Artykuły w czasopismach na temat „Nanoflowers”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Nanoflowers”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Gqoba, Siziwe S., Rafael Rodrigues, Sharon Lerato Mphahlele, Zakhele Ndala, Mildred Airo, Paul Olawale Fadojutimi, Ivo A. Hümmelgen, Ella C. Linganiso, Makwena J. Moloto i Nosipho Moloto. "Hierarchical Nanoflowers of Colloidal WS2 and Their Potential Gas Sensing Properties for Room Temperature Detection of Ammonia". Processes 9, nr 9 (25.08.2021): 1491. http://dx.doi.org/10.3390/pr9091491.
Pełny tekst źródłaXue, Zeyang, Feiyang Li, Chunhu Yu, Jianfeng Huang, Feihu Tao, Zhengyu Cai, Hui Zhang i Lizhai Pei. "Low temperature synthesis of SnSr(OH)6 nanoflowers and photocatalytic performance for organic pollutants". International Journal of Materials Research 113, nr 1 (1.01.2022): 80–90. http://dx.doi.org/10.1515/ijmr-2021-8333.
Pełny tekst źródłaKhan, Muhammad Arif, Nafarizal Nayan, Shadiullah, Mohd Khairul Ahmad, Soon Chin Fhong, Muhammad Tahir, Riyaz Ahmad Mohamed Ali i Mohamed Sultan Mohamed Ali. "Advanced Nanoscale Surface Characterization of CuO Nanoflowers for Significant Enhancement of Catalytic Properties". Molecules 26, nr 9 (4.05.2021): 2700. http://dx.doi.org/10.3390/molecules26092700.
Pełny tekst źródłaUpadhyay, Archana, Huan Yang, Bilal Zaman, Lei Zhang, Yundi Wu, Jinhua Wang, Jianguo Zhao, Chenghong Liao i Qian Han. "ZnO Nanoflower-Based NanoPCR as an Efficient Diagnostic Tool for Quick Diagnosis of Canine Vector-Borne Pathogens". Pathogens 9, nr 2 (14.02.2020): 122. http://dx.doi.org/10.3390/pathogens9020122.
Pełny tekst źródłaLee, Su Jung, Hongje Jang i Do Nam Lee. "Inorganic Nanoflowers—Synthetic Strategies and Physicochemical Properties for Biomedical Applications: A Review". Pharmaceutics 14, nr 9 (6.09.2022): 1887. http://dx.doi.org/10.3390/pharmaceutics14091887.
Pełny tekst źródłaJaramillo, Oscar A., Reshmi Raman i Marina E. Rincón. "Effect of the Nucleation Layer on TiO2 Nanoflowers Growth via Solvothermal Synthesis". MRS Proceedings 1479 (2012): 95–100. http://dx.doi.org/10.1557/opl.2012.1604.
Pełny tekst źródłaZheng, Lu, Yining Sun, Jing Wang, He Huang, Xin Geng, Yi Tong i Zhi Wang. "Preparation of a Flower-Like Immobilized D-Psicose 3-Epimerase with Enhanced Catalytic Performance". Catalysts 8, nr 10 (18.10.2018): 468. http://dx.doi.org/10.3390/catal8100468.
Pełny tekst źródłaXiang, Chao, Tingting Chen, Yan Zhao, Jianhai Sun, Kaisheng Jiang, Yongzhen Li, Xiaofeng Zhu, Xinxiao Zhang, Ning Zhang i Ruihua Guo. "Facile Hydrothermal Synthesis of SnO2 Nanoflowers for Low-Concentration Formaldehyde Detection". Nanomaterials 12, nr 13 (21.06.2022): 2133. http://dx.doi.org/10.3390/nano12132133.
Pełny tekst źródłaAmna, Touseef. "Shape-controlled synthesis of three-dimensional zinc oxide nanoflowers for disinfection of food pathogens". Zeitschrift für Naturforschung C 73, nr 7-8 (26.07.2018): 297–301. http://dx.doi.org/10.1515/znc-2017-0195.
Pełny tekst źródłaJing Han, Siow, Mariam Ameen, Mohamad Fahrul Radzi Hanifah, Aqsha Aqsha, Muhammad Roil Bilad, Juhana Jaafar i Soorathep Kheawhom. "Catalytic Evaluation of Nanoflower Structured Manganese Oxide Electrocatalyst for Oxygen Reduction in Alkaline Media". Catalysts 10, nr 8 (23.07.2020): 822. http://dx.doi.org/10.3390/catal10080822.
Pełny tekst źródłaLuo, Jianyi, Yudong Li, Xiwei Mo, Youxin Xu i Qingguang Zeng. "Metal-seed planting fabrication of W–W18O49 core shell nanoflowers for gas sensors". RSC Advances 7, nr 47 (2017): 29844–53. http://dx.doi.org/10.1039/c7ra03006a.
Pełny tekst źródłaUras, Ibrahim Seyda, Baris Karsli, Belma Konuklugil, Ismail Ocsoy i Ayse Demirbas. "Organic–Inorganic Nanocomposites of Aspergillus terreus Extract and Its Compounds with Antimicrobial Properties". Sustainability 15, nr 5 (5.03.2023): 4638. http://dx.doi.org/10.3390/su15054638.
Pełny tekst źródłaLian, Qi, Han Liu, Xuefang Zheng, Dandan Jia, Chun Liu i Dongjun Wang. "Synthesis of polyacrylonitrile nanoflowers and their controlled pH-sensitive drug release behavior". RSC Advances 10, nr 27 (2020): 15715–25. http://dx.doi.org/10.1039/d0ra01427c.
Pełny tekst źródłaJamnongkan, Tongsai, Ornthiwa Jaroensuk, Anchan Khankhuean, Apirat Laobuthee, Natee Srisawat, Autchara Pangon, Rattanaphol Mongkholrattanasit, Pongthipun Phuengphai, Amnuay Wattanakornsiri i Chih-Feng Huang. "A Comprehensive Evaluation of Mechanical, Thermal, and Antibacterial Properties of PLA/ZnO Nanoflower Biocomposite Filaments for 3D Printing Application". Polymers 14, nr 3 (2.02.2022): 600. http://dx.doi.org/10.3390/polym14030600.
Pełny tekst źródłaWang, Jing, i Mingzhe Gan. "DNA Nanoflowers’ Amelioration of Lupus Symptoms in Mice via Blockade of TLR7/9’s Signal". International Journal of Molecular Sciences 23, nr 24 (16.12.2022): 16030. http://dx.doi.org/10.3390/ijms232416030.
Pełny tekst źródłaLe, Xuan Ai, Thao Nguyen Le i Moon Il Kim. "Dual-Functional Peroxidase-Copper Phosphate Hybrid Nanoflowers for Sensitive Detection of Biological Thiols". International Journal of Molecular Sciences 23, nr 1 (29.12.2021): 366. http://dx.doi.org/10.3390/ijms23010366.
Pełny tekst źródłaSelvaraj, Rengaraj, Kezhen Qi, Uiseok Jeong, Kholood Al Nofli, Salma Al-Kindy, Mika Sillanpää i Younghun Kim. "A Simple Surfactant-Free Solution Phase Synthesis of Flower-like In2S3 Hierarchitectures and their Photocatalytic Activities". Sultan Qaboos University Journal for Science [SQUJS] 19, nr 2 (1.02.2015): 29. http://dx.doi.org/10.24200/squjs.vol19iss2pp29-36.
Pełny tekst źródłaWang, Lei, Xiaoting Huo, Ruya Guo, Qiang Zhang i Jianhan Lin. "Exploring Protein-Inorganic Hybrid Nanoflowers and Immune Magnetic Nanobeads to Detect Salmonella Typhimurium". Nanomaterials 8, nr 12 (4.12.2018): 1006. http://dx.doi.org/10.3390/nano8121006.
Pełny tekst źródłaKomen, Irina, Sabrya E. van Heijst, Martin Caldarola, Sonia Conesa-Boj i L. Kuipers. "Revealing the nanogeometry of WS2 nanoflowers by polarization-resolved Raman spectroscopy". Journal of Applied Physics 132, nr 17 (7.11.2022): 173103. http://dx.doi.org/10.1063/5.0102381.
Pełny tekst źródłaVirk, Hardev Singh. "Fabrication of Nanoflowers and other Exotic Patterns". Solid State Phenomena 201 (maj 2013): 159–80. http://dx.doi.org/10.4028/www.scientific.net/ssp.201.159.
Pełny tekst źródłaZhang, Tie Min, Guo Qing Miao, Jun Fu, Dong Mei Ban, Zhen Jiang Shen, Hong Lin, Xu Zou i Hong Yan Peng. "InGaAs Nanoflowers Grown by MOCVD". Advanced Materials Research 560-561 (sierpień 2012): 747–50. http://dx.doi.org/10.4028/www.scientific.net/amr.560-561.747.
Pełny tekst źródłaZhao, Yi-Xin, Hao-Sen Kang, Wen-Qin Zhao, You-Long Chen, Liang Ma, Si-Jing Ding, Xiang-Bai Chen i Qu-Quan Wang. "Dual Plasmon Resonances and Tunable Electric Field in Structure-Adjustable Au Nanoflowers for Improved SERS and Photocatalysis". Nanomaterials 11, nr 9 (25.08.2021): 2176. http://dx.doi.org/10.3390/nano11092176.
Pełny tekst źródłaUmar, Ahmad, Ahmed A. Ibrahim, Mohsen A. Alhamami, S. Hussain, Hassan Algadi, Faheem Ahmed, Hassan Fouad i Sheikh Akbar. "Synthesis and gas-sensing properties of ZnO nanoflowers for hydrogen sulphide (H2S) detection". Materials Express 13, nr 1 (1.01.2023): 117–23. http://dx.doi.org/10.1166/mex.2023.2317.
Pełny tekst źródłaUmar, Ahmad, Mohammad Akhtar, Tubia Almas, Ahmed Ibrahim, Mohammed Al-Assiri, Yoshitake Masuda, Qazi Rahman i Sotirios Baskoutas. "Direct Growth of Flower-Shaped ZnO Nanostructures on FTO Substrate for Dye-Sensitized Solar Cells". Crystals 9, nr 8 (4.08.2019): 405. http://dx.doi.org/10.3390/cryst9080405.
Pełny tekst źródłaGwon, Kihak, Jong-Deok Park, Seonhwa Lee, Jong-Sung Yu i Do Nam Lee. "Biocompatible Core–Shell-Structured Si-Based NiO Nanoflowers and Their Anticancer Activity". Pharmaceutics 14, nr 2 (23.01.2022): 268. http://dx.doi.org/10.3390/pharmaceutics14020268.
Pełny tekst źródłaLi, Xiang, Yan Xiong, Ming Duan, Haiqin Wan, Jun Li, Can Zhang, Sha Qin, Shenwen Fang i Run Zhang. "Investigation on the Adsorption-Interaction Mechanism of Pb(II) at Surface of Silk Fibroin Protein-Derived Hybrid Nanoflower Adsorbent". Materials 13, nr 5 (9.03.2020): 1241. http://dx.doi.org/10.3390/ma13051241.
Pełny tekst źródłaZhang, Xian, i Fengqiong Shi. "Hydrothermal Synthesis of Three-Dimensional Hierarchical ZnO Nanoflowers and Photocatalytic Activities for Organic Dyes". International Journal of Nanoscience 13, nr 03 (czerwiec 2014): 1450023. http://dx.doi.org/10.1142/s0219581x14500239.
Pełny tekst źródłaSong, Fengyan, Hao Sun, Hailong Ma i Hui Gao. "Porous TiO2/Carbon Dot Nanoflowers with Enhanced Surface Areas for Improving Photocatalytic Activity". Nanomaterials 12, nr 15 (23.07.2022): 2536. http://dx.doi.org/10.3390/nano12152536.
Pełny tekst źródłaWang, Zichao, Pei Liu, Ziyi Fang i He Jiang. "Trypsin/Zn3(PO4)2 Hybrid Nanoflowers: Controlled Synthesis and Excellent Performance as an Immobilized Enzyme". International Journal of Molecular Sciences 23, nr 19 (6.10.2022): 11853. http://dx.doi.org/10.3390/ijms231911853.
Pełny tekst źródłaShaheen, A., Shahid Hussain, G. J. Qiao, Mohamed H. Mahmoud, Hassan Fouad i M. S. Akhtar. "Nanosheets Assembled Co3O4 Nanoflowers for Supercapacitor Applications". Journal of Nanoelectronics and Optoelectronics 16, nr 9 (1.09.2021): 1357–62. http://dx.doi.org/10.1166/jno.2021.3113.
Pełny tekst źródłaZhang, Mei, Raoul Peltier, Manman Zhang, Haojian Lu, Haidong Bian, Yangyang Li, Zhengtao Xu, Yajing Shen, Hongyan Sun i Zuankai Wang. "In situ reduction of silver nanoparticles on hybrid polydopamine–copper phosphate nanoflowers with enhanced antimicrobial activity". Journal of Materials Chemistry B 5, nr 27 (2017): 5311–17. http://dx.doi.org/10.1039/c7tb00610a.
Pełny tekst źródłaBourfaa, Fouzia, Abderhamane Boutelala, Mohamed Salah Aida, Nadir Attaf i Yusuf Selim Ocak. "Influence of Seed Layer Surface Position on Morphology and Photocatalysis Efficiency of ZnO Nanorods and Nanoflowers". Journal of Nanomaterials 2020 (4.01.2020): 1–9. http://dx.doi.org/10.1155/2020/4072351.
Pełny tekst źródłaLi, Feitao, Siyao Wan, Dong Wang i Peter Schaaf. "Formation of nanoflowers: Au and Ni silicide cores surrounded by SiOx branches". Beilstein Journal of Nanotechnology 14 (20.01.2023): 133–40. http://dx.doi.org/10.3762/bjnano.14.14.
Pełny tekst źródłaLin, Zian, Yun Xiao, Ling Wang, Yuqing Yin, Jiangnan Zheng, Huanghao Yang i Guonan Chen. "Facile synthesis of enzyme–inorganic hybrid nanoflowers and their application as an immobilized trypsin reactor for highly efficient protein digestion". RSC Adv. 4, nr 27 (2014): 13888–91. http://dx.doi.org/10.1039/c4ra00268g.
Pełny tekst źródłaZhao, Bin, Feng Chen, Qiwei Huang i Jinlong Zhang. "Brookite TiO2 nanoflowers". Chemical Communications, nr 34 (2009): 5115. http://dx.doi.org/10.1039/b909883f.
Pełny tekst źródłaTong, Junhua, Songtao Li, Chao Chen, Yulan Fu, Fengzhao Cao, Lianze Niu, Tianrui Zhai i Xinping Zhang. "Flexible Random Laser Using Silver Nanoflowers". Polymers 11, nr 4 (3.04.2019): 619. http://dx.doi.org/10.3390/polym11040619.
Pełny tekst źródłaLan, Guo, Zhiqiang Xie, Zhenwei Huang, Shengchen Yang, Xuhai Zhang, Yuqiao Zeng i Jianqing Jiang. "Amorphous Alloy: Promising Precursor to Form Nanoflowerpot". Advances in Materials Science and Engineering 2014 (2014): 1–5. http://dx.doi.org/10.1155/2014/263681.
Pełny tekst źródłaJiang, Ning, Chuang Zhang, Meng Li, Shuai Li, Zhili Hao, Zhengqiang Li, Zhuofu Wu i Chen Li. "The Fabrication of Amino Acid Incorporated Nanoflowers with Intrinsic Peroxidase-like Activity and Its Application for Efficiently Determining Glutathione with TMB Radical Cation as Indicator". Micromachines 12, nr 9 (12.09.2021): 1099. http://dx.doi.org/10.3390/mi12091099.
Pełny tekst źródłaNguyen, Thang Phan, i Il Tae Kim. "In Situ Growth of W2C/WS2 with Carbon-Nanotube Networks for Lithium-Ion Storage". Nanomaterials 12, nr 6 (18.03.2022): 1003. http://dx.doi.org/10.3390/nano12061003.
Pełny tekst źródłaSharma, Vinay, Akbar Mohammad, Veenu Mishra, Archana Chaudhary, Kshipra Kapoor i Shaikh M. Mobin. "Fabrication of innovative ZnO nanoflowers showing drastic biological activity". New Journal of Chemistry 40, nr 3 (2016): 2145–55. http://dx.doi.org/10.1039/c5nj02391b.
Pełny tekst źródłaAcharyya, D., K. Y. Huang, P. P. Chattopadhyay, M. S. Ho, H. J. Fecht i P. Bhattacharyya. "Hybrid 3D structures of ZnO nanoflowers and PdO nanoparticles as a highly selective methanol sensor". Analyst 141, nr 10 (2016): 2977–89. http://dx.doi.org/10.1039/c6an00326e.
Pełny tekst źródłaTemel, Sinan, Fatma Ozge Gokmen i Elif Yaman. "Effects of Deposition Time on Structural and Morphological Properties of Synthesized ZnO Nanoflowers Without Using Complexing Agent". European Scientific Journal, ESJ 13, nr 27 (30.09.2017): 28. http://dx.doi.org/10.19044/esj.2017.v13n27p28.
Pełny tekst źródłaP, Shyni, i Pradyumnan P P. "Evolution Of Bi2Te3 Nanoflowers Through Imperfect Orient Attachment Growth". ECS Transactions 107, nr 1 (24.04.2022): 19827–33. http://dx.doi.org/10.1149/10701.19827ecst.
Pełny tekst źródłaYin, Yuqing, Yun Xiao, Guo Lin, Qi Xiao, Zian Lin i Zongwei Cai. "An enzyme–inorganic hybrid nanoflower based immobilized enzyme reactor with enhanced enzymatic activity". Journal of Materials Chemistry B 3, nr 11 (2015): 2295–300. http://dx.doi.org/10.1039/c4tb01697a.
Pełny tekst źródłaCabana, Sonia, Alberto Curcio, Aude Michel, Claire Wilhelm i Ali Abou-Hassan. "Iron Oxide Mediated Photothermal Therapy in the Second Biological Window: A Comparative Study between Magnetite/Maghemite Nanospheres and Nanoflowers". Nanomaterials 10, nr 8 (7.08.2020): 1548. http://dx.doi.org/10.3390/nano10081548.
Pełny tekst źródłaNdala, Zakhele, Ndivhuwo Shumbula, Siyabonga Nkabinde, Tshwarela Kolokoto, Obakeng Nchoe, Poslet Shumbula, Zikhona N. Tetana, Ella C. Linganiso, Siziwe S. Gqoba i Nosipho Moloto. "Evaluating the Effect of Varying the Metal Precursor in the Colloidal Synthesis of MoSe2 Nanomaterials and Their Application as Electrodes in the Hydrogen Evolution Reaction". Nanomaterials 10, nr 9 (9.09.2020): 1786. http://dx.doi.org/10.3390/nano10091786.
Pełny tekst źródłaJaved, Sofia, Muhammad Aftab Akram i Mohammad Mujahid. "Instant Microwave Synthesis of Titania Nanoflowers for Application in DSSCs". Advanced Materials Research 1119 (lipiec 2015): 14–18. http://dx.doi.org/10.4028/www.scientific.net/amr.1119.14.
Pełny tekst źródłaLuo, Minghan, Jiaxing Xu, Wenjie Xu, Yu Zheng, Gongde Wu i Taeseop Jeong. "Photocatalytic Activity of MoS2 Nanoflower-Modified CaTiO3 Composites for Degradation of RhB under Visible Light". Nanomaterials 13, nr 4 (6.02.2023): 636. http://dx.doi.org/10.3390/nano13040636.
Pełny tekst źródłaLiu, Delei, Jianghao Liu, Peikan Ye, Haijun Zhang i Shaowei Zhang. "Low-Temperature, Efficient Synthesis of Highly Crystalline Urchin-like Tantalum Diboride Nanoflowers". Materials 15, nr 8 (11.04.2022): 2799. http://dx.doi.org/10.3390/ma15082799.
Pełny tekst źródłaFeng, Zhenyu, Shuo Wang, Guangchao Yin, Ramachandran Rajan i Fuchao Jia. "Hierarchical SnO2 nanoflower sensitized by BNQDs enhances the gas sensing performances to BTEX". Nanotechnology 33, nr 25 (1.04.2022): 255602. http://dx.doi.org/10.1088/1361-6528/ac5a85.
Pełny tekst źródła