Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Nanoglasses.

Artykuły w czasopismach na temat „Nanoglasses”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Nanoglasses”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Chen, Na, Di Wang, Tao Feng, Robert Kruk, Ke-Fu Yao, Dmitri V. Louzguine-Luzgin, Horst Hahn i Herbert Gleiter. "A nanoglass alloying immiscible Fe and Cu at the nanoscale". Nanoscale 7, nr 15 (2015): 6607–11. http://dx.doi.org/10.1039/c5nr01406a.

Pełny tekst źródła
Streszczenie:
Synthesized from ultrafine particles with a bottom-up approach, nanoglasses are of particular importance in pursuing unique properties. From different kinds of nanoglasses with immiscible metals, nanoglass alloys are created, which may open an avenue to an entirely new world of solid solutions. These new solid solutions are likely to have properties that are yet unknown in today's alloys.
Style APA, Harvard, Vancouver, ISO itp.
2

Gleiter, Herbert. "Nanoglasses: a new kind of noncrystalline materials". Beilstein Journal of Nanotechnology 4 (13.09.2013): 517–33. http://dx.doi.org/10.3762/bjnano.4.61.

Pełny tekst źródła
Streszczenie:
Nanoglasses are a new class of noncrystalline solids. They differ from today’s glasses due to their microstructure that resembles the microstructure of polycrystals. They consist of regions with a melt-quenched glassy structure connected by interfacial regions, the structure of which is characterized (in comparison to the corresponding melt-quenched glass) by (1) a reduced (up to about 10%) density, (2) a reduced (up to about 20%) number of nearest-neighbor atoms and (3) a different electronic structure. Due to their new kind of atomic and electronic structure, the properties of nanoglasses may be modified by (1) controlling the size of the glassy regions (i.e., the volume fraction of the interfacial regions) and/or (2) by varying their chemical composition. Nanoglasses exhibit new properties, e.g., a Fe90Sc10 nanoglass is (at 300 K) a strong ferromagnet whereas the corresponding melt-quenched glass is paramagnetic. Moreover, nanoglasses were noted to be more ductile, more biocompatible, and catalytically more active than the corresponding melt-quenched glasses. Hence, this new class of noncrystalline materials may open the way to technologies utilizing the new properties.
Style APA, Harvard, Vancouver, ISO itp.
3

Gleiter, Herbert. "Nanoglasses: A Way to Solid Materials with Tunable Atomic Structures and Properties". Materials Science Forum 584-586 (czerwiec 2008): 41–48. http://dx.doi.org/10.4028/www.scientific.net/msf.584-586.41.

Pełny tekst źródła
Streszczenie:
Recently, a new class of materials - called nanoglasses - with a glassy structure was synthesized. The novel feature of these materials is that the atomic structure in the entire volume of the material as well as the density of the material can be tuned. Nanoglasses are generated by introducing interfaces into metallic glasses on a nanometer scale. Interfaces in these nanoglasses delocalize upon annealing, so that the free volume associated with these interfaces spreads throughout the volume of the glass. This delocalization changes the atomic structure and the density of the glass throughout the volume. In fact, by controlling the spacing between the interfaces introduced into the glass as well as the degree of the delocalization (by modifying the annealing time and/or annealing temperature), the atomic structures as well as the density (and hence all structure/density dependent properties) of nanoglasses may be controlled. A comparable tuning of the atomic structure/density of crystalline materials is not conceivable, because defects in crystals do not delocalize upon annealing.
Style APA, Harvard, Vancouver, ISO itp.
4

Nandam, Sree Harsha, Ruth Schwaiger, Aaron Kobler, Christian Kübel, Chaomin Wang, Yulia Ivanisenko i Horst Hahn. "Controlling shear band instability by nanoscale heterogeneities in metallic nanoglasses". Journal of Materials Research 36, nr 14 (8.07.2021): 2903–14. http://dx.doi.org/10.1557/s43578-021-00285-4.

