Gotowa bibliografia na temat „Nanomaterials - Catalytic Applications”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Nanomaterials - Catalytic Applications”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Nanomaterials - Catalytic Applications"
Duan, Sibin, Zhe Du, Hongsheng Fan i Rongming Wang. "Nanostructure Optimization of Platinum-Based Nanomaterials for Catalytic Applications". Nanomaterials 8, nr 11 (17.11.2018): 949. http://dx.doi.org/10.3390/nano8110949.
Pełny tekst źródłaNasrollahzadeh, Mahmoud, Mohaddeseh Sajjadi, Siavash Iravani i Rajender S. Varma. "Trimetallic Nanoparticles: Greener Synthesis and Their Applications". Nanomaterials 10, nr 9 (9.09.2020): 1784. http://dx.doi.org/10.3390/nano10091784.
Pełny tekst źródłaMin, Shengyi, Qiao Yu, Jiaquan Ye, Pengfei Hao, Jiayu Ning, Zhiqiang Hu i Yu Chong. "Nanomaterials with Glucose Oxidase-Mimicking Activity for Biomedical Applications". Molecules 28, nr 12 (7.06.2023): 4615. http://dx.doi.org/10.3390/molecules28124615.
Pełny tekst źródłaYang, Hualin, Yu Zhou i Juewen Liu. "Porphyrin metalation catalyzed by DNAzymes and nanozymes". Inorganic Chemistry Frontiers 8, nr 9 (2021): 2183–99. http://dx.doi.org/10.1039/d1qi00105a.
Pełny tekst źródłaZhang, Qiao, i Yadong Yin. "Nanomaterials engineering and applications in catalysis". Pure and Applied Chemistry 86, nr 1 (22.01.2014): 53–69. http://dx.doi.org/10.1515/pac-2014-5000.
Pełny tekst źródłaYu, Feng, i Lanbo Di. "Plasma for Energy and Catalytic Nanomaterials". Nanomaterials 10, nr 2 (15.02.2020): 333. http://dx.doi.org/10.3390/nano10020333.
Pełny tekst źródłaMassaro, Marina, Renato Noto i Serena Riela. "Halloysite Nanotubes: Smart Nanomaterials in Catalysis". Catalysts 12, nr 2 (25.01.2022): 149. http://dx.doi.org/10.3390/catal12020149.
Pełny tekst źródłaWang, Jiaqing, i Hongwei Gu. "Novel Metal Nanomaterials and Their Catalytic Applications". Molecules 20, nr 9 (17.09.2015): 17070–92. http://dx.doi.org/10.3390/molecules200917070.
Pełny tekst źródłaShaik, Mohammed Rafi, Syed Farooq Adil i Mujeeb Khan. "Novel Nanomaterials for Catalytic and Biological Applications". Crystals 13, nr 3 (1.03.2023): 427. http://dx.doi.org/10.3390/cryst13030427.
Pełny tekst źródłaPal, Nabanita, Debabrata Chakraborty, Eun-Bum Cho i Jeong Gil Seo. "Recent Developments on the Catalytic and Biosensing Applications of Porous Nanomaterials". Nanomaterials 13, nr 15 (26.07.2023): 2184. http://dx.doi.org/10.3390/nano13152184.
Pełny tekst źródłaRozprawy doktorskie na temat "Nanomaterials - Catalytic Applications"
Zhang, Rui. "Transition-metal-based composite and hybrid nanomaterials for catalytic applications". Doctoral thesis, Humboldt-Universität zu Berlin, 2018. http://dx.doi.org/10.18452/19224.
Pełny tekst źródłaHigh-performance catalysts play a key role in the development of technologies for sustainable production, storage, and conversion of energy. In this thesis, transition-metal-based catalysts, including TiO2/carbon composites, hybrid organic-inorganic NiFe phosphonates, and Ni phosphides are synthesized, characterized, and investigated in photocatalytic or electrocatalytic reactions. TiO2 is frequently combined with carbon materials, such as reduced graphene oxide (rGO), to produce composites with improved properties. TiO2 is more efficiently stabilized at the surface of rGO than amorphous carbon. Rapid heating of the reaction mixture results in a stronger coupling between the nanoparticles and carbon, more uniform coatings, and smaller particles with narrower size distributions. The more efficient attachment of the oxide leads to better photocatalytic performance. Layered hybrid NiFe-phenylphosphonate compounds are synthesized in benzyl alcohol, and their oxygen evolution reaction (OER) performance in alkaline medium is investigated. The hybrid particles transformed in situ into NiFe hydroxide nanosheets. X-ray absorption spectroscopy measurements suggest the metal sites in the active catalyst inherited partly the distorted coordination. The combination of the synergistic effect between Ni and Fe with the structural properties of the hybrid results in an efficient catalyst that generates a current density of 10 mA cm-2 at an overpotential of 240 mV. Moreover, nickel phosphides are synthesized through thermal treatment under H2(5%)/Ar of layered nickel phenyl- or methylphosphonates that act as single-source precursors. Ni12P5, Ni12P5-Ni2P and Ni2P nanoparticles coated with a thin shell of carbonaceous material are produced. Ni12P5-Ni2P and Ni2P NPs efficiently catalyze the hydrogen evolution reaction (HER) in acidic medium. Co2P and CoP NPs are also synthesized following this method.
Papa, Letizia. "Synthesis of hybrid nanosheets of graphene oxide, titania and gold and palladium nanoparticles for catalytic applications". Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/46/46136/tde-19062017-083751/.
Pełny tekst źródłaA nanocatálise surgiu nas últimas décadas como uma interface entre catálise homogênea e heterogênea, oferecendo soluções simples a problemas que os materiais convencionais não conseguiram resolver. De fato, o design de nanocatalisadores permite obter estruturas com grande área superficial, reatividade e estabilidade, e ao mesmo tempo apresentando boa seletividade e facilidade de separação de misturas reacionais. Neste trabalho apresentamos a preparação de estruturas híbridas compostas por nanopartículas de ouro, paládio e prata (Au, Pd e Ag NPs), nanofolhas de titanato (TixO2), óxido de grafeno (GO) e óxido de grafeno parcialmente reduzido (prGO). Focamos em híbridos do tipo M/TixO2, M/(pr)GO e M/TixO2/(pr)GO (M = Au, Pd ou Ag) e desenvolvemos métodos de preparação simples, versáteis e ambientalmente amigáveis, com ênfase no controle sobre tamanho, forma e composição. Para explorar as potencialidades catalíticas utilizamos a redução do 4-nitrofenol como reação modelo, e em seguida a oxidação assistida por luz do p-aminotiofenol (PATP). Com esses testes, investigamos interações metal-suporte e efeitos cooperativos que tornam as estruturas hibridas superiores a cada um dos materiais que as compõem.
Godfrey, Ian. "Synthesis, structure and catalytic applications of monometallic and bimetallic gold-silver nanomaterials". Thesis, University College London (University of London), 2018. http://discovery.ucl.ac.uk/10040860/.
Pełny tekst źródłaQazzazie, Dureid [Verfasser], i Gerald A. [Akademischer Betreuer] Urban. "Research and development of novel hybrid nanomaterials for use as catalytic electrodes in fuel cell applications". Freiburg : Universität, 2017. http://d-nb.info/1144828961/34.
Pełny tekst źródłaKrawiec, Piotr. "Nanostructured Porous High Surface Area Ceramics for Catalytic Applications". Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2007. http://nbn-resolving.de/urn:nbn:de:swb:14-1170181622265-56905.
Pełny tekst źródłaZhang, Rui [Verfasser], Nicola [Gutachter] Pinna i Yan [Gutachter] Lu. "Transition-metal-based composite and hybrid nanomaterials for catalytic applications / Rui Zhang ; Gutachter: Nicola Pinna, Yan Lu". Berlin : Humboldt-Universitaet zu Berlin, 2018. http://d-nb.info/1175995266/34.
Pełny tekst źródłaKrawiec, Piotr. "Nanostructured Porous High Surface Area Ceramics for Catalytic Applications". Doctoral thesis, Technische Universität Dresden, 2006. https://tud.qucosa.de/id/qucosa%3A24989.
Pełny tekst źródłaKoneti, Siddardha. "In situ and 3D environmental transmission electron microscopy of Pd-Al2O3 nano catalysts : Fast tomography with applications to other catalytic systems in operando conditions and to electron beam sensitive nanomaterials". Thesis, Lyon, 2017. http://www.theses.fr/2017LYSEI123/document.
Pełny tekst źródłaIn the beginning of the XXIst century, Environmental Transmission Electron Microscopy has become one of the reliable characterization techniques of nanomaterials in conditions mimicking their real life. ETEM is now able to follow the dynamic evolution of nanomaterials under various conditions like high temperature, liquid or various gas pressures. Among various fields of research, catalysis can benefit significantly from Environmental Microscopy. This contribution starts with the study of the Palladium-Alumina catalytic system. Pd nanoparticles supported by α-Al2O3 and δ-Al2O3 are of an important physicochemical and environmental interest, particularly in the field of selective hydrogenation in petrochemistry, for the synthesis of polymers or CO2 hydrogenation for methane production. We first performed 2D analyses at different steps of the synthesis process, then the same synthesis steps were performed under in situ conditions. The motivation of this approach was to compare post mortem treatments with ETEM observations. In general, 2D data provide limited insights on, for example, the morphology and position of supported nanoparticles. We have then developed a new fast acquisition approach to collect tomographic tilt series in very short times, enabling to reconstruct nano-systems in 3D during their dynamical evolution. Taking advantage of this approach, we have determined the activation energy for soot combustion on YSZ oxidation catalysts for diesel motors from volumetric data extracted from in situ experiments. Fast electron tomography was also applied to electron beam sensitive materials, like polymer nanocomposites and biological materials, showing the wide spectrum of possible applications for rapid 3D characterization of nanomaterials
Han, Chenhui. "Nanomaterials stabilized pickering emulsions and their applications in catalysis". Thesis, Queensland University of Technology, 2019. https://eprints.qut.edu.au/134131/1/Chenhui%20Han%20Thesis_Redacted.pdf.
Pełny tekst źródłaHuh, Seong. "Morphological Control of Multifunctional Mesoporous Silica Nanomaterials for Catalysis Applications". Ames, Iowa : Oak Ridge, Tenn. : Ames Laboratory ; distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2004. http://www.osti.gov/servlets/purl/837271-xREJ4t/webviewable/.
Pełny tekst źródłaPublished through the Information Bridge: DOE Scientific and Technical Information. "IS-T 2397" Seong Huh. US Department of Energy 12/19/2004. Report is also available in paper and microfiche from NTIS.
Książki na temat "Nanomaterials - Catalytic Applications"
Varghese, Anitha, i Gurumurthy Hegde. Emerging Nanomaterials for Catalysis and Sensor Applications. New York: CRC Press, 2023. http://dx.doi.org/10.1201/9781003218708.
Pełny tekst źródłaZhou, Meng, red. Catalysis by Metal Complexes and Nanomaterials: Fundamentals and Applications. Washington, DC: American Chemical Society, 2019. http://dx.doi.org/10.1021/bk-2019-1317.
Pełny tekst źródłaToxic Gas Sensors and Biosensors. Materials Research Forum LLC, 2021. http://dx.doi.org/10.21741/9781644901175.
Pełny tekst źródłaHussain, Chaudhery Mustansar, Sudheesh K. Shukla i Bindu Mangla, red. Functionalized Nanomaterials for Catalytic Application. Wiley, 2021. http://dx.doi.org/10.1002/9781119809036.
Pełny tekst źródłaHussain, Chaudhery Mustansar, Sudheesh K. Shukla i Bindu Mangla. Functionalized Nanomaterials for Catalytic Application. Wiley & Sons, Limited, John, 2021.
Znajdź pełny tekst źródłaHussain, Chaudhery Mustansar, Sudheesh K. Shukla i Bindu Mangla. Functionalized Nanomaterials for Catalytic Application. Wiley & Sons, Incorporated, John, 2021.
Znajdź pełny tekst źródłaHussain, Chaudhery Mustansar, Sudheesh K. Shukla i Bindu Mangla. Functionalized Nanomaterials for Catalytic Application. Wiley & Sons, Incorporated, John, 2021.
Znajdź pełny tekst źródłaHussain, Chaudhery Mustansar, Sudheesh K. Shukla i Bindu Mangla. Functionalized Nanomaterials for Catalytic Application. Wiley & Sons, Incorporated, John, 2021.
Znajdź pełny tekst źródłaHegde, Gurumurthy, i Anitha Varghese. Emerging Nanomaterials for Catalysis and Sensor Applications. Taylor & Francis Group, 2022.
Znajdź pełny tekst źródłaEmerging Nanomaterials for Catalysis and Sensor Applications. Taylor & Francis Group, 2022.
Znajdź pełny tekst źródłaCzęści książek na temat "Nanomaterials - Catalytic Applications"
Denicourt-Nowicki, Audrey, i Alain Roucoux. "Metallic Nanoparticles in Neat Water for Catalytic Applications". W Nanomaterials in Catalysis, 55–95. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527656875.ch2.
Pełny tekst źródłaRossetti, Ilenia, i Lucio Forni. "Oxide Nanomaterials for the Catalytic Combustion of Hydrocarbons". W Synthesis, Properties, and Applications of Oxide Nanomaterials, 563–601. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2006. http://dx.doi.org/10.1002/9780470108970.ch18.
Pełny tekst źródłaSehgal, B., i G. B. Kunde. "Recent Advances in the Catalytic Applications of Magnetic Nanomaterials". W Emerging Applications of Low Dimensional Magnets, 9–31. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003196952-2.
Pełny tekst źródłaRubiyah, M. H., Krishnakumar Melethil, Albin James, Sharon Varghese i Bejoy Thomas. "Cellulose Nanocrystals (CNCs) Supported Inorganic Nanomaterials for Catalytic Applications". W Handbook of Biopolymers, 1–33. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-6603-2_34-1.
Pełny tekst źródłaMelethil, Krishnakumar, Sharon Varghese, Albin James, M. H. Rubiya i Bejoy Thomas. "Bacterial Nanocellulose (BNCs) Supported Inorganic Nanomaterials for Catalytic Applications". W Handbook of Biopolymers, 1–34. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-16-6603-2_35-1.
Pełny tekst źródłaRubiya, M. H., Krishnakumar Melethil, Albin James, Sharon Varghese i Bejoy Thomas. "Cellulose Nanocrystals (CNCs) Supported Inorganic Nanomaterials for Catalytic Applications". W Handbook of Biopolymers, 907–39. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-0710-4_34.
Pełny tekst źródłaMelethil, Krishnakumar, Sharon Varghese, Albin James, M. H. Rubiya i Bejoy Thomas. "Bacterial Nanocellulose (BNCs) Supported Inorganic Nanomaterials for Catalytic Applications". W Handbook of Biopolymers, 941–74. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-0710-4_35.
Pełny tekst źródłaBinish, C. J., i A. V. Vijayasankar. "Correlation of Surface Properties and Catalytic Activity of Metal Aluminophosphates". W Emerging Nanomaterials for Catalysis and Sensor Applications, 49–63. New York: CRC Press, 2023. http://dx.doi.org/10.1201/9781003218708-4.
Pełny tekst źródłaYoo, Je Min. "Catalytic Degradation of Phenols by Recyclable CVD Graphene Films". W Studies on Graphene-Based Nanomaterials for Biomedical Applications, 15–27. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2233-8_2.
Pełny tekst źródłaKeshri, Kumer Saurav, i Biswajit Chowdhury. "Ceria-Based Nano-composites: A Comparative Study on Their Contributions to Important Catalytic Processes". W Synthesis and Applications of Nanomaterials and Nanocomposites, 361–94. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1350-3_13.
Pełny tekst źródłaStreszczenia konferencji na temat "Nanomaterials - Catalytic Applications"
Oleksenko, Ludmila, Igor Matushko, Nelly Maksymovych, George Fedorenko, Larisa Lutsenko i Hanna Arinarkhova. "Morphology, Gas Sensitive and Catalytic Properties of Ce-containing Nanomaterials Based on Tin Dioxide Doped with Sb". W 2019 IEEE 9th International Conference Nanomaterials: Applications & Properties (NAP). IEEE, 2019. http://dx.doi.org/10.1109/nap47236.2019.216988.
Pełny tekst źródłaKansara, Shivam, Sanjeev K. Gupta i Yogesh Sonvane. "Catalytic activity of Cu4-cluster to adsorb H2S gas: h-BN nanosheet". W INTERNATIONAL CONFERENCE ON NANOMATERIALS FOR ENERGY CONVERSION AND STORAGE APPLICATIONS: NECSA 2018. Author(s), 2018. http://dx.doi.org/10.1063/1.5035254.
Pełny tekst źródłaShved, Elena, Yuliia Bespalko, Oksana Gorban, Kseniia Yutilova i Evgeniia Bakhalova. "The Influence of Nanosized Zirconium (IV) Oxide on the Catalytic Curing of Epoxy Resin ED-20 with Isomethyltetrahydrophthalic Anhydride". W 2020 IEEE 10th International Conference Nanomaterials: Applications & Properties (NAP). IEEE, 2020. http://dx.doi.org/10.1109/nap51477.2020.9309566.
Pełny tekst źródłaKytsya, A., L. Bazylyak, O. Pobigun-Halaiska, I. Opeida, P. Simon i I. Zelenina. "Synthesis and Catalytic Properties of Ni©Ag Bimetallic Nanostructures". W 2018 IEEE 8th International Conference Nanomaterials: Application & Properties (NAP). IEEE, 2018. http://dx.doi.org/10.1109/nap.2018.8915129.
Pełny tekst źródłaKhalameida, Svitlana, Volodymyr Sydorchuk, Volodymyr Starchevskyy i Iryna Koval. "Synthesis of nano-dispersed perovskites under sonochemical treatment and their catalytic properties". W 2017 IEEE 7th International Conference "Nanomaterials: Application & Properties" (NAP). IEEE, 2017. http://dx.doi.org/10.1109/nap.2017.8190153.
Pełny tekst źródłaSukhov, V. N., Z. V. Bloshenko i A. L. Samsonik. "Effect of the residual gases catalytic activity on the island tin films crystallization". W 2017 IEEE 7th International Conference "Nanomaterials: Application & Properties" (NAP). IEEE, 2017. http://dx.doi.org/10.1109/nap.2017.8190144.
Pełny tekst źródłaKlivenko, A., A. Yergaziyeva i S. Kudaibergenov. "Gold nanoparticles stabilized by amphoteric cryogel-perspective flow-through catalytic reactor for oxidation and reduction processes". W 2016 International Conference on Nanomaterials: Application & Properties (NAP). IEEE, 2016. http://dx.doi.org/10.1109/nap.2016.7757304.
Pełny tekst źródłaKarakurkchi, A., N. Sakhnenko, M. Ved, I. Parsadanov i S. Menshov. "Nanostructured Oxide-Metal Catalysts for Intra-Cylinder Catalysis". W 2018 IEEE 8th International Conference Nanomaterials: Application & Properties (NAP). IEEE, 2018. http://dx.doi.org/10.1109/nap.2018.8914840.
Pełny tekst źródłaBlyzniuk, B. V., V. E. Diyuk i V. V. Lisnyak. "Catalytic Decomposition of Hydrogen Peroxide over Nanoporous Activated Carbon: Effects of Oxidative and Thermal Treatments". W 2018 IEEE 8th International Conference Nanomaterials: Application & Properties (NAP). IEEE, 2018. http://dx.doi.org/10.1109/nap.2018.8915255.
Pełny tekst źródłaMajumdar, Dibyarup. "Nanoparticles: Synthesis & application in catalysis & effluent treatment". W 2013 International Conference on Advanced Nanomaterials and Emerging Engineering Technologies (ICANMEET). IEEE, 2013. http://dx.doi.org/10.1109/icanmeet.2013.6609251.
Pełny tekst źródłaRaporty organizacyjne na temat "Nanomaterials - Catalytic Applications"
Huh, Seong. Morphological Control of Multifunctional Mesoporous Silica Nanomaterials for Catalysis Applications. Office of Scientific and Technical Information (OSTI), grudzień 2004. http://dx.doi.org/10.2172/837271.
Pełny tekst źródłaChaudhary, Umesh. Synthesis of high surface area nanomaterials and their application in catalysis. Office of Scientific and Technical Information (OSTI), maj 2016. http://dx.doi.org/10.2172/1342582.
Pełny tekst źródłaRadu, Daniela Rodica. Mesoporous Silica Nanomaterials for Applications in Catalysis, Sensing, Drug Delivery and Gene Transfection. Office of Scientific and Technical Information (OSTI), styczeń 2004. http://dx.doi.org/10.2172/837277.
Pełny tekst źródła