Gotowa bibliografia na temat „Nanomaterials - Inorganic Chemistry”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Nanomaterials - Inorganic Chemistry”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Nanomaterials - Inorganic Chemistry"
Garnweitner, Georg, i Markus Niederberger. "Organic chemistry in inorganic nanomaterials synthesis". J. Mater. Chem. 18, nr 11 (2008): 1171–82. http://dx.doi.org/10.1039/b713775c.
Pełny tekst źródłaBilecka, Idalia, i Markus Niederberger. "Microwave chemistry for inorganic nanomaterials synthesis". Nanoscale 2, nr 8 (2010): 1358. http://dx.doi.org/10.1039/b9nr00377k.
Pełny tekst źródłaAnanikov, Valentine P. "Organic–Inorganic Hybrid Nanomaterials". Nanomaterials 9, nr 9 (26.08.2019): 1197. http://dx.doi.org/10.3390/nano9091197.
Pełny tekst źródłaWhittingham, M. Stanley. "Inorganic nanomaterials for batteries". Dalton Transactions, nr 40 (2008): 5424. http://dx.doi.org/10.1039/b806372a.
Pełny tekst źródłaVianello, Fabio, Alessandro Cecconello i Massimiliano Magro. "Toward the Specificity of Bare Nanomaterial Surfaces for Protein Corona Formation". International Journal of Molecular Sciences 22, nr 14 (16.07.2021): 7625. http://dx.doi.org/10.3390/ijms22147625.
Pełny tekst źródłaAili, Daniel, i Molly M. Stevens. "Bioresponsive peptide–inorganic hybrid nanomaterials". Chemical Society Reviews 39, nr 9 (2010): 3358. http://dx.doi.org/10.1039/b919461b.
Pełny tekst źródłaKumar, Santosh, Zhi Wang, Wen Zhang, Xuecheng Liu, Muyang Li, Guoru Li, Bingyuan Zhang i Ragini Singh. "Optically Active Nanomaterials and Its Biosensing Applications—A Review". Biosensors 13, nr 1 (4.01.2023): 85. http://dx.doi.org/10.3390/bios13010085.
Pełny tekst źródłaHarish, Vancha, Md Mustafiz Ansari, Devesh Tewari, Manish Gaur, Awadh Bihari Yadav, María-Luisa García-Betancourt, Fatehy M. Abdel-Haleem, Mikhael Bechelany i Ahmed Barhoum. "Nanoparticle and Nanostructure Synthesis and Controlled Growth Methods". Nanomaterials 12, nr 18 (16.09.2022): 3226. http://dx.doi.org/10.3390/nano12183226.
Pełny tekst źródłaYang, Hualin, Yu Zhou i Juewen Liu. "Porphyrin metalation catalyzed by DNAzymes and nanozymes". Inorganic Chemistry Frontiers 8, nr 9 (2021): 2183–99. http://dx.doi.org/10.1039/d1qi00105a.
Pełny tekst źródłaXu, Yanzhao. "Representative Inorganic Nanomaterials and Liposomes in Cosmetics". Highlights in Science, Engineering and Technology 26 (30.12.2022): 480–87. http://dx.doi.org/10.54097/hset.v26i.4030.
Pełny tekst źródłaRozprawy doktorskie na temat "Nanomaterials - Inorganic Chemistry"
Alharthi, Fahad Ahmed A. "New inorganic nanomaterials for low-voltage transistor applications". Thesis, University of Hull, 2016. http://hydra.hull.ac.uk/resources/hull:16517.
Pełny tekst źródłaTsui, Hei Man. "Synthesis and Characterization of Magnetic Cabides and Oxides Nanomaterials". VCU Scholars Compass, 2018. https://scholarscompass.vcu.edu/etd/5366.
Pełny tekst źródłaBerestok, Taisiia. "Assembly of colloidal nanocrystals into porous nanomaterials". Doctoral thesis, Universitat de Barcelona, 2018. http://hdl.handle.net/10803/663275.
Pełny tekst źródłaEsta tesis se centra en la síntesis coloidal de nanocristales (NCs), en la exploración de su química de superficie y en su ensabanado en nanomateriales porosos funcionales. Para demostrar la versatilidad de aplicación de dichas estructuras, en este estudio se han considerado NCs de distintos tipos de materiales: metales (Au), óxidos metálicos (CeO2, TiO2, Fe2O3), calcogenuros metálicos (In2S3, ZnS, PbS, CuGaS2,Cu2ZnSnSe4) y sus materiales compuestos. El trabajo se dividió en dos bloques. En el primero se desarrolló y optimizó la síntesis de NCs de óxidos y calcogenuros metálicos y se evaluó su potencial para aplicaciones de catálisis y fotocatálisis. Se investigó en profundidad la síntesis de NCs de CeO2, poniendo énfasis en controlar su morfología. Se consiguió producir NCs de CeO2 de forma controlada (esférica, octapodo ramificado, cúbico ramificado y romboidal) y con tamaño controlado (7-45 nm). Asimismo, se obtuvieron NCs de Cu2ZnSnSe4 con una fina distribución de tamaños y composición controlada. En el segundo bloque se establecieron y estudiaron procedimientos para fabricar nanomateriales porosos mono- o multicomponentes a partir del ensamblado de NCs. Se desarrolló una estrategia basada en el ajuste de la química de superficie de NCs de óxidos metálicos (CeO2, Fe2O3,TiO2) y de calcogenuros metálicos (In2S3, CuGaS2-ZnS) que permitió su ensamblaje controlado en estructuras porosas de tipo gel y aerogel. En el caso de los óxidos metálicos, se determinó que el ensamblado se inicia con la adición de un epóxido a NCs funcionalizados con glutamina, causando la gelación. La desorción oxidativa de ligandos basada en la formación de enlaces calcogenuro-calcogenuro se propuso como mecanismo de gelación en calcogenuros mono- (In2S3) y multicomponente (CuGaS2-ZnS). Se investigó el impacto del empleo de distintos ligandos en la eficiencia foto-electrocatalítica de NCs en forma coloidal, ensamblados en geles y soportados en sustratos. Se desarrolló y estudió el ajuste de la química de superficie de NCs para la obtención de ensamblajes multicomponente mediante interacción electrostática de coloides en suspensión. El mecanismo de gelación fue investigado al detalle para materiales compuestos de NCs de oxido metálico (CeO2) con NCs de óxido de calcogenuro (PbS-CeO2) y metálicos (Au-CeO2). Los aerogeles de Au-CeO2 demostraron potencial para la oxidación de CO.
Lisowski, Carmen Ellen 1978. "Hybrid organic/inorganic nanomaterials: Development of malonamide-functionalized nanoparticles designed for lanthanide ion detection". Thesis, University of Oregon, 2010. http://hdl.handle.net/1794/10523.
Pełny tekst źródłaHybrid nanoscale complexes incorporate the attributes of organic and inorganic components to yield novel multifunctional materials. Because the individual components themselves and the combinations used can be widely varied to tune the properties of the resulting complex, the potential for new properties and practical applications is nearly limitless. However, widespread use of these materials relies on appropriate design, synthesis and characterization strategies to ensure proper function and compositional integrity. This dissertation describes the chemistry of these hybrids, made possible by combining organic ligands, inorganic nanoparticles, and metal ions, and the interesting optical and spectroscopic properties associated with the hybrid nanomaterials. Organic ligands containing Bunte salt and acyclic malonamide functionalities were attached to gold nanoparticles to produce colorimetric sensors for lanthanide ion detection. Bunte salt functionality stabilizes the gold core and malonamide functionality offers selective and sensitive lanthanide ion binding. The binding interaction controls a nanoparticle cross-linking event that changes the color of the nanoparticle solution, resulting in visual, colorimetric lanthanide ion detection. Next, the concentration of malonamide ligand was diluted and replaced with a diluent ligand yielding nanoparticles stabilized with a mixed ligand composition. The mixed ligand environment makes the optical response of the colorimetric sensor reversible. Furthermore, the use of Bunte salt ligands during nanoparticle synthesis has allowed the investigation of the role of reducing agent on nanoparticle stability. In addition to exploring interactions pertaining to gold nanoparticle complexes, a new approach to sensitize europium ion luminescence was developed by fabricating a zinc oxide/europium complex. A molecular linker permits simultaneous zinc oxide nanoparticle functionalization and trivalent europium binding in order to tether the europium ion close to the nanoparticle surface. The zinc oxide nanoparticle can then act as an inorganic antenna, transferring energy to the europium ion and enhancing its luminescence. Finally, a strategy was developed to synthesize bifunctional bicyclic malonamides. Synthesis of these ligands allows the enhanced f-block ion binding affinity of bicyclic malonamides to be incorporated into functional materials to compare their performance to our previously prepared acyclic malonamide hybrid complexes. This dissertation includes my previously published and co-authored materials.
