Artykuły w czasopismach na temat „Nanoelectronics”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Nanoelectronics.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Nanoelectronics”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

HULL, ROBERT, RICHARD MARTEL i J. M. XU. "NANOELECTRONICS: SOME CURRENT ASPECTS AND PROSPECTS". International Journal of High Speed Electronics and Systems 12, nr 02 (czerwiec 2002): 353–64. http://dx.doi.org/10.1142/s0129156402001174.

Pełny tekst źródła
Streszczenie:
A brief summary is provided of selected current activities in the field of nanoelectronics, which is taken here to mean the fabrication and integration of active microelectronic components with feature dimensions of tens of nanometers or less. Particular emphasis is placed upon the classes of nanoelectronic devices that were discussed at the 2002 WOFE Conference.
Style APA, Harvard, Vancouver, ISO itp.
2

He, Qianxi. "Characteristics and Improvement Methods of Carbon Nanodevices". Highlights in Science, Engineering and Technology 106 (16.07.2024): 94–100. http://dx.doi.org/10.54097/8s3ra054.

Pełny tekst źródła
Streszczenie:
Whether the trend of increasing integration density of integrated circuits indicated by Moore's Law can continue to develop, especially now that feature sizes have entered the nanometer range, shrinking sizes face greater challenges. Since entering the "post-Moore" era, the development of carbon-based nanoelectronics has attracted attention. This paper explores the application of carbon-based nanomaterials in carbon-based nanoelectronic devices and integrated circuits. It introduces the structure, properties, and preparation methods of single-walled carbon nanotubes and graphene, demonstrating their importance to carbon-based nanoelectronic devices and integrated circuits. The synthesis methods of carbon nanotubes mainly include arc discharge method, laser ablation method, and chemical vapor deposition metho. Subsequently, it summarizes the advantages, applications, and challenges of carbon-based nanoelectronic devices. The applications of carbon-based nanoelectronic devices and integrated circuits include digital integrated circuits, optoelectronic integrated circuits, electrochemical sensors, carbon-based radio frequency devices, and smart integrated systems. Furthermore, starting from the preparation methods, improvement methods are summarized, focusing on chemical vapor deposition, to optimize carbon nanomaterials for application in carbon nanodevices. It elucidates the promising prospects of carbon-based nanoelectronics.
Style APA, Harvard, Vancouver, ISO itp.
3

Bate, R. T. "Nanoelectronics". Nanotechnology 1, nr 1 (1.07.1990): 1–7. http://dx.doi.org/10.1088/0957-4484/1/1/001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Hartnagel, H. L., R. Richter i A. Grüb. "Nanoelectronics". Electronics & Communications Engineering Journal 3, nr 3 (1991): 119. http://dx.doi.org/10.1049/ecej:19910020.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Cress, Cory. "Carbon Nanoelectronics". Electronics 3, nr 1 (27.01.2014): 22–25. http://dx.doi.org/10.3390/electronics3010022.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Bandyopadhyay, S., i V. P. Roychowdhury. "Granular nanoelectronics". IEEE Potentials 15, nr 2 (1996): 8–11. http://dx.doi.org/10.1109/45.489730.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Wolfgang, Porod, i I. Csurgay Arpad. "Editorial: Nanoelectronics". IEE Proceedings - Circuits, Devices and Systems 151, nr 5 (2004): 413. http://dx.doi.org/10.1049/ip-cds:20041170.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Vuill, Dominique. "Molecular Nanoelectronics". Proceedings of the IEEE 98, nr 12 (grudzień 2010): 2111–23. http://dx.doi.org/10.1109/jproc.2010.2063410.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Nyberg, Tobias, Fengling Zhang i Olle Inganäs. "Macromolecular nanoelectronics". Current Applied Physics 2, nr 1 (luty 2002): 27–31. http://dx.doi.org/10.1016/s1567-1739(01)00104-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Gorbatsevich, A. A., i V. V. Kapaev. "Waveguide nanoelectronics". Russian Microelectronics 36, nr 1 (luty 2007): 1–13. http://dx.doi.org/10.1134/s1063739707010015.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Sato, Shintaro. "Graphene for nanoelectronics". Japanese Journal of Applied Physics 54, nr 4 (25.02.2015): 040102. http://dx.doi.org/10.7567/jjap.54.040102.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Khaderbad, Mrunal, Soumyo Mukherji i Ramgopal Rao. "DNA Based Nanoelectronics". Recent Patents on Electrical Engineeringe 1, nr 2 (1.06.2008): 115–20. http://dx.doi.org/10.2174/1874476110801020115.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Vallett, Dave. "Nanoelectronics Failure Analysis". EDFA Technical Articles 5, nr 2 (1.05.2003): 5–9. http://dx.doi.org/10.31399/asm.edfa.2003-2.p005.

Pełny tekst źródła
Streszczenie:
Abstract This article discusses the emergence of nanoelectronics and the effect it may have on semiconductor testing and failure analysis. It describes the different types of quantum effect and molecular electronic devices that have been produced, explaining how they are made, how they work, and the changes that may be required to manufacture and test these devices at scale.
Style APA, Harvard, Vancouver, ISO itp.
14

N. O. Sadiku, Matthew, Yogita P. Akhare i Sarhan M. Musa. "Nanoelectronics: A Primer". International Journal of Advances in Scientific Research and Engineering 5, nr 5 (2019): 257–59. http://dx.doi.org/10.31695/ijasre.2019.33215.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Catalan, G., J. Seidel, R. Ramesh i J. F. Scott. "Domain wall nanoelectronics". Reviews of Modern Physics 84, nr 1 (3.02.2012): 119–56. http://dx.doi.org/10.1103/revmodphys.84.119.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Compañó, Ramón. "Trends in nanoelectronics*". Nanotechnology 12, nr 2 (25.05.2001): 85–88. http://dx.doi.org/10.1088/0957-4484/12/2/301.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Tsu, Raphael. "Challenges in nanoelectronics". Nanotechnology 12, nr 4 (28.11.2001): 625–28. http://dx.doi.org/10.1088/0957-4484/12/4/351.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Telford, Mark. "Nanoelectronics centers founded". Nano Today 1, nr 1 (luty 2006): 16. http://dx.doi.org/10.1016/s1748-0132(06)70016-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Sealy, Cordelia. "Roadmap for nanoelectronics". Materials Today 7, nr 9 (wrzesień 2004): 18. http://dx.doi.org/10.1016/s1369-7021(04)00397-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Rohrer, H. "Nanoengineering beyond nanoelectronics". Microelectronic Engineering 41-42 (marzec 1998): 31–36. http://dx.doi.org/10.1016/s0167-9317(98)00008-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Lieber, Charles. "Nanoelectronics Meets Biology". Biophysical Journal 100, nr 3 (luty 2011): 189a. http://dx.doi.org/10.1016/j.bpj.2010.12.1247.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Cerofolini, G. F., G. Arena, M. Camalleri, C. Galati, S. Reina, L. Renna, D. Mascolo i V. Nosik. "Strategies for nanoelectronics". Microelectronic Engineering 81, nr 2-4 (sierpień 2005): 405–19. http://dx.doi.org/10.1016/j.mee.2005.03.041.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Hoenlein, Wolfgang, Georg S. Duesberg, Andrew P. Graham, Franz Kreupl, Maik Liebau, Werner Pamler, Robert Seidel i Eugen Unger. "Nanoelectronics beyond silicon". Microelectronic Engineering 83, nr 4-9 (kwiecień 2006): 619–23. http://dx.doi.org/10.1016/j.mee.2005.12.018.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Ferry, D. K. "Nanowires in Nanoelectronics". Science 319, nr 5863 (1.02.2008): 579–80. http://dx.doi.org/10.1126/science.1154446.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Beaumont, Steven P. "III–V Nanoelectronics". Microelectronic Engineering 32, nr 1-4 (wrzesień 1996): 283–95. http://dx.doi.org/10.1016/0167-9317(95)00367-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Kern, Klaus, i Joachim Maier. "Nanoionics and Nanoelectronics". Advanced Materials 21, nr 25-26 (24.06.2009): 2569. http://dx.doi.org/10.1002/adma.200901896.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Homberger, Melanie, i Ulrich Simon. "On the application potential of gold nanoparticles in nanoelectronics and biomedicine". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 368, nr 1915 (28.03.2010): 1405–53. http://dx.doi.org/10.1098/rsta.2009.0275.

Pełny tekst źródła
Streszczenie:
Ligand-stabilized gold nanoparticles (AuNPs) are of high interest to research dedicated to future technologies such as nanoelectronics or biomedical applications. This research interest arises from the unique size-dependent properties such as surface plasmon resonance or Coulomb charging effects. It is shown here how the unique properties of individual AuNPs and AuNP assemblies can be used to create new functional materials for applications in a technical or biological environment. While the term technical environment focuses on the potential use of AuNPs as subunits in nanoelectronic devices, the term biological environment addresses issues of toxicity and novel concepts of controlling biomolecular reactions on the surface of AuNPs.
Style APA, Harvard, Vancouver, ISO itp.
28

Mishra, Manoj, i Shil Ja. "Germanium Nanowires (GeNW): Synthesis, Structural Properties, and Electrical Characterization for Advanced Nanoelectronic Devices". Migration Letters 20, S13 (20.12.2023): 236–45. http://dx.doi.org/10.59670/ml.v20is13.6289.

Pełny tekst źródła
Streszczenie:
The exponential progress of nanoelectronic devices necessitates the development of novel materials and production methodologies to fulfill the escalating demands for enhanced performance. This research aims to answer the current need for high-performance materials by proposing a revolutionary approach known as Germanium Nanowires for Advanced Nanoelectronic Devices (GeNW-ANED). GeNW-ANED achieves the integration of GeNW growth with advanced nanoelectronic applications. The system has several distinctive attributes, such as meticulous regulation of nanowire fabrication, adjustable electrical characteristics, and improved thermal qualities. The GeNW-ANED method exhibits exceptional performance across multiple experimental metrics, encompassing Electrical Conductivity (1.70 S/cm), Carrier Mobility (1685.83 cm²/Vs), Dielectric Constant (4.73), Specific Capacity (325.00 mAh/g), Growth Rate (5.93 nm/s), and Thermal Conductivity (3.47 W/mK). The impressive results achieved by GeNW-ANED establish it as a prospective contender for advanced nanoelectronic devices, offering the potential for improved performance and increased adaptability. The presented approach exhibits promise in influencing the trajectory of nanoelectronics, as it provides a sturdy basis for advancing the creation of forthcoming devices that possess enhanced electrical, thermal, and energy storage properties.
Style APA, Harvard, Vancouver, ISO itp.
29

OYUBU, OYUBU AKPOVI, i OKPEKI UFUOMA KAZEEM. "AN OVERVIEW OF NANOELECTRONICS AND NANODEVICES". Journal of Engineering Studies and Research 26, nr 3 (27.07.2020): 165–72. http://dx.doi.org/10.29081/jesr.v26i3.220.

Pełny tekst źródła
Streszczenie:
Nanoelectronics is a nascent area of making electronic devices at the atomic scale to utilize small-scale 'quantum' characteristics of nature. As the name suggests, Nanoelectronics refers to employing nanotechnology in building electronic devices/components; especially transistors. Thus, transistor devices which are so small such that inter-atomic cooperation and quantum mechanical characteristics cannot be ignored are known as Nanoelectronics. This article presents Nanoelectronics and Nanodevices, which are the critical enablers that will not only enable mankind to exploit the ultimate technological capabilities of electronic, mechanical, magnetic, and biological systems but also have the potential to play a part in transforming of the systems thus giving rise to new trends that will revolutionize our life style.
Style APA, Harvard, Vancouver, ISO itp.
30

Schrecongost, Dustin, Hai-Tian Zhang, Roman Engel-Herbert i Cheng Cen. "Oxygen vacancy dynamics in monoclinic metallic VO2 domain structures". Applied Physics Letters 120, nr 8 (21.02.2022): 081602. http://dx.doi.org/10.1063/5.0083771.

Pełny tekst źródła
Streszczenie:
It was demonstrated recently that the nano-optical and nanoelectronic properties of VO2 can be spatially programmed through the local injection of oxygen vacancies by atomic force microscope writing. In this work, we study the dynamic evolution of the patterned domain structures as a function of the oxygen vacancy concentration and the time. A threshold doping level is identified that is critical for both the metal–insulator transition and the defect stabilization. The diffusion of oxygen vacancies in the monoclinic phase is also characterized, which is directly responsible for the short lifetimes of sub-100 nm domain structures. This information is imperative for the development of oxide nanoelectronics through defect manipulations.
Style APA, Harvard, Vancouver, ISO itp.
31

Zhuravleva, L. M., Y. A. Nikulina i A. C. Lebedeva. "PROSPECTS OF GRAPHENE NANOELECTRONICS". World of Transport and Transportation 14, nr 1 (28.02.2016): 72–78. http://dx.doi.org/10.30932/1992-3252-2016-14-1-8.

Pełny tekst źródła
Streszczenie:
[For the English abstract and full text of the article please see the attached PDF-File (English version follows Russian version)].ABSTRACT The article with regard to transport developments deals with topical issues of improving electronics engineering and of transition to new technological structures associated with nanotechnology. It is noted that the main direction of evolution of nanoelectronics is linked to new electronics components based on new materials like graphene. Possibility and prospect of replacing traditional and most used silicon materials with graphene are reviewed. Brief information about methods of manufacturing, benefits and advantages of the use of graphene is followed by the arguments in favor of development of technique capable to open the band gap, allowing transition of graphene into semiconductor. Methods of mass commercial manufacturing of graphene semiconductor are discussed. Keywords: transport, science, functional material, graphene, graphite, electronics, nanoelectronics, nanotechnology. REFERENCES 1.Graphene.[Electronic source]: https://ru.wikipedia.org/wiki/%D0%93%D1%80%D0%B0%D1%84%D0%B 5%D0%BD.Last accessed 27.11.2015. 2.Poverennaya, M.Graphene boom.Results [Grafenovyj bum: itogi].Nanotehnologicheskoe soobshhestvo, Iss.October 26,2012.[Electronic source]: http://www.nanometer.ru/2012/10/26/13512365078102_298275.html.Last accessed 27.11.2015. 3.Nobel Prize in physics was awarded for creation of graphene [Za sozdanie grafena prisuzhdena Nobelevskaja premija v oblasti fizike].[Electronic source]: http://venture-biz.ru/tekhnologii-innovatsii/93-grafen-nobelevskaya-premiya.Last accessed 27.11.2015. 4.Zhuravleva, L.M., Plekhanov, V. G.Isotopic creation of semiconductor graphene [Izotopicheskoe sozdanie poluprovodnikovogo grafena].Nanotehnika, 2012, Iss.3, pp.34-39. 5.Graphene.Physics [Grafen. Fizika].[Electronic source]: http://4108.ru/u/grafen_-_fizika.Last accessed 27.11.2015. 6.Yudintsev, V.Graphene.Nanoelectronics is rapidly gaining strength [Grafen. Nanoelektronika stremitel’no nabiraet sily].Elektronika, nauka, tehnologija, biznes, 2009, Iss.6.[Electronic source]: http://www.electronics.ru/ journal/article/269.Last accessed 27.11.2015. 7.Samardak, Alexander.Graphene, new methods of synthesis and the latest advances [Grafen: novye metody poluchenija i poslednie dostizhenija].Elementy.Iss.30.09.2008.[Electronic source]: http://elementy.ru/ novosti_nauki/430857/Grafen_novye_metody_ polucheniya_i_poslednie_dostizheniya.Last accessed 27.11.2015. 8.Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A. A.Electric Field Effect in Atomically Thin Carbon Films.Science, V. 306, 22 October 2004, pp.666-669. 9.Bekyarova, E., Itkis, M.E., Cabrera, N., Zhao, B., Yu, A., Gao, J., Haddon R. C.Electronic Properties of Single-walled Carbon Nanotube Networks.Journal of American Chemical Society, 2005, Vol.127, No.16, pp.5990-5995. 10.Palnitkar, U.A., Kashid, R.V., More, M.A., Joag, D.S., Panchakarla, L.S., Rao, C.N.R.Remarkably Low Turn-on Field Emission in Undoped, Nitrogen-doped, and Boron-doped Graphene.Applied Physics Letters, 2010, Vol.97, No.6, pp.063102-063102. 11.Chernozatonsky, L.A., Sorokin, P.B., Belova, E.E., Bruening, J., Fedorov, A. S.Superlattices consisting of «lines» of adsorbed hydrogen atom pairs on graphene [Sverhreshetki, sostojashhie iz «linij» adsorbirovannyh par atomov vodoroda na grafene].Pis’ma v ZhETF, 2007, Vol.85, Iss.1, pp.84-89. 12.Novoselov, K. S.Graphene: Materials of Flatland [Grafen: Materialy Flatlandii].UFN, 2011, Vol.181, pp.1299-1311. 13.McCann E., Koshino M.The Electronic Properties of Bilayer Graphene // Reports on Progress in Physics, 2013, Vol.76, No.5, pp.056503(28). 14.Chernozatonsky, L.A., Sorokin, P.B., Belova, E.E., Bruening, J., Fedorov, A. S.Superlattices metal - semiconductor (semimetal) on a graphite sheet with vacancies [Sverhreshetki metall - poluprovodnik (polumetall) na grafitovom liste s vakansijami].Pis’ma v ZhETF, 2006, Vol.84, Iss.3, pp.141-145.
Style APA, Harvard, Vancouver, ISO itp.
32

Alshareef, H. N., M. A. Quevedo-Lopez i P. Majhi. "Contact materials for nanoelectronics". MRS Bulletin 36, nr 2 (luty 2011): 90–94. http://dx.doi.org/10.1557/mrs.2011.9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Dresselhaus, Mildred. "Carbon connections promise nanoelectronics". Physics World 9, nr 5 (maj 1996): 18–19. http://dx.doi.org/10.1088/2058-7058/9/5/18.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Parpura, Vladimir. "Nanoelectronics for the heart". Nature Nanotechnology 11, nr 9 (27.06.2016): 738–39. http://dx.doi.org/10.1038/nnano.2016.123.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Zheng, Gengfeng. "Nanoelectronics Aiming at Cancer". Clinical Chemistry 61, nr 4 (1.04.2015): 664–65. http://dx.doi.org/10.1373/clinchem.2014.237453.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Russer, Peter, Nikolaus Fichtner, Paolo Lugli, Wolfgang Porod, Johannes A. Russer i Hristomir Yordanov. "Nanoelectronics-Based Integrate Antennas". IEEE Microwave Magazine 11, nr 7 (grudzień 2010): 58–71. http://dx.doi.org/10.1109/mmm.2010.938570.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Gimzewski, James. "Molecules, nanophysics and nanoelectronics". Physics World 11, nr 6 (czerwiec 1998): 29–34. http://dx.doi.org/10.1088/2058-7058/11/6/25.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Alexe, Marin. "Nanoelectronics needs new materials". Physics World 12, nr 1 (styczeń 1999): 21–22. http://dx.doi.org/10.1088/2058-7058/12/1/22.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Cosby, Ronald M., Dustin R. Humm i Yong S. Joe. "Nanoelectronics using conductance quantization". Journal of Applied Physics 83, nr 7 (kwiecień 1998): 3914–16. http://dx.doi.org/10.1063/1.366626.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Dubourdieu, C., I. Gelard, O. Salicio, G. Saint Girons, B. Vilquin i G. Hollinger. "Oxides heterostructures for nanoelectronics". International Journal of Nanotechnology 7, nr 4/5/6/7/8 (2010): 320. http://dx.doi.org/10.1504/ijnt.2010.031723.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Gargini, Paolo A. "Silicon Nanoelectronics and Beyond". Journal of Nanoparticle Research 6, nr 1 (luty 2004): 11–26. http://dx.doi.org/10.1023/b:nano.0000023248.65742.6c.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

WONG, H. S. PHILIP. "NANOELECTRONICS – OPPORTUNITIES AND CHALLENGES". International Journal of High Speed Electronics and Systems 16, nr 01 (marzec 2006): 83–94. http://dx.doi.org/10.1142/s0129156406003540.

Pełny tekst źródła
Streszczenie:
As device sizes approach the nanoscale, new opportunities arise from harnessing the physical and chemical properties at the nanoscale. It is now feasible to contemplate new nanoelectronic systems based on new devices with completely new system architectures. This paper will give an overview of the materials, technology, and device opportunities in the nanoscale era. So far, much of the nanoscale sciences have been researched in the physics, chemistry, and materials science communities. While there have been plenty of good science in the nano world, nanotechnology is still at its infancy. The engineering community is poised to make a major impact in transforming good nanoscience into useful nanotechnology. The disciplined performance benchmarking against alternatives as practiced by the engineering community will prove to be invaluable to the development of new nanotechnologies. Examples of such performance benchmarking exercises will be shown and directions for future work will be suggested.
Style APA, Harvard, Vancouver, ISO itp.
43

Freitag, Marcus. "Nanoelectronics goes flat out". Nature Nanotechnology 3, nr 8 (sierpień 2008): 455–57. http://dx.doi.org/10.1038/nnano.2008.219.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Mertens, Paul. "Accoustic cleaning in nanoelectronics". Journal of the Acoustical Society of America 123, nr 5 (maj 2008): 3045. http://dx.doi.org/10.1121/1.2932736.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Arefeva, P. A., i R. A. Brazhe. "Supracrystalline nanoribbons for nanoelectronics". Journal of Physics: Conference Series 345 (9.02.2012): 012004. http://dx.doi.org/10.1088/1742-6596/345/1/012004.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Fang, Yan, Junfeng Hou i Ying Fang. "Flexible bio-interfaced nanoelectronics". Journal of Materials Chemistry C 2, nr 7 (2014): 1178. http://dx.doi.org/10.1039/c3tc32322f.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Kosiel, Kamil. "MBE—Technology for nanoelectronics". Vacuum 82, nr 10 (czerwiec 2008): 951–55. http://dx.doi.org/10.1016/j.vacuum.2008.01.033.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Žutić, Igor, Alex Matos-Abiague, Benedikt Scharf, Tong Zhou, Hanan Dery i Kirill Belashchenko. "Nanoelectronics with proximitized materials". Solid-State Electronics 155 (maj 2019): 93–98. http://dx.doi.org/10.1016/j.sse.2019.03.015.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Palumbo, Gaetano. "Silicon Nanoelectronics - [Book Review]". IEEE Circuits and Devices Magazine 22, nr 5 (wrzesień 2006): 59. http://dx.doi.org/10.1109/mcd.2006.273010.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Soldatov, E. S., S. P. Gubin, I. A. Maximov, G. B. Khomutov, V. V. Kolesov, A. N. Sergeev-Cherenkov, V. V. Shorokhov, K. S. Sulaimankulov i D. B. Suyatin. "Molecular cluster based nanoelectronics". Microelectronic Engineering 69, nr 2-4 (wrzesień 2003): 536–48. http://dx.doi.org/10.1016/s0167-9317(03)00344-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii