Gotowa bibliografia na temat „Nanomaterials - Photo Driven Devices”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Nanomaterials - Photo Driven Devices”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Nanomaterials - Photo Driven Devices"
Saha, Sourav, i J. Fraser Stoddart. "Photo-driven molecular devices". Chem. Soc. Rev. 36, nr 1 (2007): 77–92. http://dx.doi.org/10.1039/b607187b.
Pełny tekst źródłaYou, Liwen. "Integrated Photo - rechargeable Batteries: Photoactive Nanomaterials and Opportunities". E3S Web of Conferences 375 (2023): 02010. http://dx.doi.org/10.1051/e3sconf/202337502010.
Pełny tekst źródłaBouzin, Margaux, Amirbahador Zeynali, Mario Marini, Laura Sironi, Riccardo Scodellaro, Laura D’Alfonso, Maddalena Collini i Giuseppe Chirico. "Multiphoton Laser Fabrication of Hybrid Photo-Activable Biomaterials". Sensors 21, nr 17 (1.09.2021): 5891. http://dx.doi.org/10.3390/s21175891.
Pełny tekst źródłaZheng, Shuo, Walter W. Duley, Peng Peng i Norman Zhou. "Laser modification of Au–CuO–Au structures for improved electrical and electro-optical properties". Nanotechnology 33, nr 24 (25.03.2022): 245205. http://dx.doi.org/10.1088/1361-6528/ac5b52.
Pełny tekst źródłaComparelli, Roberto. "Special Issue: Application of Photoactive Nanomaterials in Degradation of Pollutants". Materials 12, nr 15 (2.08.2019): 2459. http://dx.doi.org/10.3390/ma12152459.
Pełny tekst źródłaNikić, Marta, Aleksandar Opančar, Florian Hartmann, Ludovico Migliaccio, Marie Jakešová, Eric Daniel Głowacki i Vedran Đerek. "Micropyramid structured photo capacitive interfaces". Nanotechnology 33, nr 24 (23.03.2022): 245302. http://dx.doi.org/10.1088/1361-6528/ac5927.
Pełny tekst źródłaKirner, Simon, Peter Bogdanoff, Bernd Stannowski, Roel van de Krol, Bernd Rech i Rutger Schlatmann. "Architectures for scalable integrated photo driven catalytic devices-A concept study". International Journal of Hydrogen Energy 41, nr 45 (grudzień 2016): 20823–31. http://dx.doi.org/10.1016/j.ijhydene.2016.05.088.
Pełny tekst źródłaZhang, Li-De, i Xiao-Sheng Fang. "Controlled Growth and Characterization Methods of Semiconductor Nanomaterials". Journal of Nanoscience and Nanotechnology 8, nr 1 (1.01.2008): 149–201. http://dx.doi.org/10.1166/jnn.2008.n02.
Pełny tekst źródłaSaleh, Hosam M., i Amal I. Hassan. "Synthesis and Characterization of Nanomaterials for Application in Cost-Effective Electrochemical Devices". Sustainability 15, nr 14 (11.07.2023): 10891. http://dx.doi.org/10.3390/su151410891.
Pełny tekst źródłaGrabowski, Przemysław, Jakub Haberko i Piotr Wasylczyk. "Photo-Mechanical Response Dynamics of Liquid Crystal Elastomer Linear Actuators". Materials 13, nr 13 (30.06.2020): 2933. http://dx.doi.org/10.3390/ma13132933.
Pełny tekst źródłaCzęści książek na temat "Nanomaterials - Photo Driven Devices"
Amdeha, Enas. "Smart Nanomaterials for Photo-Catalytic Applications". W Diversity and Applications of New Age Nanoparticles, 112–54. IGI Global, 2023. http://dx.doi.org/10.4018/978-1-6684-7358-0.ch005.
Pełny tekst źródłaWu, Fan, He Tian i Tian-Ling Ren. "Novel photoelectroactive memories and neuromorphic devices based on nanomaterials". W Photo-Electroactive Nonvolatile Memories for Data Storage and Neuromorphic Computing, 201–22. Elsevier, 2020. http://dx.doi.org/10.1016/b978-0-12-819717-2.00009-6.
Pełny tekst źródłaGayen, Rabindra N., Venkata Sai Avvaru i Vinodkumar Etacheri. "Carbon-based integrated devices for efficient photo-energy conversion and storage". W Carbon Based Nanomaterials for Advanced Thermal and Electrochemical Energy Storage and Conversion, 357–74. Elsevier, 2019. http://dx.doi.org/10.1016/b978-0-12-814083-3.00014-7.