Committee in charge: Darren Johnson, Chairperson, Chemistry; James Hutchison, Advisor, Chemistry; Catherine Page, Member, Chemistry; Michael Haley, Member, Chemistry; Barbara Roy, Outside Member, Biology
Huba, Zachary. "Synthesis and characterization of cobalt carbide based nanomaterials". VCU Scholars Compass, 2014. http://scholarscompass.vcu.edu/etd/3320.
Pełny tekst źródłaBuckley, Hannah C. "Applications of layered double hydroxides as inorganic adjuvants". Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:353bd7f3-89ed-4392-9b71-64a27c271522.
Pełny tekst źródłaSkowron, Stephen T. "Irradiation induced reactions in carbon nanomaterials in transmission electron microscopy". Thesis, University of Nottingham, 2016. http://eprints.nottingham.ac.uk/34629/.
Pełny tekst źródłaDi, Pasqua Anthony J. "Carboplatin Exploring mechanism of action and improved drug delivery 1. Role of carbonate in the mechanism of action of carboplatin 2. Cytotoxicity of mesoporous silica nanomaterials /". Related electronic resource: Current Research at SU : database of SU dissertations, recent titles available full text, 2008. http://wwwlib.umi.com/cr/syr/main.
Pełny tekst źródłaMa, Hui. "Nanomaterials for Biological Applications: Drug Delivery and Bio-sensing". ScholarWorks@UNO, 2013. http://scholarworks.uno.edu/td/1647.
Pełny tekst źródłaYu, Lei. "DECONVOLVING THE STEPS TO CONTROL MORPHOLOGY, COMPOSITION, AND STRUCTURE, IN THE SYNTHESIS OF HIGH-ASPECT-RATIO METAL OXIDE NANOMATERIALS". UKnowledge, 2017. http://uknowledge.uky.edu/chemistry_etds/82.
Pełny tekst źródłaKsiążki na temat "Nanomaterials - Inorganic Chemistry"
Lukehart, Charles M., i Robert A. Scott. Nanomaterials: Inorganic and bioinorganic perspectives. Chichester, West Sussex, U.K: Wiley, 2008.
Znajdź pełny tekst źródłaAresta, M., i Angela Dibenedetto. Inorganic micro- and nanomaterials: Synthesis and characterization. Berlin: Walter de Gruyter GmbH & Co. KG, 2013.
Znajdź pełny tekst źródłaEduardo, Ruiz-Hitzky, Ariga Katsuhiko 1962- i Lvov Yuri 1952-, red. Bio-inorganic hybrid nanomaterials: Strategies, syntheses, characterization and applications. Weinheim: Wiley-VCH, 2008.
Znajdź pełny tekst źródłaC, Bréchignac, Houdy P, Lahmani M i European Materials Research Society, red. Nanomaterials and nanochemistry. Berlin: Springer, 2007.
Znajdź pełny tekst źródłaScott, Robert A., i Charles M. Lukehart. Nanomaterials: Inorganic and Bioinorganic Perspectives. Wiley & Sons, Incorporated, John, 2013.
Znajdź pełny tekst źródłaScott, Robert A., i Charles M. Lukehart. Nanomaterials: Inorganic and Bioinorganic Perspectives. Wiley & Sons, Incorporated, John, 2013.
Znajdź pełny tekst źródłaScott, Robert A., i Charles M. Lukehart. Nanomaterials: Inorganic and Bioinorganic Perspectives. Wiley & Sons, Incorporated, John, 2013.
Znajdź pełny tekst źródłaScott, Robert A., i Charles M. Lukehart. Nanomaterials: Inorganic and Bioinorganic Perspectives. Wiley & Sons, Incorporated, John, 2013.
Znajdź pełny tekst źródłaInamuddin, Rajender Boddula, Mohammad Faraz Ahmer i Abdullah Mohamed Asiri. Inorganic Nanomaterials for Supercapacitor Design. Taylor & Francis Group, 2020.