Pełny tekst źródła
Streszczenie:
Abstract Strain localization during plastic deformation drastically reduces the shear band stability in metallic glasses, ultimately leading to catastrophic failure. Therefore, improving the plasticity of metallic glasses has been a long-standing goal for several decades. In this regard, nanoglass, a novel type of metallic glass, has been proposed to exhibit differences in short and medium range order at the interfacial regions, which could promote the formation of shear transformation zones. In the present work, by introducing heterogeneities at the nanoscale, both crystalline and amorphous, significant improvements in plasticity are realized in micro-compression tests. Both amorphous and crystalline dispersions resulted in smaller strain bursts during plastic deformation. The yield strength is found to increase significantly in Cu–Zr nanoglasses compared to the corresponding conventional metallic glasses. The reasons for the mechanical behavior and the importance of nanoscale dispersions to tailor the properties is discussed in detail. Graphic Abstract
Style APA, Harvard, Vancouver, ISO itp.
5

Ivanisenko, Yulia, Christian Kübel, Sree Harsha Nandam, Chaomin Wang, Xiaoke Mu, Omar Adjaoud, Karsten Albe i Horst Hahn. "Structure and Properties of Nanoglasses". Advanced Engineering Materials 20, nr 12 (26.10.2018): 1800404. http://dx.doi.org/10.1002/adem.201800404.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Feng, Tao. "Electrodeposited Nanoglasses: Preparation, Structure, and Properties". Video Proceedings of Advanced Materials 2, nr 2 (1.02.2021): 2021–0182. http://dx.doi.org/10.5185/vpoam.2021.0182.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Şopu, D., K. Albe, Y. Ritter i H. Gleiter. "From nanoglasses to bulk massive glasses". Applied Physics Letters 94, nr 19 (11.05.2009): 191911. http://dx.doi.org/10.1063/1.3130209.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Kalcher, Constanze, Omar Adjaoud, Jochen Rohrer, Alexander Stukowski i Karsten Albe. "Reinforcement of nanoglasses by interface strengthening". Scripta Materialia 141 (grudzień 2017): 115–19. http://dx.doi.org/10.1016/j.scriptamat.2017.08.004.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Çetin, Ayşegül Ö., i Murat Durandurdu. "Hard boron rich boron nitride nanoglasses". Journal of the American Ceramic Society 101, nr 5 (21.12.2017): 1929–39. http://dx.doi.org/10.1111/jace.15383.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Franke, Oliver, Daniel Leisen, Herbert Gleiter i Horst Hahn. "Thermal and plastic behavior of nanoglasses". Journal of Materials Research 29, nr 10 (28.05.2014): 1210–16. http://dx.doi.org/10.1557/jmr.2014.101.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Şopu, Daniel, i Karsten Albe. "Influence of grain size and composition, topology and excess free volume on the deformation behavior of Cu–Zr nanoglasses". Beilstein Journal of Nanotechnology 6 (24.02.2015): 537–45. http://dx.doi.org/10.3762/bjnano.6.56.

Pełny tekst źródła
Streszczenie:
The influence of grain size and composition on the mechanical properties of Cu–Zr nanoglasses (NGs) is investigated by molecular dynamics simulations using two model glasses of different alloy composition, namely Cu64Zr36 (Cu-rich) and Cu36Zr64 (Zr-rich). When the grain size is increased, or the fraction of interfaces in these NGs is decreased, we find a transition from a homogeneous to an inhomogeneous plastic deformation, because the softer interfaces are promoting the formation shear transformation zones. In case of the Cu-rich system, shear localization at the interfaces is most pronounced, since both the topological order and free volume content of the interfaces are very different from the bulk phase. After thermal treatment the redistribution of free volume leads to a more homogenous deformation behavior. The deformation behavior of the softer Zr-rich nanoglass, in contrast, is only weakly affected by the presence of glass–glass interfaces, since the interfaces don’t show topological disorder. Our results provide clear evidence that the mechanical properties of metallic NGs can be systematically tuned by controlling the size and the chemical composition of the glassy nanograins.
Style APA, Harvard, Vancouver, ISO itp.
12

