Gotowa bibliografia na temat „Nanomaterials - Biomedical Applications”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Nanomaterials - Biomedical Applications”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Nanomaterials - Biomedical Applications"
Wang, Jiali, Guo Zhao, Liya Feng i Shaowen Chen. "Metallic Nanomaterials with Biomedical Applications". Metals 12, nr 12 (12.12.2022): 2133. http://dx.doi.org/10.3390/met12122133.
Pełny tekst źródłaMa, Haohua, Xin Qiao i Lu Han. "Advances of Mussel-Inspired Nanocomposite Hydrogels in Biomedical Applications". Biomimetics 8, nr 1 (22.03.2023): 128. http://dx.doi.org/10.3390/biomimetics8010128.
Pełny tekst źródłaOliveira, Mariana B., Feng Li, Jonghoon Choi i João F. Mano. "Nanomaterials for Biomedical Applications". Biotechnology Journal 16, nr 5 (maj 2021): 2170053. http://dx.doi.org/10.1002/biot.202170053.
Pełny tekst źródłaDas, Sumistha, Shouvik Mitra, S. M. Paul Khurana i Nitai Debnath. "Nanomaterials for biomedical applications". Frontiers in Life Science 7, nr 3-4 (grudzień 2013): 90–98. http://dx.doi.org/10.1080/21553769.2013.869510.
Pełny tekst źródłaCao, Y. Charles. "Nanomaterials for biomedical applications". Nanomedicine 3, nr 4 (sierpień 2008): 467–69. http://dx.doi.org/10.2217/17435889.3.4.467.
Pełny tekst źródłaOliveira, Mariana B., Feng Li, Jonghoon Choi i João F. Mano. "Nanomaterials for Biomedical Applications". Biotechnology Journal 15, nr 12 (grudzień 2020): 2000574. http://dx.doi.org/10.1002/biot.202000574.
Pełny tekst źródłaAflori, Magdalena. "Smart Nanomaterials for Biomedical Applications—A Review". Nanomaterials 11, nr 2 (4.02.2021): 396. http://dx.doi.org/10.3390/nano11020396.
Pełny tekst źródłaS, Lakshmana Prabu. "Toxicity Interactions of Nanomaterials in Biological System: A Pressing Priority". Bioequivalence & Bioavailability International Journal 6, nr 2 (15.07.2022): 1–6. http://dx.doi.org/10.23880/beba-16000173.
Pełny tekst źródłaMatija, Lidija, Roumiana Tsenkova, Jelena Munćan, Mari Miyazaki, Kyoko Banba, Marija Tomić i Branislava Jeftić. "Fullerene Based Nanomaterials for Biomedical Applications: Engineering, Functionalization and Characterization". Advanced Materials Research 633 (styczeń 2013): 224–38. http://dx.doi.org/10.4028/www.scientific.net/amr.633.224.
Pełny tekst źródłaMgbemena, Chinedum, i Chika Mgbemena. "Carbon Nanomaterials for Tailored Biomedical Applications". Asian Review of Mechanical Engineering 10, nr 2 (5.11.2021): 24–33. http://dx.doi.org/10.51983/arme-2021.10.2.3167.
Pełny tekst źródłaRozprawy doktorskie na temat "Nanomaterials - Biomedical Applications"
Tang, Selina Vi Yu. "Synthesis of nanomaterials for biomedical applications". Thesis, University of Nottingham, 2014. http://eprints.nottingham.ac.uk/14101/.
Pełny tekst źródłaLi, Tinghui. "Fullerene Based Nanomaterials for Biomedical Applications". Diss., Virginia Tech, 2018. http://hdl.handle.net/10919/91439.
Pełny tekst źródłaPHD
Wang, Weiqiang. "Prion inspired nanomaterials and their biomedical applications". Doctoral thesis, Universitat Autònoma de Barcelona, 2020. http://hdl.handle.net/10803/670982.
