Gotowa bibliografia na temat „Nanoionics”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Nanoionics”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Nanoionics"
Despotuli, A. L., i A. V. Andreeva. "Nanoionics - the Developing Informative System. Part. 2. From the First Works to the Current State of Nanoionics Abroad". Nano- i Mikrosistemnaya Tehnika 22, nr 9 (29.12.2020): 463–84. http://dx.doi.org/10.17587/nmst.22.463-484.
Pełny tekst źródłaSchoonman, J. "Nanoionics". Solid State Ionics 157, nr 1-4 (luty 2003): 319–26. http://dx.doi.org/10.1016/s0167-2738(02)00228-x.
Pełny tekst źródłaDespotuli, A. L., i A. V. Andreeva. "Nanoionics - the Developing Informative System. Part. 1. Stages of Formation and Modern State of Nanoionics in Russia". Nano- i Mikrosistemnaya Tehnika 22, nr 8 (23.10.2020): 403–14. http://dx.doi.org/10.17587/nmst.22.403-414.
Pełny tekst źródłaDespotuli, A. L., i A. V. Andreeva. "Nanoionics - the Developing Informative System. Part 3. Generation of Prognostic Information and the Role of Strategic Innovation Management in the Development of Nanoionics". Nano- i Mikrosistemnaya Tehnika 23, nr 1 (24.02.2021): 6–23. http://dx.doi.org/10.17587/nmst.23.6-23.
Pełny tekst źródłaKern, Klaus, i Joachim Maier. "Nanoionics and Nanoelectronics". Advanced Materials 21, nr 25-26 (24.06.2009): 2569. http://dx.doi.org/10.1002/adma.200901896.
Pełny tekst źródłaDESPOTULI, A., i V. NIKOLAICHIK. "A step towards nanoionics". Solid State Ionics 60, nr 4 (kwiecień 1993): 275–78. http://dx.doi.org/10.1016/0167-2738(93)90005-n.
Pełny tekst źródłaHasegawa, Tsuyoshi, Kazuya Terabe, Toshitsugu Sakamoto i Masakazu Aono. "Nanoionics Switching Devices: “Atomic Switches”". MRS Bulletin 34, nr 12 (grudzień 2009): 929–34. http://dx.doi.org/10.1557/mrs2009.215.
Pełny tekst źródłaYamaguchi, Shu. "Nanoionics—Present and future prospects". Science and Technology of Advanced Materials 8, nr 6 (styczeń 2007): 503. http://dx.doi.org/10.1016/j.stam.2007.10.002.
Pełny tekst źródłaDespotuli, A. L., i A. V. Andreeva. "Nanoionics: New materials and supercapacitors". Nanotechnologies in Russia 5, nr 7-8 (sierpień 2010): 506–20. http://dx.doi.org/10.1134/s1995078010070116.
Pełny tekst źródłaDespotuli, A. L., A. V. Andreeva i B. Rambabu. "Nanoionics of advanced superionic conductors". Ionics 11, nr 3-4 (maj 2005): 306–14. http://dx.doi.org/10.1007/bf02430394.
Pełny tekst źródłaRozprawy doktorskie na temat "Nanoionics"
Aruppukottai, Muruga Bhupathi Saranya. "Integrating nanoionics concepts in micro solid oxide fuel cells". Doctoral thesis, Universitat de Barcelona, 2015. http://hdl.handle.net/10803/362363.