Chatterjee, Soumi, Ramaprasad Maiti, Shyamal Kumar Saha i Dipankar Chakravorty. "Enhancement of electrical conductivity in CoO-SiO2 nanoglasses and large magnetodielectric effect in ZnO-nanoglass composites". Journal of Applied Physics 117, nr 17 (7.05.2015): 174303. http://dx.doi.org/10.1063/1.4919418.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Wang, Chaomin, Tao Feng, Di Wang, Xiaoke Mu, Mohammad Ghafari, Ralf Witte, Aaron Kobler i in. "Low temperature structural stability of Fe90Sc10 nanoglasses". Materials Research Letters 6, nr 3 (6.02.2018): 178–83. http://dx.doi.org/10.1080/21663831.2018.1430622.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Pechenik, A., G. J. Piermarini i S. C. Danforth. "Low temperature densification of silicon nitride nanoglasses". Nanostructured Materials 3, nr 1-6 (styczeń 1993): 518. http://dx.doi.org/10.1016/0965-9773(93)90147-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Pechenik, A., G. J. Piermarini i S. C. Danforth. "Low temperature densification of silicon nitride nanoglasses". Nanostructured Materials 2, nr 5 (wrzesień 1993): 479–86. http://dx.doi.org/10.1016/0965-9773(93)90165-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Andrievskii, R. A. "Nanoglasses and amorphous nanocrystalline materials: Some new approaches". Bulletin of the Russian Academy of Sciences: Physics 76, nr 1 (styczeń 2012): 37–43. http://dx.doi.org/10.3103/s1062873812010030.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Cheng, Bin, i Jason R. Trelewicz. "Interfacial plasticity governs strain delocalization in metallic nanoglasses". Journal of Materials Research 34, nr 13 (11.04.2019): 2325–36. http://dx.doi.org/10.1557/jmr.2019.101.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Fang, J. X., U. Vainio, W. Puff, R. Würschum, X. L. Wang, D. Wang, M. Ghafari i in. "Atomic Structure and Structural Stability of Sc75Fe25 Nanoglasses". Nano Letters 12, nr 1 (5.12.2011): 458–63. http://dx.doi.org/10.1021/nl2038216.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Dong, Yue, Jian-Zhong Jiang i Hans-Jörg Fecht. "Synthesis and mechanical properties of bulk metallic nanoglasses: A brief review". SDRP Journal of Nanotechnology & Material Science 2, nr 1 (2019): 106–20. http://dx.doi.org/10.25177/jnms.2.1.ra.560.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Yang, Qun, Chao-Qun Pei, Hai-Bin Yu i Tao Feng. "Metallic Nanoglasses with Promoted β-Relaxation and Tensile Plasticity". Nano Letters 21, nr 14 (9.07.2021): 6051–56. http://dx.doi.org/10.1021/acs.nanolett.1c01283.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Guan, Yunlong, Weidong Song, Yunjiang Wang, Shanshan Liu i Yongji Yu. "Dynamic responses in shocked Cu-Zr nanoglasses with gradient microstructure". International Journal of Plasticity 149 (luty 2022): 103154. http://dx.doi.org/10.1016/j.ijplas.2021.103154.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Sha, Zhen-Dong, Paulo Sergio Branicio, Heow Pueh Lee i Tong Earn Tay. "Strong and ductile nanolaminate composites combining metallic glasses and nanoglasses". International Journal of Plasticity 90 (marzec 2017): 231–41. http://dx.doi.org/10.1016/j.ijplas.2017.01.010.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Fang, J. X., U. Vainio, W. Puff, R. Würschum, X. L. Wang, D. Wang, M. Ghafari i in. "Correction to Atomic Structure and Structural Stability of Sc75Fe25 Nanoglasses". Nano Letters 12, nr 9 (14.08.2012): 5058. http://dx.doi.org/10.1021/nl302934z.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Nandam, Sree Harsha, Yulia Ivanisenko, Ruth Schwaiger, Zbigniew Śniadecki, Xiaoke Mu, Di Wang, Reda Chellali i in. "Cu-Zr nanoglasses: Atomic structure, thermal stability and indentation properties". Acta Materialia 136 (wrzesień 2017): 181–89. http://dx.doi.org/10.1016/j.actamat.2017.07.001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Adjaoud, Omar, i Karsten Albe. "Microstructure formation of metallic nanoglasses: Insights from molecular dynamics simulations". Acta Materialia 145 (luty 2018): 322–30. http://dx.doi.org/10.1016/j.actamat.2017.12.014.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Feng, S. D., L. Li, Y. D. Liu, L. M. Wang i R. P. Liu. "Heterogeneous microstructure of Zr46Cu46Al8 nanoglasses studied by quantifying glass-glass interfaces". Journal of Non-Crystalline Solids 546 (październik 2020): 120265. http://dx.doi.org/10.1016/j.jnoncrysol.2020.120265.