Pełny tekst źródłaLos amiloides muestran una estructura fibrilar altamente ordenada. Muchos de estos ensamblajes aparecen asociados a enfermedades humanas. No obstante, la naturaleza controlable, estable, modulable y robusta de las fibras amiloides se puede emplear para construir nanomateriales notables con una amplia gama de aplicaciones. Los priones funcionales constituyen una clase particular de amiloides. Estas proteínas transmisibles exhiben una arquitectura modular, con un dominio priónico desordenado responsable del ensamblaje y uno o más dominios globulares que dan cuenta de la actividad. Cabe destacar que la proteína globular original se puede reemplazar con cualquier proteína de interés sin comprometer el potencial de fibrilación. Estas fusiones genéticas forman fibrillas en las que el dominio globular permanece plegado, lo que genera nanoestructuras funcionales. Sin embargo, en muchos casos, el impedimento estérico restringe la actividad de estas fibrillas. Esta limitación puede resolverse diseccionando los dominios de priones en secuencias más cortas que mantengan sus propiedades de autoensamblado mientras permiten un mejor acceso a la proteína en el estado fibrilar. En esta tesis doctoral, exploramos el "soft amyloid core" (SAC) del prion de levadura Sup35p como una unidad modular de autoensamblaje, que recapitula la propensión a la agregación del dominio priónico completo. Fusionamos el SAC con diferentes proteínas globulares de interés que difieren en conformación y tamaños, creando un enfoque genético general y directo para generar nanofibrillas dotadas de las funcionalidades deseadas. El modelado computacional nos permitió obtener información sobre la relación entre el tamaño de los dominios globulares y la longitud del conector que los une con el SAC, proporcionando la base para el diseño de nanomateriales con diferentes propiedades mesoscópicas, ya sean nanofibrillas o nanopartículas. Sobre esta base, diseñamos y producimos, por primera vez, nanopartículas amiloides esféricas, altamente activas, no tóxicas, de tamaño definido, y diseñamos nanoestructuras bifuncionales con aplicación en la administración dirigida de fármacos. Las lecciones aprendidas en estos ejercicios permitieron la construcción de una nanofibrilla similar a un anticuerpo biespecífico con potencial para su uso en inmunoterapia. En resumen, los nanomateriales funcionales similares a los priones descritos aquí aprovechan la metodología de fusión genética para generar un nuevo conjunto de estructuras con aplicación en biomedicina y biotecnología.
Amyloids display a highly ordered fibrillar structure. Many of these assemblies appear associated with human disease. However, the controllable, stable, tunable, and robust nature of amyloid fibrils can be exploited to build up remarkable nanomaterials with a wide range of applications. Functional prions constitute a particular class of amyloids. These transmissible proteins exhibit a modular architecture, with a disordered prion domain responsible for the assembly and one or more globular domains that account for the activity. Importantly, the original globular protein can be replaced with any protein of interest, without compromising the fibrillation potential. These genetic fusions form fibrils in which the globular domain remains folded, rendering functional nanostructures. However, in many cases, steric hindrance restricts the activity of these fibrils. This limitation can be solved by dissecting prion domains into shorter sequences that keep their self-assembling properties while allowing better access to the protein in the fibrillar state. In this PhD thesis, we exploited the "soft amyloid core (SAC)" of the Sup35p yeast prion as a modular self-assembling unit, which recapitulates the aggregation propensity of the complete prion domain. We fused the SAC to different globular proteins of interest differing in conformation and sizes, building up a general and straightforward genetic approach to generate nanofibrils endowed with desired functionalities. Computational modeling allowed us to gain insights into the relationship between the size of the globular domains and the length of the linker that connects them to the SAC, providing the basis for the design of nanomaterials with different mesoscopic properties, either nanofibrils or nanoparticles. On this basis, we designed and produced, for the first time, highly active, non-toxic, spherical amyloid nanoparticles of defined size and engineered bifunctional nanostructures with application in targeted drug delivery. The lessons learned in these exercises resulted in the construction of a bispecific antibody-like nanofibril, showing potential in immunotherapy. In summary, the prion-like functional nanomaterials described here take profit of the genetic fusion approach to render a novel set of structures with application in biomedicine and biotechnology.