Pełny tekst źródłaParashar, Ashish K., Preeti Patel, Monika Kaurav, Krishna Yadav, Dilpreet Singh, G. D. Gupta i Balak Das Kurmi. "Nanomaterials as Diagnostic Tools and Drug Carriers". W Nanoparticles and Nanocarriers-Based Pharmaceutical Formulations, 126–56. BENTHAM SCIENCE PUBLISHERS, 2022. http://dx.doi.org/10.2174/9789815049787122010007.
Pełny tekst źródłaAamir Iqbal, Muhammad, Maria Malik, Wajeehah Shahid, Waqas Ahmad, Kossi A. A. Min-Dianey i Phuong V. Pham. "Plasmonic 2D Materials: Overview, Advancements, Future Prospects and Functional Applications". W Nanostructured Materials - Classification, Growth, Simulation, Characterization, and Devices [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.101580.
Pełny tekst źródłaLi, Yujie, Jie Wang, Shijie Wang, Di Li, Shan Song, Peng Zhang, Jianguo Li i Hai Yuan. "Immiscible Two-Phase Parallel Microflow and Its Applications in Fabricating Micro- and Nanomaterials". W Research Anthology on Synthesis, Characterization, and Applications of Nanomaterials, 200–224. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-8591-7.ch009.
Pełny tekst źródłaLi, Yujie, Jie Wang, Shijie Wang, Di Li, Shan Song, Peng Zhang, Jianguo Li i Hai Yuan. "Immiscible Two-Phase Parallel Microflow and Its Applications in Fabricating Micro- and Nanomaterials". W Process Analysis, Design, and Intensification in Microfluidics and Chemical Engineering, 136–66. IGI Global, 2019. http://dx.doi.org/10.4018/978-1-5225-7138-4.ch005.
Pełny tekst źródłaZhang, Yiming, Yuanfeng Xu, Yujie Xia, Juan Zhang, Hao Zhang i Desheng Fu. "Photo-Induced Displacive Phase Transition in Two-dimensional MoTe2 from First-Principle Calculations". W Phase Change Materials - Technology and Applications [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.108460.
Pełny tekst źródłaQuazi, Sameer, Javed Ahmad Malik, Aman Prakash i Pragalbh Tiwari. "Nano(bio)sensors in Detection of Micropollutants". W Implications of Nanoecotoxicology on Environmental Sustainability, 76–101. IGI Global, 2023. http://dx.doi.org/10.4018/978-1-6684-5533-3.ch005.
Pełny tekst źródłaStreszczenia konferencji na temat "Nanomaterials - Photo Driven Devices"
Park, Cheolmin. "Solution-processed low dimensional nanomaterials with self-assembled polymers for flexible photo-electronic devices (Presentation Recording)". W SPIE Nanoscience + Engineering, redaktorzy Norihisa Kobayashi, Fahima Ouchen i Ileana Rau. SPIE, 2015. http://dx.doi.org/10.1117/12.2190637.
Pełny tekst źródłaBarhorst, A. A., O. P. Harrison i G. D. Bachand. "Modeling Elasto-Mechanical Phenomena Involved in the Motor-Driven Assembly of Nanomaterials". W ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-34175.
Pełny tekst źródłaKawazu, T., T. Noda i Y. Sakuma. "Photo-induced Current in n-AlGaAs/GaAs Heterojunction Field-effect Transistor Driven by Local Illumination at Edge Regions of Schottky Metal Gate". W 2016 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2016. http://dx.doi.org/10.7567/ssdm.2016.n-3-03.
Pełny tekst źródłaScheideler, William, i Vivek Subramanian. "Improving High-Speed Nanomaterials Printing With Sub-Process-Decoupled Gravure Printer Design". W ASME 2017 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/smasis2017-3907.
Pełny tekst źródłaWoodward, T. K., B. Tell, W. H. Knox, J. B. Stark i M. T. Asom. "Low-Responsivity GaAs/AlAs Asymmetric Fabry-Perot Modulators". W Photonics in Switching. Washington, D.C.: Optica Publishing Group, 1993. http://dx.doi.org/10.1364/ps.1993.ptua.2.
Pełny tekst źródłaRahman, Mosfequr, Masud Nawaz i John E. Jackson. "Experimental Investigation on the Use of Photostrictive Optical Actuator for MEMS Devices and Verification With the FEA Modeling Results". W ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-65581.
Pełny tekst źródła