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Wang, Chaomin, Xiaoai Guo, Yulia Ivanisenko, Sunkulp Goel, Hermann Nirschl, Herbert Gleiter i Horst Hahn. "Atomic structure of Fe 90 Sc 10 glassy nanoparticles and nanoglasses". Scripta Materialia 139 (październik 2017): 9–12. http://dx.doi.org/10.1016/j.scriptamat.2017.06.007.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Jian, W. R., L. Wang, X. H. Yao i S. N. Luo. "Balancing strength, hardness and ductility of Cu64Zr36 nanoglasses via embedded nanocrystals". Nanotechnology 29, nr 2 (6.12.2017): 025701. http://dx.doi.org/10.1088/1361-6528/aa994f.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Adjaoud, Omar, i Karsten Albe. "Influence of microstructural features on the plastic deformation behavior of metallic nanoglasses". Acta Materialia 168 (kwiecień 2019): 393–400. http://dx.doi.org/10.1016/j.actamat.2019.02.033.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Hirmukhe, S. S., K. Eswar Prasad i I. Singh. "Investigation of pressure sensitive plastic flow in nanoglasses from finite element simulations". Scripta Materialia 180 (kwiecień 2020): 45–50. http://dx.doi.org/10.1016/j.scriptamat.2020.01.022.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Yuan, Suyue, i Paulo S. Branicio. "Gradient microstructure induced shear band constraint, delocalization, and delayed failure in CuZr nanoglasses". International Journal of Plasticity 134 (listopad 2020): 102845. http://dx.doi.org/10.1016/j.ijplas.2020.102845.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Ghafari, M., S. Kohara, H. Hahn, H. Gleiter, T. Feng, R. Witte i S. Kamali. "Structural investigations of interfaces in Fe90Sc10 nanoglasses using high-energy x-ray diffraction". Applied Physics Letters 100, nr 13 (26.03.2012): 133111. http://dx.doi.org/10.1063/1.3699228.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Liu, Wei-Hong, B. A. Sun, Herbert Gleiter, Si Lan, Yang Tong, Xun-Li Wang, Horst Hahn, Yong Yang, Ji-Jung Kai i C. T. Liu. "Nanoscale Structural Evolution and Anomalous Mechanical Response of Nanoglasses by Cryogenic Thermal Cycling". Nano Letters 18, nr 7 (5.06.2018): 4188–94. http://dx.doi.org/10.1021/acs.nanolett.8b01007.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Chatterjee, Soumi, Saurav Giri i Dipankar Chakravorty. "Large ionic conductivity and relaxation studies of lithium silicate nanoglasses grown into TiO2 nanoparticles". Journal of Non-Crystalline Solids 544 (wrzesień 2020): 120175. http://dx.doi.org/10.1016/j.jnoncrysol.2020.120175.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Adibi, Sara, Paulo S. Branicio, Yong-Wei Zhang i Shailendra P. Joshi. "Composition and grain size effects on the structural and mechanical properties of CuZr nanoglasses". Journal of Applied Physics 116, nr 4 (28.07.2014): 043522. http://dx.doi.org/10.1063/1.4891450.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Adjaoud, Omar, i Karsten Albe. "Interfaces and interphases in nanoglasses: Surface segregation effects and their implications on structural properties". Acta Materialia 113 (lipiec 2016): 284–92. http://dx.doi.org/10.1016/j.actamat.2016.05.002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Ma, J. L., H. Y. Song, J. Y. Wang, J. L. Dai i Y. L. Li. "Influence of composition on the mechanical properties of metallic nanoglasses: Insights from molecular dynamics simulation". Journal of Applied Physics 128, nr 16 (28.10.2020): 165102. http://dx.doi.org/10.1063/5.0020999.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Ritter, Yvonne, Daniel Şopu, Herbert Gleiter i Karsten Albe. "Structure, stability and mechanical properties of internal interfaces in Cu64Zr36 nanoglasses studied by MD simulations". Acta Materialia 59, nr 17 (październik 2011): 6588–93. http://dx.doi.org/10.1016/j.actamat.2011.07.013.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Arnold, W., R. Birringer, C. Braun, H. Gleiter, H. Hahn, S. H. Nandam i S. P. Singh. "Elastic Moduli of Nanoglasses and Melt-Spun Metallic Glasses by Ultrasonic Time-of-Flight Measurements". Transactions of the Indian Institute of Metals 73, nr 5 (maj 2020): 1363–71. http://dx.doi.org/10.1007/s12666-020-01969-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Aronin, Alexandr, i Galina Abrosimova. "Specific Features of Structure Transformation and Properties of Amorphous-Nanocrystalline Alloys". Metals 10, nr 3 (9.03.2020): 358. http://dx.doi.org/10.3390/met10030358.