Pełny tekst źródłaLa Nanoiónica se ha convertido en un campo cada vez más prometedor para el futuro desarrollo de dispositivos avanzados de conversión y almacenamiento de energía, tales como baterías, pilas de combustible y supercondensadores. En particular, los materiales nanoestructurados ofrecen propiedades únicas o combinaciones de propiedades en electrodos y electrolitos en una gama de dispositivos de energía. Sin embargo, la mejora de las propiedades de transporte de masa a nivel nano, a menudo se ha encontrado que son difíciles de implementar en nonoestructuras. En esta tesis, se investigó el transporte de iones oxígeno en cátodos tipo perovskita-conductor mixto iónico y electrónico (MIEC) de capa delgada (grosor < 200nm) con una estructura nonoestructurada, con el objetivo de correlacionar el transporte de iones oxígeno con la estructura del film a nivel de grano interior y límite de grano. El trabajo desarrollado en esta tesis se ha dividido en seis partes. El primer capítulo, introduce los conceptos básicos de las pilas de combustible de óxido sólido, la importancia de los cátodos de película delgada y el concepto de nanoiónica. El segundo capítulo explica el principio y el funcionamiento de todas las técnicas experimentales empleadas en esta tesis para la caracterización microestructural y funcional de los cátodos de película delgada. Los siguientes capítulos contienen el trabajo principal de la tesis. Las condiciones de deposición y estudios de optimización microestructural realizados mediante PLD para fabricar cátodos de película delgada se compilan en el capítulo tres. Las propiedades de transporte de iones de oxígeno del La0.8Sr0.2MnO3+δ (LSM) de películas delgadas se estudian en el capítulo cuatro. Además, en el capítulo cinco se presenta una nueva metodología de proyección de materiales, para celdas de combustible de óxido sólido (SOFC). La metodología se basa en una deposición combinatoria de La0.8Sr0.2Mn1-xCoxO3±δ (LSMC) por PLD en una oblea de silicio de 4 pulgadas que permite la generación de un diagrama binario completo de composiciones, incluso para óxidos complejos. El capítulo seis se dedica a los estudios funcionales del sistema binario LSMC La técnica de intercambio de isotopos en perfiles profundos combinada con la espectroscopia iónica de masas (IEDP-SIMS) se empleó en el rango de temperatura de 500°C a 800°C para la evaluación de las propiedades de transporte de masa de oxígeno del LSM y el sistema binario LSMC. Además, las propiedades de transporte de masa de oxígeno del LSM se estudió mediante Espectroscopia de Impedancia Electroquímica (EIS).
Obi, Manasseh Okocha. "Materials consideration for nanoionic nonvolatile memory solutions". [Boise, Idaho] : Boise State University, 2009. http://scholarworks.boisestate.edu/td/50/.
Pełny tekst źródłaRiaz, Adeel. "Conception, optimisation et caractérisation avancée de nouvelles microstructures d'électrodes pour piles à oxydes solides". Electronic Thesis or Diss., Université Grenoble Alpes, 2024. http://www.theses.fr/2024GRALI006.
Pełny tekst źródłaSolid oxide cells (SOCs) are electrochemical energy conversion devices which can work in either fuel cell mode to convert fuel into electrical power or vice versa when working in electrolysis mode. SOCs are ceramic-based devices with a dense solid oxide electrolyte, able to conduct negative oxygen ions, sandwiched between two electrodes. This thesis focuses on the oxygen electrode optimization and advanced characterization using thin films deposited by Pulsed Injection-Metal Organic Chemical Vapor Deposition (PI-MOCVD). La2NiO4+δ (L2NO4) is an oxide with a Ruddlesden-Popper phase layered structure consisting of alternated rock salt and perovskite layers. It is a promising oxygen electrode material for intermediate (500- 700 °C) and low temperature (< 500 °C) operation due to its high oxygen surface exchange and diffusion coefficients, and thermal expansion coefficients close to the commonly used electrolytes. This study is aimed at tailoring and optimizing the nanostructure of L2NO4 thin films for high performance reversible solid oxide cells (rSOCs) and micro-solid oxide cells (μ-SOCs). Kinetic studies have been performed by Electrical Relaxation Conductivity (ECR) and Electrochemical Impedance Spectroscopy (EIS). Advanced characterization tools such as in situ Raman spectroscopy have been utilized to understand the phase transitions of L2NO4 and quantify the kinetic mass transport properties by Isotopic Exchange Raman Spectroscopy (IERS). Other advanced tools such as in situ X-ray diffraction and in situ spectroscopy ellipsometry have been used to study the structural and optical properties of L2NO4 when varying the oxygen content. Finally, full cell measurements and stability tests in SOFC and SOEC modes have been carried out on anode-supported and electrolyte-supported cells
Saha, Dhriti Ranjan. "STUDY OF ELECTRICAL,MAGNETIC, MAGNETODIELECTRIC PROPERTIES OF NANODIMENSIONAL GLASSES AND THEIR NANOCOMPOSITES". Thesis, 2019. http://hdl.handle.net/10821/8323.
Pełny tekst źródłaThe research was carried out under the supervision of Prof. D Chakraborty, MLS and Prof. A K Nandi, PSU under SMS [School of Materials Sciences]
The research was conducted under CSIR fellowship and research grant. Instrumental facilities was extended from Nano Science and Technology Initiative program of the Department of Science and Technology, New Delhi
"Kinetics of Programmable Metallization Cell Memory". Doctoral diss., 2011. http://hdl.handle.net/2286/R.I.8848.
Pełny tekst źródłaDissertation/Thesis
Ph.D. Electrical Engineering 2011
Książki na temat "Nanoionics"
Nanoionikusu: Saishin gijutsu to sono tenbō = Nanoionics : recent advances and prospect. Tōkyō-to Chiyoda-ku: Shīemushī Shuppan, 2013.
Znajdź pełny tekst źródłaHasegawa, T., K. Terabe, T. Sakamoto i M. Aono. Nanoionics and its device applications. Redaktorzy A. V. Narlikar i Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533060.013.8.
Pełny tekst źródłaHabasaki, Junko. Molecular Dynamics of Nanostructures and Nanoionics. Jenny Stanford Publishing, 2020. http://dx.doi.org/10.1201/9781003044901.
Pełny tekst źródłaHabasaki, Junko. Molecular Dynamics of Nanostructures and Nanoionics. Jenny Stanford Publishing, 2020.
Znajdź pełny tekst źródłaHabasaki, Junko. Molecular Dynamics of Nanostructures and Nanoionics. Jenny Stanford Publishing, 2020.
Znajdź pełny tekst źródłaHabasaki, Junko. Molecular Dynamics of Nanostructures and Nanoionics. Jenny Stanford Publishing, 2020.
Znajdź pełny tekst źródłaHabasaki, Junko. Molecular Dynamics of Nanostructures and Nanoionics. Jenny Stanford Publishing, 2020.
Znajdź pełny tekst źródłaMolecular Dynamics of Nanostructures and Nanoionics. Taylor & Francis Group, 2020.
Znajdź pełny tekst źródłaNarlikar, A. V., i Y. Y. Fu, red. Oxford Handbook of Nanoscience and Technology. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533060.001.0001.
Pełny tekst źródłaWaser, Rainer, i Daniele Ielmini. Resistive Switching: From Fundamentals of Nanoionic Redox Processes to Memristive Device Applications. Wiley & Sons, Incorporated, John, 2015.
Znajdź pełny tekst źródłaCzęści książek na temat "Nanoionics"
Habasaki, Junko, Carlos León i K. L. Ngai. "Nanoionics". W Topics in Applied Physics, 277–309. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-42391-3_6.
Pełny tekst źródłaMaier, J. "Nanoionics at High Temperatures". W Encyclopedia of Applied Electrochemistry, 1341–46. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4419-6996-5_477.
Pełny tekst źródłaMaier, Joachim. "Nanoionics: Fundamentals and Applications". W 21st Century Nanoscience – A Handbook, 8–1. Boca Raton, Florida : CRC Press, [2020]: CRC Press, 2020. http://dx.doi.org/10.1201/9780429347313-8.
Pełny tekst źródłaDespotuli, A. L., i A. V. Andreeva. "Structure-Dynamic Approach of Nanoionics". W 21st Century Nanoscience – A Handbook, 9–1. Boca Raton, Florida : CRC Press, [2020]: CRC Press, 2020. http://dx.doi.org/10.1201/9780429347313-9.
Pełny tekst źródłaOuyang, Jianyong. "Nanoionic RRAMs". W SpringerBriefs in Materials, 63–76. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31572-0_5.
Pełny tekst źródłaZhirnov, Victor, i Gurtej Sandhu. "Scaling Limits of Nanoionic Devices". W Resistive Switching, 547–72. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2016. http://dx.doi.org/10.1002/9783527680870.ch19.
Pełny tekst źródłaValov, Ilia, i Rainer Waser. "Physics and Chemistry of Nanoionic Cells". W Resistive Switching, 253–88. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2016. http://dx.doi.org/10.1002/9783527680870.ch9.
Pełny tekst źródłaWaser, Rainer, Daniele Ielmini, Hiro Akinaga, Hisashi Shima, H. S. Philip Wong, Joshua J. Yang i Simon Yu. "Introduction to Nanoionic Elements for Information Technology". W Resistive Switching, 1–30. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2016. http://dx.doi.org/10.1002/9783527680870.ch1.
Pełny tekst źródłaTsuchiya, Takashi, Kazuya Terabe i Masakazu Aono. "Nanoionic Devices for Physical Property Tuning and Enhancement". W Atomic Switch, 161–74. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-34875-5_9.
Pełny tekst źródłaHasečić, Amra, Armin Hadžić, Siniša Bikić i Ejub Džaferović. "Numerical Modeling of Forced Convection of Nanoionic Liquid [C4mpyrr] [NTf2] with Al2O3 Particles". W Lecture Notes in Networks and Systems, 591–99. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-90055-7_46.
Pełny tekst źródłaStreszczenia konferencji na temat "Nanoionics"
DESPOTULI, Alexandr, i Alexandra ANDREEVA. "FUNDAMENTAL AND APPLIED NANOIONICS IN IMT RAS". W NANOCON 2019. TANGER Ltd., 2020. http://dx.doi.org/10.37904/nanocon.2019.8498.
Pełny tekst źródłaNessel, James A., Richard Q. Lee, Carl H. Mueller, Michael N. Kozicki, Minghan Ren i Jacki Morse. "A novel nanoionics-based switch for microwave applications". W 2008 IEEE MTT-S International Microwave Symposium Digest - MTT 2008. IEEE, 2008. http://dx.doi.org/10.1109/mwsym.2008.4633016.
Pełny tekst źródłaShaporin, Alexey, Chris Stöckel, Marcel Melzer, Falk Schaller, Roman Forke, Sven Zimmermann i Harald Kuhn. "Optimal design of piezoelectric MEMS for vibration monitoring system with nanoionics zero-energy memory elements". W 2023 24th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE). IEEE, 2023. http://dx.doi.org/10.1109/eurosime56861.2023.10100827.
Pełny tekst źródłaSahoo, Satyajeet, i S. R. S. Prabaharan. "Nanoionic memristor equipped arithmetic logic unit using VTEAM model". W 2016 Online International Conference on Green Engineering and Technologies (IC-GET). IEEE, 2016. http://dx.doi.org/10.1109/get.2016.7916669.
Pełny tekst źródłaKoh, Sang-Gyu, Taiki Koide, Takumi Morita i kentaro Kinoshita. "Ionic Liquids-loaded Metal-Organic Frameworks System towards the Application for Nanoionic Devices". W 2020 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2020. http://dx.doi.org/10.7567/ssdm.2020.k-10-09.
Pełny tekst źródłaWang, Yen-Han, Hung Ji Huang i Jeffrey C. S. Wu. "Chemically induced dynamic polarization by magnetic field on nanoionic photocatalysis via 2-propanol oxidation". W Oxide-based Materials and Devices XV, redaktorzy Ferechteh H. Teherani i David J. Rogers. SPIE, 2024. http://dx.doi.org/10.1117/12.3000614.
Pełny tekst źródłaFida, Aabid Amin, Farooq Ahmad Khanday, Furqan Zahoor i Tun Zainal Azni Bin Zulkifli. "Nanoionic Redox based Resistive Switching Devices as Synapse for Bio-inspired Computing Architectures: A Survey". W 2020 4th International Conference on Trends in Electronics and Informatics (ICOEI). IEEE, 2020. http://dx.doi.org/10.1109/icoei48184.2020.9142927.
Pełny tekst źródła