GAZZI, ARIANNA. "IMMUNOCOMPATIBILITY AND BIOMEDICAL APPLICATIONS OF NEW NANOMATERIALS". Doctoral thesis, Università degli Studi di Trieste, 2022. http://hdl.handle.net/11368/3015205.
Pełny tekst źródłaNanomaterial’s properties can be exploited for diagnostic and medical purposes or combined and fine-tuned to obtain multimodal nanoplatforms available for theranostics. For instance, independently from the specific nanomedicine goal, these nanomaterials will immediately contact the organism immune cells, as body’s first defensive barrier. Therefore, a critical step for future translational applications is represented by the assessment of nanomaterial’s impact on the immune system. In this view, the nanoimmunity-by-design concept is the leitmotiv of the Ph.D. project, it consists in the characterization of graphene and other nanomaterials not only from a chemical-physical point of view but also based on the effects that can occur towards the immune system. To pursue this goal, a new experimental model based on human primary immune cell populations, in particular on red blood cells (RBCs) and peripheral blood mononuclear cells (PBMCs) that can be adopted for the immune assessment of a large number of nanomaterials, was developed. To achieve this purpose, the Ph.D. project focused on the immunological characterization of some of the main promising nanomaterials for biomedical applications: carbon nanodots, ultrasmall silica nanoparticles, graphene-oxide-based hydrogels, titanium-based transition metal carbides, and polystyrene nanoparticles, adopting single- cell level techniques (i.e. flow cytometry and single-cell mass cytometry)
Spear, Rose Louis. "Peptide functionalisation of carbon nanomaterials for biomedical applications". Thesis, University of Cambridge, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.609475.
Pełny tekst źródłaRoth, Kristina L. "Development of Metal-based Nanomaterials for Biomedical Applications". Diss., Virginia Tech, 2017. http://hdl.handle.net/10919/85365.
Pełny tekst źródłaPh. D.
Ge, Haobo. "New functionalised carbon based nanomaterials for biomedical imaging applications". Thesis, University of Bath, 2015. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.681050.
Pełny tekst źródłaZhang, Jianfei. "The Preparation, Functionalization and Biomedical Applications of Carbonaceous Nanomaterials". Diss., Virginia Tech, 2011. http://hdl.handle.net/10919/77361.
Pełny tekst źródłaPh. D.
Crisan, Daniel Nicolae. "Polymeric scaffolds as building blocks for nanomaterials with biomedical applications". Thesis, University of Birmingham, 2018. http://etheses.bham.ac.uk//id/eprint/8395/.
Pełny tekst źródłaBaghdadi, Neazar Eassam. "Design and synthesis of iron oxide nanomaterials for biomedical applications". Thesis, University of Hull, 2016. http://hydra.hull.ac.uk/resources/hull:14799.
Pełny tekst źródłaKsiążki na temat "Nanomaterials - Biomedical Applications"
Santra, Tuhin Subhra, i Loganathan Mohan, red. Nanomaterials and Their Biomedical Applications. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6252-9.
Pełny tekst źródłaKim, Jin-Chul, Madhusudhan Alle i Azamal Husen, red. Smart Nanomaterials in Biomedical Applications. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-84262-8.
Pełny tekst źródłaCiofani, Gianni, i Arianna Menciassi, red. Piezoelectric Nanomaterials for Biomedical Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28044-3.
Pełny tekst źródłaZhang, Mei, Rajesh R. Naik i Liming Dai, red. Carbon Nanomaterials for Biomedical Applications. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-22861-7.
Pełny tekst źródłaArianna, Menciassi, i SpringerLink (Online service), red. Piezoelectric Nanomaterials for Biomedical Applications. Wyd. 2. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
Znajdź pełny tekst źródłaKanchi, Suvardhan, Shakeel Ahmed, Myalowenkosi I. Sabela i Chaudhery Mustansar Hussain, red. Nanomaterials: Biomedical, Environmental, and Engineering Applications. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2018. http://dx.doi.org/10.1002/9781119370383.
Pełny tekst źródłaMozafari, M. Reza, red. Nanomaterials and Nanosystems for Biomedical Applications. Dordrecht: Springer Netherlands, 2007. http://dx.doi.org/10.1007/978-1-4020-6289-6.
Pełny tekst źródłaMohanan, P. V., i Sudha Kappalli, red. Biomedical Applications and Toxicity of Nanomaterials. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-7834-0.
Pełny tekst źródłaChen, Chunying, i Haifang Wang, red. Biomedical Applications and Toxicology of Carbon Nanomaterials. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2016. http://dx.doi.org/10.1002/9783527692866.
Pełny tekst źródłaYoo, Je Min. Studies on Graphene-Based Nanomaterials for Biomedical Applications. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2233-8.
Pełny tekst źródłaCzęści książek na temat "Nanomaterials - Biomedical Applications"
Pasika, Shashank Reddy, Raviteja Bulusu, Balaga Venkata Krishna Rao, Nagavendra Kommineni, Pradeep Kumar Bolla, Shabari Girinath Kala i Chandraiah Godugu. "Nanotechnology for Biomedical Applications". W Nanomaterials, 297–327. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-7963-7_11.
Pełny tekst źródłaYang, Kai, i Zhuang Liu. "Nanographene in Biomedical Applications". W Biomedical Nanomaterials, 251–82. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2016. http://dx.doi.org/10.1002/9783527694396.ch10.
Pełny tekst źródłaMunaweera, Imalka, i M. L. Chamalki Madhusha. "SNM for Biomedical Applications". W Smart Nanomaterials, 29–48. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003366270-3.
Pełny tekst źródłaZhang, Hao, i Youqing Shen. "Microfluidics Applications in Cancer Drug Delivery". W Biomedical Nanomaterials, 117–48. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2016. http://dx.doi.org/10.1002/9783527694396.ch5.
Pełny tekst źródłaNorman, Ashreen, Emmellie Laura Albert, Dharshini Perumal i Che Azurahanim Che Abdullah. "Biomedical Applications of Nanomaterials". W Handbook of Green and Sustainable Nanotechnology, 1–23. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-69023-6_35-1.
Pełny tekst źródłaNorman, Ashreen, Emmellie Laura Albert, Dharshini Perumal i Che Azurahanim Che Abdullah. "Biomedical Applications of Nanomaterials". W Handbook of Green and Sustainable Nanotechnology, 1699–720. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-16101-8_35.
Pełny tekst źródłaFahmy, M. D., H. E. Jazayeri, M. Razavi, M. Razavi, M. Hashemi, M. Hashemi, M. Omidi i in. "Biomedical Applications of Intelligent Nanomaterials". W Intelligent Nanomaterials, 199–245. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119242628.ch8.
Pełny tekst źródłaLülf, Henning, André Devaux, Eko Adi Prasetyanto i Luisa De Cola. "Porous nanomaterials for biomedical applications". W Organic Nanomaterials, 487–507. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118354377.ch22.
Pełny tekst źródłaGolshadi, Masoud, i Michael G. Schrlau. "Carbon Nanostructures in Biomedical Applications". W Nanomaterials Handbook, 239–54. Second edition. | Boca Raton : Taylor & Francis, CRC Press, 2017. | Series: Advanced materials and technologies series: CRC Press, 2017. http://dx.doi.org/10.1201/9781315371795-8.
Pełny tekst źródłaWu, Hong, Qianli Huang i Yanni Tan. "Carbon Nanomaterials for Biomedical Applications". W Carbon Nanomaterials, 255–93. First edition. | Boca Raton, FL : CRC Press/Taylor & Francis Group, [2020]: CRC Press, 2019. http://dx.doi.org/10.1201/9781351123587-7.
Pełny tekst źródłaStreszczenia konferencji na temat "Nanomaterials - Biomedical Applications"
deClaville Christiansen, Jesper, Catalina-Gabriela Potarniche, Zina Vuluga i Aleksey Drozdov. "Nanomaterials in biomedical applications". W Electronic Systems Technology (Wireless VITAE). IEEE, 2011. http://dx.doi.org/10.1109/wirelessvitae.2011.5940843.
Pełny tekst źródłaUrooj, Shabana, Satya P. Singh, Nidhi S. Pal i Aime Lay-Ekuakille. "Carbon-Based Nanomaterials in Biomedical Applications". W 2016 Nanotechnology for Instrumentation and Measurement (NANOfIM). IEEE, 2016. http://dx.doi.org/10.1109/nanofim.2016.8521437.
Pełny tekst źródłaK Rangari, Vijaya. "Nanomaterials design for engineering and biomedical applications". W Proceedings of the International Conference on Nanotechnology for Better Living. Singapore: Research Publishing Services, 2016. http://dx.doi.org/10.3850/978-981-09-7519-7nbl16-rps-303.
Pełny tekst źródłaRomain, Mélanie, Amira Mahmoud, Julien Boudon, Rafik Ben Chaabane, Wilfrid Boireau i Nadine Millot. "Engineered inorganic nanomaterials for biomedical and biosensing applications". W Colloidal Nanoparticles for Biomedical Applications XVIII, redaktorzy Marek Osiński i Antonios G. Kanaras. SPIE, 2023. http://dx.doi.org/10.1117/12.2648338.
Pełny tekst źródłaTréguer-Delapierre, M., F. Rocco, T. Cardinal, S. Mornet, S. Vasseur i E. Duguet. "Tailor-made nanomaterials for biological and medical applications". W Biomedical Optics 2006, redaktorzy Marek Osinski, Kenji Yamamoto i Thomas M. Jovin. SPIE, 2006. http://dx.doi.org/10.1117/12.660517.
Pełny tekst źródłaEkielski, Adam. "LIGNINOCELLULOSIC NANOMATERIAL AS ENVIRONMENTALLY BENIGN ALTERNATE TO TRADITIONAL NANOMATERIALS FOR BIOMEDICAL APPLICATIONS: A PERSPECTIVE". W 17th International Multidisciplinary Scientific GeoConference SGEM2017. Stef92 Technology, 2017. http://dx.doi.org/10.5593/sgem2017/61/s24.026.
Pełny tekst źródłaBatyuk, Liliya, Natalya Kizilova i Oksana Muraveinik. "Biomedical Applications of Nanodiamonds and Nanotoxicity Problems". W 2021 IEEE 11th International Conference Nanomaterials: Applications & Properties (NAP). IEEE, 2021. http://dx.doi.org/10.1109/nap51885.2021.9568571.
Pełny tekst źródłaLodi, Matteo Bruno, i Alessandro Fanti. "Multiphysics Modeling of Magnetic Scaffolds for Biomedical Applications". W 2021 IEEE 11th International Conference Nanomaterials: Applications & Properties (NAP). IEEE, 2021. http://dx.doi.org/10.1109/nap51885.2021.9568562.
Pełny tekst źródłaVecbiskena, Linda, Linda Rozenberga, Laura Vikele, Sergei Vlasov i Marianna Laka. "Bio-based nanomaterials–versatile materials for industrial and biomedical applications". W 14th International Conference on Global Research and Education, Inter-Academia 2015. Japan Society of Applied Physics, 2016. http://dx.doi.org/10.7567/jjapcp.4.011109.
Pełny tekst źródłaLiu, Sai. "Applications of Nanomaterials in Combined Antitumor Therapy". W ICBBS '20: 2020 9th International Conference on Bioinformatics and Biomedical Science. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3431943.3431945.
Pełny tekst źródła