G. (2021). Mesoporous silica and gold-based nanodevices: new controlled delivery platforms for biomedical applications [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/172713
TESIS
Totovao, Ricardo. "Stimuli-responsive breakable hybrid organic/inorganic silica nanoparticles for biomedical applications". Thesis, Strasbourg, 2017. http://www.theses.fr/2017STRAF014/document.
Pełny tekst źródłaTo overcome the limitations of most of the drugs avaible nowadays on the market due to their lack of solubility and specifity in cancer treatment for instance, nanomedicine plays an emerging role as an alternative. In that field, nanoparticles are endowed with several advantages, leading them to be highly considered for drug delivery systems preparation. In this respect, silica nanoparticles have recently a great deal of attention from the scientists. Nevertheless, some issues related to the in vivo elimination of silica materials represent the main obstacle impeding their clinical translation. To elucidate this problematic, we report, in this thesis, the use of breakable hybrid organosilica nanoparticles where one is mesoporous and the other one consists in a nanocapsule without porosity. Such materials have been prepared by incorporating an imine-based linker in the particles framework in order to make them pH-responsive. The advantage of the pH sensitivity relies on the fact that cancerous media present certain acidity as compared to those healthy. The particles exhibit a high pH sensitivity where, at low pH, they fully break down, while a good stability is observed in physiological conditions. Furthermore, in vitro studies performed with a drug delivery system based on the mesoporous particle and a highly hydrophobic drug show a remarkable efficiency towards a cancer cell line from human breast, which moreover, rapidly internalises the material. The nanocapsule loaded with a hydrophilic drug also demonstrates a fast internalisation towards a commonly used cancer line which does not resist to the system and thus dies by a very high rate
Dreaden, Erik Christopher. "Chemistry, photophysics, and biomedical applications of gold nanotechnologies". Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/51320.
Pełny tekst źródłaShu, Yi. "Assembly of Phi29 pRNA Nanoparticles for Gene or Drug Delivery and for Application in Nanotechnology and Nanomedicine". University of Cincinnati / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1336683831.
Pełny tekst źródłaWen, Amy M. "Engineering Virus-Based Nanoparticles for Applications in Drug Delivery, Imaging, and Biotechnology". Case Western Reserve University School of Graduate Studies / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=case1452954511.
Pełny tekst źródłaDeshpande, Sonal. "Understanding nanomaterial-cellular interactions for drug delivery applications". Thesis, 2018. http://localhost:8080/xmlui/handle/12345678/7595.
Pełny tekst źródłaCrucho, Carina Isabel Correia. "Synthesis of Polymeric Nanoparticles for biomedical delivery applications". Doctoral thesis, 2015. http://hdl.handle.net/10362/14994.
Pełny tekst źródłaKsiążki na temat "Nanomedicine-drug delivery applications"
Prokop, Aleš. Intracellular Delivery: Fundamentals and Applications. Dordrecht: Springer Science+Business Media B.V., 2011.
Znajdź pełny tekst źródłaSvenson, Sonke. Multifunctional Nanoparticles for Drug Delivery Applications: Imaging, Targeting, and Delivery. Boston, MA: Springer US, 2012.
Znajdź pełny tekst źródłaNanomedicines and Nanoproducts: Applications, Disposition, and Toxicology in the Human Body. Taylor & Francis Group, 2015.
Znajdź pełny tekst źródłaIgarashi, Eiki. Nanomedicines and Nanoproducts: Applications, Disposition, and Toxicology in the Human Body. Taylor & Francis Group, 2017.
Znajdź pełny tekst źródłaIgarashi, Eiki. Nanomedicines and Nanoproducts: Applications, Disposition, and Toxicology in the Human Body. Taylor & Francis Group, 2018.
Znajdź pełny tekst źródłaPrud'homme, Robert K., i Sonke Svenson. Multifunctional Nanoparticles for Drug Delivery Applications: Imaging, Targeting, and Delivery. Springer, 2012.
Znajdź pełny tekst źródłaPrud'homme, Robert K., i Sonke Svenson. Multifunctional Nanoparticles for Drug Delivery Applications: Imaging, Targeting, and Delivery. Springer, 2012.
Znajdź pełny tekst źródłaPrud'homme, Robert K., i Sonke Svenson. Multifunctional Nanoparticles for Drug Delivery Applications: Imaging, Targeting, and Delivery. Springer, 2014.
Znajdź pełny tekst źródłaIgarashi, Eiki. Nanomedicines and Nanoproducts: Applications, Disposition, and Toxicology in the Human Body. Taylor & Francis Group, 2018.
Znajdź pełny tekst źródłaIgarashi, Eiki. Nanomedicines and Nanoproducts: Applications, Disposition, and Toxicology in the Human Body. Taylor & Francis Group, 2018.
Znajdź pełny tekst źródłaCzęści książek na temat "Nanomedicine-drug delivery applications"
Dahman, Yaser. "Applications in Nanomedicine and Drug Delivery Systems". W Biomaterials Science and Technology, 197–234. Boca Raton : Taylor & Francis, 2019.: CRC Press, 2019. http://dx.doi.org/10.1201/9780429465345-9.
Pełny tekst źródłaZanbak Çotaoğlu, E. Merve, Cansel Köse Özkan i Yalçın Özkan. "Nanobiomaterials: Applications in Nanomedicine and Drug Delivery". W Handbook of Nanobioelectrochemistry, 519–39. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-9437-1_24.
Pełny tekst źródłaPandey, Sadanand, i Shivani B. Mishra. "Bioceramics: Silica-Based Organic-Inorganic Hybrid Materials for Medical Applications". W Nanomedicine for Drug Delivery and Therapeutics, 135–61. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118636299.ch5.
Pełny tekst źródłaKothandapani, B., i Ajay K. Mishra. "Synthesis of Poly(Methacrylate) Encapsulated Magnetite Nanoparticles via Phosphonic Acid Anchoring Chemistry and Its Applications Toward Biomedicine". W Nanomedicine for Drug Delivery and Therapeutics, 63–86. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118636299.ch3.
Pełny tekst źródłaMostafa, Gamal Abel-Hafiz. "Potentiometric PVC Membrane Sensors and Their Analytical Applications in Pharmaceuticals and Environmental Samples at Micro- and Nano-Level". W Nanomedicine for Drug Delivery and Therapeutics, 87–133. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118636299.ch4.
Pełny tekst źródłaNg, Xu Wen, Raghavendra C. Mundargi i Subbu S. Venkatraman. "Nanomedicine: Size-Related Drug Delivery Applications, Including Periodontics and Endodontics". W Nanotechnology in Endodontics, 71–95. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-13575-5_5.
Pełny tekst źródłaRezigue, Meriem. "Lipid and Polymeric Nanoparticles: Drug Delivery Applications". W Integrative Nanomedicine for New Therapies, 167–230. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-36260-7_7.
Pełny tekst źródłaMohanrasu, K., G. Siva Prakash, T. Boobalan, V. Ananthi, G. H. Dinesh, K. Anand, M. Sudhakar, Anil Chuturgoon i A. Arun. "Synthetic, Natural Derived Lipid Nanoparticles and Polymeric Nanoparticles Drug Delivery Applications". W Integrative Nanomedicine for New Therapies, 147–65. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-36260-7_6.
Pełny tekst źródłaBasit, Irha, Shahid Hussain, Carlo Santulli, Syed Abbas Raza, Tahsin Gulzar i Akasha Aftab. "Nanomedicine and drug delivery". W Nanomedicine Manufacturing and Applications, 221–46. Elsevier, 2021. http://dx.doi.org/10.1016/b978-0-12-820773-4.00006-8.
Pełny tekst źródłaSahoo, Deviprasad, Ravi Bandaru, Sangram Keshari Samal, Ramakanta Naik, Pramod Kumar, Prashant Kesharwani i Rambabu Dandela. "Oral drug delivery of nanomedicine". W Theory and Applications of Nonparenteral Nanomedicines, 181–207. Elsevier, 2021. http://dx.doi.org/10.1016/b978-0-12-820466-5.00009-0.
Pełny tekst źródłaStreszczenia konferencji na temat "Nanomedicine-drug delivery applications"
Liu, Yaling, Kytai Nguyen, Manohara Mariyappa, Soujanya Kona i Jifu Tan. "A Coupled Particle-Continuum Model of Nanoparticle Targeted Delivery Under Vascular Flow With Experimental Validation". W ASME 2010 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2010. http://dx.doi.org/10.1115/sbc2010-19035.
Pełny tekst źródłaChan, Warren C. W. "Elucidating the Interactions of Nanomaterials With Biological Systems". W ASME 2010 First Global Congress on NanoEngineering for Medicine and Biology. ASMEDC, 2010. http://dx.doi.org/10.1115/nemb2010-13377.
Pełny tekst źródłaSandri, Monica, Michele Iafisco, Silvia Panseri, Elisa Savini i Anna Tampieri. "Fully Biodegradable Magnetic Micro-Nanoparticles: A New Platform for Tissue Regeneration and Theranostic". W ASME 2013 2nd Global Congress on NanoEngineering for Medicine and Biology. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/nemb2013-93223.
Pełny tekst źródłaQin, Zhenpeng, Neha Shah, Taner Akkin, Warren C. W. Chan i John C. Bischof. "Thermal Analysis Measurement of Gold Nanoparticle Interactions With Cell and Biomaterial". W ASME 2012 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/sbc2012-80554.
Pełny tekst źródła