Artykuły w czasopismach na temat „Nanomaterials - Photo Driven Devices”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Nanomaterials - Photo Driven Devices”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Saha, Sourav, i J. Fraser Stoddart. "Photo-driven molecular devices". Chem. Soc. Rev. 36, nr 1 (2007): 77–92. http://dx.doi.org/10.1039/b607187b.
Pełny tekst źródłaYou, Liwen. "Integrated Photo - rechargeable Batteries: Photoactive Nanomaterials and Opportunities". E3S Web of Conferences 375 (2023): 02010. http://dx.doi.org/10.1051/e3sconf/202337502010.
Pełny tekst źródłaBouzin, Margaux, Amirbahador Zeynali, Mario Marini, Laura Sironi, Riccardo Scodellaro, Laura D’Alfonso, Maddalena Collini i Giuseppe Chirico. "Multiphoton Laser Fabrication of Hybrid Photo-Activable Biomaterials". Sensors 21, nr 17 (1.09.2021): 5891. http://dx.doi.org/10.3390/s21175891.
Pełny tekst źródłaZheng, Shuo, Walter W. Duley, Peng Peng i Norman Zhou. "Laser modification of Au–CuO–Au structures for improved electrical and electro-optical properties". Nanotechnology 33, nr 24 (25.03.2022): 245205. http://dx.doi.org/10.1088/1361-6528/ac5b52.
Pełny tekst źródłaComparelli, Roberto. "Special Issue: Application of Photoactive Nanomaterials in Degradation of Pollutants". Materials 12, nr 15 (2.08.2019): 2459. http://dx.doi.org/10.3390/ma12152459.
Pełny tekst źródłaNikić, Marta, Aleksandar Opančar, Florian Hartmann, Ludovico Migliaccio, Marie Jakešová, Eric Daniel Głowacki i Vedran Đerek. "Micropyramid structured photo capacitive interfaces". Nanotechnology 33, nr 24 (23.03.2022): 245302. http://dx.doi.org/10.1088/1361-6528/ac5927.
Pełny tekst źródłaKirner, Simon, Peter Bogdanoff, Bernd Stannowski, Roel van de Krol, Bernd Rech i Rutger Schlatmann. "Architectures for scalable integrated photo driven catalytic devices-A concept study". International Journal of Hydrogen Energy 41, nr 45 (grudzień 2016): 20823–31. http://dx.doi.org/10.1016/j.ijhydene.2016.05.088.
Pełny tekst źródłaZhang, Li-De, i Xiao-Sheng Fang. "Controlled Growth and Characterization Methods of Semiconductor Nanomaterials". Journal of Nanoscience and Nanotechnology 8, nr 1 (1.01.2008): 149–201. http://dx.doi.org/10.1166/jnn.2008.n02.
Pełny tekst źródłaSaleh, Hosam M., i Amal I. Hassan. "Synthesis and Characterization of Nanomaterials for Application in Cost-Effective Electrochemical Devices". Sustainability 15, nr 14 (11.07.2023): 10891. http://dx.doi.org/10.3390/su151410891.
Pełny tekst źródłaGrabowski, Przemysław, Jakub Haberko i Piotr Wasylczyk. "Photo-Mechanical Response Dynamics of Liquid Crystal Elastomer Linear Actuators". Materials 13, nr 13 (30.06.2020): 2933. http://dx.doi.org/10.3390/ma13132933.
Pełny tekst źródłaLiu, Yuan, Yun Ji i Ya Yang. "Growth, Properties and Applications of Bi0.5Na0.5TiO3 Ferroelectric Nanomaterials". Nanomaterials 11, nr 7 (30.06.2021): 1724. http://dx.doi.org/10.3390/nano11071724.
Pełny tekst źródłaGarbovskiy, Yuriy. "Ion-Generating and Ion-Capturing Nanomaterials in Liquid Crystals". Proceedings 2, nr 14 (21.05.2018): 1122. http://dx.doi.org/10.3390/iecc_2018-05257.
Pełny tekst źródłaSial, Atif, Afzal Ahmed Dar, Yifan Li i Chuanyi Wang. "Plasmon-Induced Semiconductor-Based Photo-Thermal Catalysis: Fundamentals, Critical Aspects, Design, and Applications". Photochem 2, nr 4 (2.10.2022): 810–30. http://dx.doi.org/10.3390/photochem2040052.
Pełny tekst źródłaXiong, Yihuang, Weinan Chen, Wenbo Guo, Hua Wei i Ismaila Dabo. "Data-driven analysis of the electronic-structure factors controlling the work functions of perovskite oxides". Physical Chemistry Chemical Physics 23, nr 11 (2021): 6880–87. http://dx.doi.org/10.1039/d0cp05595f.
Pełny tekst źródłaShin, Jihyun, i Hocheon Yoo. "Photogating Effect-Driven Photodetectors and Their Emerging Applications". Nanomaterials 13, nr 5 (26.02.2023): 882. http://dx.doi.org/10.3390/nano13050882.
Pełny tekst źródłaDarus, Libertus, Takuya Sadakane, Pablo Ledezma, Seiya Tsujimura, Isioma Osadebe, Dónal Leech, Lo Gorton i Stefano Freguia. "Redox-Polymers Enable Uninterrupted Day/Night Photo-Driven Electricity Generation in Biophotovoltaic Devices". Journal of The Electrochemical Society 164, nr 3 (6.12.2016): H3037—H3040. http://dx.doi.org/10.1149/2.0091703jes.
Pełny tekst źródłaNinan, Neethu, Nirmal Goswami i Krasimir Vasilev. "The Impact of Engineered Silver Nanomaterials on the Immune System". Nanomaterials 10, nr 5 (18.05.2020): 967. http://dx.doi.org/10.3390/nano10050967.
Pełny tekst źródłaGarbovskiy, Yuriy. "Nanoparticle-Enabled Ion Trapping and Ion Generation in Liquid Crystals". Advances in Condensed Matter Physics 2018 (5.07.2018): 1–8. http://dx.doi.org/10.1155/2018/8914891.
Pełny tekst źródłaKalia, Anu, Kamel A. Abd-Elsalam i Kamil Kuca. "Zinc-Based Nanomaterials for Diagnosis and Management of Plant Diseases: Ecological Safety and Future Prospects". Journal of Fungi 6, nr 4 (13.10.2020): 222. http://dx.doi.org/10.3390/jof6040222.
Pełny tekst źródłaShawkat, Mashiyat Sumaiya, Tanvir Ahmed Chowdhury, Hee-Suk Chung, Shahid Sattar, Tae-Jun Ko, J. Andreas Larsson i Yeonwoong Jung. "Large-area 2D PtTe2/silicon vertical-junction devices with ultrafast and high-sensitivity photodetection and photovoltaic enhancement by integrating water droplets". Nanoscale 12, nr 45 (2020): 23116–24. http://dx.doi.org/10.1039/d0nr05670g.
Pełny tekst źródłaBeranek, Radim. "(Photo)electrochemical Methods for the Determination of the Band Edge Positions of TiO2-Based Nanomaterials". Advances in Physical Chemistry 2011 (9.02.2011): 1–20. http://dx.doi.org/10.1155/2011/786759.
Pełny tekst źródłaVermaas, David A., Mark Sassenburg i Wilson A. Smith. "Photo-assisted water splitting with bipolar membrane induced pH gradients for practical solar fuel devices". Journal of Materials Chemistry A 3, nr 38 (2015): 19556–62. http://dx.doi.org/10.1039/c5ta06315a.
Pełny tekst źródłaYadav, Anshul, i Niraj Sinha. "Nanomaterial-based gas sensors: A review on experimental and theoretical studies". Materials Express 12, nr 1 (1.01.2022): 1–33. http://dx.doi.org/10.1166/mex.2022.2121.
Pełny tekst źródłaYeung, Ka-Wai, Yuqing Dong, Ling Chen, Chak-Yin Tang, Wing-Cheung Law, Gary Chi-Pong Tsui i Daniel S. Engstrøm. "Printability of photo-sensitive nanocomposites using two-photon polymerization". Nanotechnology Reviews 9, nr 1 (15.05.2020): 418–26. http://dx.doi.org/10.1515/ntrev-2020-0031.
Pełny tekst źródłaHomaeigohar, Shahin, Qiqi Liu i Danial Kordbacheh. "Biomedical Applications of Antiviral Nanohybrid Materials Relating to the COVID-19 Pandemic and Other Viral Crises". Polymers 13, nr 16 (23.08.2021): 2833. http://dx.doi.org/10.3390/polym13162833.
Pełny tekst źródłaFrontiera, Renee. "(Invited) Ultrafast Reducing Power of a Plasmonic Photocatalyst". ECS Meeting Abstracts MA2022-02, nr 48 (9.10.2022): 1825. http://dx.doi.org/10.1149/ma2022-02481825mtgabs.
Pełny tekst źródłaCengiz, Busra, Tugce Nihal Gevrek, Laura Chambre i Amitav Sanyal. "Self-Assembly of Cyclodextrin-Coated Nanoparticles:Fabrication of Functional Nanostructures for Sensing and Delivery". Molecules 28, nr 3 (20.01.2023): 1076. http://dx.doi.org/10.3390/molecules28031076.
Pełny tekst źródłaFerrando, Giulio, Matteo Gardella, Matteo Barelli, Debasree Chowdhury, Pham Duy Long, Nguyen Si Hieu, Maria Caterina Giordano i Francesco Buatier de Mongeot. "Plasmonic and 2D-TMD nanoarrays for large-scale photon harvesting and enhanced molecular photo-bleaching". EPJ Web of Conferences 266 (2022): 09003. http://dx.doi.org/10.1051/epjconf/202226609003.
Pełny tekst źródłaBikramaditya, Bibhuti, Rakesh Kumar Singh, Nishant Kumar i Pushpendra Kumar Verma. "Studies on Structural, optical and Magnetic properties of Yttrium Aluminum Bromate (YAB) Nanomaterials, prepared at high annealing temperature". Journal of Physics: Conference Series 2070, nr 1 (1.11.2021): 012067. http://dx.doi.org/10.1088/1742-6596/2070/1/012067.
Pełny tekst źródłaHaq, Sharmin, Tasnuva Ashrafee, Mahmuda Begum, Tasmia Sharmin, Nirban Bhowmick i Zahid Hasan Mahmood. "Room Temperature Synthesis and Characterization of Au Nanoparticles". Advanced Materials Research 159 (grudzień 2010): 303–6. http://dx.doi.org/10.4028/www.scientific.net/amr.159.303.
Pełny tekst źródłaGoda, Kazuya, Maya Omori i Kohki Takatoh. "Optical switching in guest–host liquid crystal devices driven by photo- and thermal isomerisation of azobenzene". Liquid Crystals 45, nr 4 (14.08.2017): 485–90. http://dx.doi.org/10.1080/02678292.2017.1355987.
Pełny tekst źródłaMoorthy, Vijai M., Joseph D. Rathnasami i Viranjay M. Srivastava. "Design Optimization and Characterization with Fabrication of Nanomaterials-Based Photo Diode Cell for Subretinal Implant Application". Nanomaterials 13, nr 5 (4.03.2023): 934. http://dx.doi.org/10.3390/nano13050934.
Pełny tekst źródłaLee, Sher, i Chi-Jung Chang. "Recent Developments about Conductive Polymer Based Composite Photocatalysts". Polymers 11, nr 2 (24.01.2019): 206. http://dx.doi.org/10.3390/polym11020206.
Pełny tekst źródłaSamson, Kerr D. G., Eleonore C. L. Bolle, Mariah Sarwat, Tim R. Dargaville i Ferry P. W. Melchels. "Elastic Bioresorbable Polymeric Capsules for Osmosis-Driven Delayed Burst Delivery of Vaccines". Pharmaceutics 13, nr 3 (23.03.2021): 434. http://dx.doi.org/10.3390/pharmaceutics13030434.
Pełny tekst źródłaZHANG, YUEGANG. "CARBON NANOTUBE BASED NONVOLATILE MEMORY DEVICES". International Journal of High Speed Electronics and Systems 16, nr 04 (grudzień 2006): 959–75. http://dx.doi.org/10.1142/s0129156406004107.
Pełny tekst źródłaHan, Aiguo, Mei Li, Shengbo Zhang, Xinli Zhu, Jinyu Han, Qingfeng Ge i Hua Wang. "Ti3+ Defective SnS2/TiO2 Heterojunction Photocatalyst for Visible-Light Driven Reduction of CO2 to CO with High Selectivity". Catalysts 9, nr 11 (6.11.2019): 927. http://dx.doi.org/10.3390/catal9110927.
Pełny tekst źródłaDishari, Shudipto K. "(Invited) Novel Nature-Inspired Concepts to Design Ionomeric Nanomaterials for Energy Conversion and Storage Devices". ECS Meeting Abstracts MA2022-01, nr 38 (7.07.2022): 1707. http://dx.doi.org/10.1149/ma2022-01381707mtgabs.
Pełny tekst źródłaKumar, Sandeep, i Sunil Kumar. "Ultrafast light-induced THz switching in exchange-biased Fe/Pt spintronic heterostructure". Applied Physics Letters 120, nr 20 (16.05.2022): 202403. http://dx.doi.org/10.1063/5.0091934.
Pełny tekst źródłaWu, Qiaoyun, Yunzhe Zhang, Qian Yang, Ning Yuan i Wei Zhang. "Review of Electrochemical DNA Biosensors for Detecting Food Borne Pathogens". Sensors 19, nr 22 (12.11.2019): 4916. http://dx.doi.org/10.3390/s19224916.
Pełny tekst źródłaKallambadi Sadashivappa, Prashanth, Revathi Venkatachalam, Ramyakrishna Pothu, Rajender Boddula, Prasun Banerjee, Ramachandra Naik, Ahmed Bahgat Radwan i Noora Al-Qahtani. "Progressive Review of Functional Nanomaterials-Based Polymer Nanocomposites for Efficient EMI Shielding". Journal of Composites Science 7, nr 2 (13.02.2023): 77. http://dx.doi.org/10.3390/jcs7020077.
Pełny tekst źródłaChew, Xiong Yeu, Guang Ya Zhou i Fook Siong Chau. "Novel Doubly Nano-Scale Perturbative Resonance Control of a Free-Suspending Photonic Crystal Structure". Applied Mechanics and Materials 83 (lipiec 2011): 147–50. http://dx.doi.org/10.4028/www.scientific.net/amm.83.147.
Pełny tekst źródłaLin, Yin-Pai, Boris Polyakov, Edgars Butanovs, Aleksandr A. Popov, Maksim Sokolov, Dmitry Bocharov i Sergei Piskunov. "Excited States Calculations of MoS2@ZnO and WS2@ZnO Two-Dimensional Nanocomposites for Water-Splitting Applications". Energies 15, nr 1 (27.12.2021): 150. http://dx.doi.org/10.3390/en15010150.
Pełny tekst źródłaKim, Junhee, Sanghoon Jung, Han-Jung Kim, Yoonkap Kim, Chanyong Lee, Soo Min Kim, Donghwan Kim i Yongseok Jun. "SiNW/C@Pt Arrays for High-Efficiency Counter Electrodes in Dye-Sensitized Solar Cells". Energies 13, nr 1 (27.12.2019): 139. http://dx.doi.org/10.3390/en13010139.
Pełny tekst źródłaMakgopa, Katlego, i Mpho Sofnee Ratsoma. "Structural Elucidation of Nitrogen-Doped Reduced Graphene Oxide/Hausmannite Manganese Oxide Nanocomposite for Supercapacitor Applications". ECS Meeting Abstracts MA2022-02, nr 1 (9.10.2022): 71. http://dx.doi.org/10.1149/ma2022-02171mtgabs.
Pełny tekst źródłaXu, Ruitong, Jun Pan, Bo Wu, Yangguang Li, Hong-En Wang i Ting Zhu. "Fabrication of Zn-Cu-Ni Ternary Oxides in Nanoarrays for Photo-Enhanced Pseudocapacitive Charge Storage". Nanomaterials 12, nr 14 (18.07.2022): 2457. http://dx.doi.org/10.3390/nano12142457.
Pełny tekst źródłaAnwar, Asima, Muhammad Asif Yousuf, Bashir Tahir, Muhammad Shahid, Muhammad Imran, Muhammad Azhar Khan, Muhammad Sher i Muhammad Farooq Warsi. "New Er3+-substituted NiFe2O4 Nanoparticles and their Nano-heterostructures with Graphene for Visible Light-Driven Photo-catalysis and other Potential Applications". Current Nanoscience 15, nr 3 (19.02.2019): 267–78. http://dx.doi.org/10.2174/1573413714666180911101337.
Pełny tekst źródłaMarzolf, Daniel R., Aidan M. McKenzie, Matthew C. O’Malley, Nina S. Ponomarenko, Coleman M. Swaim, Tyler J. Brittain, Natalie L. Simmons i in. "Mimicking Natural Photosynthesis: Designing Ultrafast Photosensitized Electron Transfer into Multiheme Cytochrome Protein Nanowires". Nanomaterials 10, nr 11 (28.10.2020): 2143. http://dx.doi.org/10.3390/nano10112143.
Pełny tekst źródłaSubirada, Francesc, Roberto Paoli, Jessica Sierra-Agudelo, Anna Lagunas, Romen Rodriguez-Trujillo i Josep Samitier. "Development of a Custom-Made 3D Printing Protocol with Commercial Resins for Manufacturing Microfluidic Devices". Polymers 14, nr 14 (21.07.2022): 2955. http://dx.doi.org/10.3390/polym14142955.
Pełny tekst źródłaLitchman, Michelle L., Heather R. Walker, Caroline Fitzgerald, Mariana Gomez Hoyos, Dana Lewis i Perry M. Gee. "Patient-Driven Diabetes Technologies: Sentiment and Personas of the #WeAreNotWaiting and #OpenAPS Movements". Journal of Diabetes Science and Technology 14, nr 6 (4.07.2020): 990–99. http://dx.doi.org/10.1177/1932296820932928.
Pełny tekst źródłaBendicho, Carlos, Isela Lavilla, Francisco Pena-Pereira, Inmaculada de la Calle i Vanesa Romero. "Nanomaterial-Integrated Cellulose Platforms for Optical Sensing of Trace Metals and Anionic Species in the Environment". Sensors 21, nr 2 (16.01.2021): 604. http://dx.doi.org/10.3390/s21020604.
Pełny tekst źródła