Znajdź pełny tekst źródłaInamuddin, Rajender Boddula, Mohammad Faraz Ahmer i Abdullah Mohamed Asiri. Inorganic Nanomaterials for Supercapacitor Design. Taylor & Francis Group, 2020.
Znajdź pełny tekst źródłaCzęści książek na temat "Nanomaterials - Inorganic Chemistry"
Kim, Taeho, i Jesse V. Jokerst. "Inorganic Fluorescent Nanomaterials". W Topics in Medicinal Chemistry, 55–80. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/7355_2019_85.
Pełny tekst źródłaRafols, Ismael, Martin Meyer i Jae-Hwan Park. "Hybrid Nanomaterials Research: Is ItReallyInterdisciplinary?" W The Supramolecular Chemistry of Organic-Inorganic Hybrid Materials, 673–87. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470552704.ch24.
Pełny tekst źródłaQiao, S. Z., J. Liu i G. Q. Max Lu. "Synthetic Chemistry of Nanomaterials". W Modern Inorganic Synthetic Chemistry, 613–40. Elsevier, 2017. http://dx.doi.org/10.1016/b978-0-444-63591-4.00021-5.
Pełny tekst źródłaQiao, Shi Zhang, Jian Liu i Gao Qing (Max) Lu. "Synthetic Chemistry of Nanomaterials". W Modern Inorganic Synthetic Chemistry, 479–506. Elsevier, 2011. http://dx.doi.org/10.1016/b978-0-444-53599-3.10021-6.
Pełny tekst źródłaRao, C. N. R., S. R. C. Vivekchand, Kanishka Biswas i A. Govindaraj. "Synthesis of inorganic nanomaterials". W Trends in Chemistry of Materials, 479–500. Co-Published with Indian Institute of Science (IISc), Bangalore, India, 2008. http://dx.doi.org/10.1142/9789812833846_0040.
Pełny tekst źródłaV. Ramos-Garcés, Mario, Joel Sanchez, Isabel Barraza Alvarez, Yanyu Wu, Dino Villagrán, Thomas F. Jaramillo i Jorge L. Colón. "Water Splitting Electrocatalysis within Layered Inorganic Nanomaterials". W Water Chemistry. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.88116.
Pełny tekst źródłaAhumada, Manuel, Caitlin Lazurko i Emilio I. Alarcon. "Fundamental concepts on surface chemistry of nanomaterials". W Photoactive Inorganic Nanoparticles, 1–19. Elsevier, 2019. http://dx.doi.org/10.1016/b978-0-12-814531-9.00001-4.
Pełny tekst źródłaPatwardhan, Siddharth V., i Sarah S. Staniland. "Green chemistry for nanomaterials". W Green Nanomaterials: From bioinspired synthesis to sustainable manufacturing of inorganic nanomaterials. IOP Publishing, 2019. http://dx.doi.org/10.1088/978-0-7503-1221-9ch5.
Pełny tekst źródłaMathur, S., R. von Hagen i R. Müller. "One-Dimensional Inorganic Nanomaterials for Energy Storage and Production". W Comprehensive Inorganic Chemistry II, 317–41. Elsevier, 2013. http://dx.doi.org/10.1016/b978-0-08-097774-4.00414-9.
Pełny tekst źródła"Characterization of Inorganic Nanomaterials as Therapeutic Vehicles". W Recent Advances in Medicinal Chemistry, redaktorzy Tatsuya Murakami, Masako Yudasaka, Sumio Iijima i Kunihiro Tsuchida, 73–98. BENTHAM SCIENCE PUBLISHERS, 2014. http://dx.doi.org/10.2174/9781608057962114010006.
Pełny tekst źródłaStreszczenia konferencji na temat "Nanomaterials - Inorganic Chemistry"
Stranks, Samuel D., i Dane de Quilettes. "Understanding and eliminating non-radiative decay in organic-inorganic perovskites (Conference Presentation)". W Physical Chemistry of Interfaces and Nanomaterials XV, redaktorzy Artem A. Bakulin, Natalie Banerji i Robert Lovrincic. SPIE, 2016. http://dx.doi.org/10.1117/12.2238390.
Pełny tekst źródłaChen, Kok Hao, i Jong Hyun Choi. "Nanoparticle-Aptamer: An Effective Growth Inhibitor for Human Cancer Cells". W ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-11966.
Pełny tekst źródła