Pełny tekst źródła
Streszczenie:
This work is devoted to a brief overview of the structure and properties of amorphous-nanocrystalline metallic alloys. It presents the current state of studies of the structure evolution of amorphous alloys and the formation of nanoglasses and nanocrystals in metallic glasses. Structural changes occurring during heating and deformation are considered. The transformation of a homogeneous amorphous phase into a heterogeneous phase, the dependence of the scale of inhomogeneities on the component composition, and the conditions of external influences are considered. The crystallization processes of the amorphous phase, such as the homogeneous and heterogeneous nucleation of crystals, are considered. Particular attention is paid to a volume mismatch compensation on the crystallization processes. The effect of changes in the amorphous structure on the forming crystalline structure is shown. The mechanical properties in the structure in and around shear bands are discussed. The possibility of controlling the structure of fully or partially crystallized samples is analyzed for creating new materials with the required physical properties.
Style APA, Harvard, Vancouver, ISO itp.
41

Shi, Bo, Yuanli Xu i Peipeng Jin. "A way by inhomogeneous plastic deformation of metallic glasses to synthesize metallic nanoglasses: A brief review". Materialia 7 (wrzesień 2019): 100390. http://dx.doi.org/10.1016/j.mtla.2019.100390.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Wang, Chaomin, Xiaoai Guo, Yulia Ivanisenko, Sunkulp Goel, Hermann Nirschl, Herbert Gleiter i Horst Hahn. "Corrigendum to “Atomic structure of Fe90Sc10 glassy nanoparticles and nanoglasses” [Scr. Mater. 139 (2007) 9–12]". Scripta Materialia 146 (marzec 2018): 349. http://dx.doi.org/10.1016/j.scriptamat.2017.11.024.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Gleiter, Herbert. "Nanoglasses: A New Kind of Noncrystalline Material and the Way to an Age of New Technologies?" Small 12, nr 16 (12.01.2016): 2225–33. http://dx.doi.org/10.1002/smll.201500899.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Albe, Karsten, Yvonne Ritter i Daniel Şopu. "Enhancing the plasticity of metallic glasses: Shear band formation, nanocomposites and nanoglasses investigated by molecular dynamics simulations". Mechanics of Materials 67 (grudzień 2013): 94–103. http://dx.doi.org/10.1016/j.mechmat.2013.06.004.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Nandam, Sree Harsha, Omar Adjaoud, Ruth Schwaiger, Yulia Ivanisenko, Mohammed Reda Chellali, Di Wang, Karsten Albe i Horst Hahn. "Influence of topological structure and chemical segregation on the thermal and mechanical properties of Pd–Si nanoglasses". Acta Materialia 193 (lipiec 2020): 252–60. http://dx.doi.org/10.1016/j.actamat.2020.03.021.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Yuan, Suyue, i Paulo S. Branicio. "Atomistic simulations of nanoindentation on nanoglasses: Effects of grain size and gradient microstructure on the mechanical properties". Intermetallics 153 (luty 2023): 107782. http://dx.doi.org/10.1016/j.intermet.2022.107782.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Gunderov, Dmitry, i Vasily Astanin. "Influence of HPT Deformation on the Structure and Properties of Amorphous Alloys". Metals 10, nr 3 (23.03.2020): 415. http://dx.doi.org/10.3390/met10030415.

Pełny tekst źródła
Streszczenie:
Recent studies showed that structural changes in amorphous alloys under high pressure torsion (HPT) are determined by their chemical composition and processing regimes. For example, HPT treatment of some amorphous alloys leads to their nanocrystallization; in other alloys, nanocrystallization was not observed, but structural transformations of the amorphous phase were revealed. HPT processing resulted in its modification by introducing interfaces due to the formation of shear bands. In this case, the alloys after HPT processing remained amorphous, but a cluster-type structure was formed. The origin of the observed changes in the structure and properties of amorphous alloys is associated with the chemical separation and evolution of free volume in the amorphous phase due to the formation of a high density of interfaces as a result of HPT processing. Amorphous metal alloys with a nanocluster structure and nanoscale inhomogeneities, representatives of which are nanoglasses, significantly differ in their physical and mechanical properties from conventional amorphous materials. The results presented in this review show that the severe plastic deformation (SPD) processing can be one of the efficient ways for producing a nanocluster structure and improving the properties of amorphous alloys.
Style APA, Harvard, Vancouver, ISO itp.
48

Wang, Chaomin, Xiaoke Mu, Mohammed Reda Chellali, Askar Kilmametov, Yulia Ivanisenko, Herbert Gleiter i Horst Hahn. "Tuning the Curie temperature of Fe90Sc10 nanoglasses by varying the volume fraction and the composition of the interfaces". Scripta Materialia 159 (styczeń 2019): 109–12. http://dx.doi.org/10.1016/j.scriptamat.2018.09.025.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Marti-Muñoz, Joan, Elena Xuriguera, John W. Layton, Josep A. Planell, Stephen E. Rankin, Elisabeth Engel i Oscar Castaño. "Feasible and pure P2O5-CaO nanoglasses: An in-depth NMR study of synthesis for the modulation of the bioactive ion release". Acta Biomaterialia 94 (sierpień 2019): 574–84. http://dx.doi.org/10.1016/j.actbio.2019.05.065.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Mythili, N., i K. T. Arulmozhi. "Effect of glass composition and finite size on the properties of PbO-SiO 2 glasses: A comparative study of bulk and nanoglasses". Optik 156 (marzec 2018): 231–38. http://dx.doi.org/10.1016/j.ijleo.2017.10.129.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii