Artykuły w czasopismach na temat „Nanocomposites for thermoelectric applications”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Nanocomposites for thermoelectric applications”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Vignesh, C., K. Vinoth, L. Chinnappa i Jeronsia J. Emima. "Controlled Synthesis of Polyaniline/Iron Oxide Nanocomposites for Thermoelectric Applications". Research Journal of Chemistry and Environment 27, nr 7 (15.06.2023): 23–33. http://dx.doi.org/10.25303/2707rjce023033.
Pełny tekst źródłaTanusilp, Sora-at, i Ken Kurosaki. "Si-Based Materials for Thermoelectric Applications". Materials 12, nr 12 (17.06.2019): 1943. http://dx.doi.org/10.3390/ma12121943.
Pełny tekst źródłaChen, Gang. "Heat Transport in Superlattices and Nanocomposites for Thermoelectric Applications". Advances in Science and Technology 46 (październik 2006): 104–10. http://dx.doi.org/10.4028/www.scientific.net/ast.46.104.
Pełny tekst źródłaVidakis, Nectarios, Markos Petousis, Lazaros Tzounis, Emmanuel Velidakis, Nikolaos Mountakis i Sotirios A. Grammatikos. "Polyamide 12/Multiwalled Carbon Nanotube and Carbon Black Nanocomposites Manufactured by 3D Printing Fused Filament Fabrication: A Comparison of the Electrical, Thermoelectric, and Mechanical Properties". C 7, nr 2 (23.04.2021): 38. http://dx.doi.org/10.3390/c7020038.
Pełny tekst źródłaChang, Sujie, Xiaomin Wang, Qiaoling Hu, Xigui Sun, Aiguo Wang, Xiaojun Dong, Yu Zhang, Lei Shi i Qilei Sun. "Self-Assembled Nanocomposites and Nanostructures for Environmental and Energy Applications". Crystals 12, nr 2 (17.02.2022): 274. http://dx.doi.org/10.3390/cryst12020274.
Pełny tekst źródłaTzounis, Lazaros, Markos Petousis, Sotirios Grammatikos i Nectarios Vidakis. "3D Printed Thermoelectric Polyurethane/Multiwalled Carbon Nanotube Nanocomposites: A Novel Approach towards the Fabrication of Flexible and Stretchable Organic Thermoelectrics". Materials 13, nr 12 (26.06.2020): 2879. http://dx.doi.org/10.3390/ma13122879.
Pełny tekst źródłaKim, Jun Yeob, Jin Young Oh i Tae Il Lee. "Multi-dimensional nanocomposites for stretchable thermoelectric applications". Applied Physics Letters 114, nr 4 (28.01.2019): 043902. http://dx.doi.org/10.1063/1.5080622.
Pełny tekst źródłaDíez-Pascual, Ana M. "Environmentally Friendly Synthesis of Poly(3,4-Ethylenedioxythiophene): Poly(Styrene Sulfonate)/SnO2 Nanocomposites". Polymers 13, nr 15 (25.07.2021): 2445. http://dx.doi.org/10.3390/polym13152445.
Pełny tekst źródłaVeeman, Dhinakaran, M. Varsha Shree, P. Sureshkumar, T. Jagadeesha, L. Natrayan, M. Ravichandran i Prabhu Paramasivam. "Sustainable Development of Carbon Nanocomposites: Synthesis and Classification for Environmental Remediation". Journal of Nanomaterials 2021 (18.09.2021): 1–21. http://dx.doi.org/10.1155/2021/5840645.
Pełny tekst źródłaNozariasbmarz, Amin, Jerzy S. Krasinski i Daryoosh Vashaee. "N-Type Bismuth Telluride Nanocomposite Materials Optimization for Thermoelectric Generators in Wearable Applications". Materials 12, nr 9 (10.05.2019): 1529. http://dx.doi.org/10.3390/ma12091529.
Pełny tekst źródłaMore, Priyesh V., Chaitanya Hiragond, Abhijit Dey i Pawan K. Khanna. "Band engineered p-type RGO–CdS–PANI ternary nanocomposites for thermoelectric applications". Sustainable Energy & Fuels 1, nr 8 (2017): 1766–73. http://dx.doi.org/10.1039/c7se00290d.
Pełny tekst źródłaOu, Canlin, Abhijeet L. Sangle, Anuja Datta, Qingshen Jing, Tommaso Busolo, Thomas Chalklen, Vijay Narayan i Sohini Kar-Narayan. "Fully Printed Organic–Inorganic Nanocomposites for Flexible Thermoelectric Applications". ACS Applied Materials & Interfaces 10, nr 23 (18.05.2018): 19580–87. http://dx.doi.org/10.1021/acsami.8b01456.
Pełny tekst źródłaSchierning, Gabi, Julia Stoetzel, Ruben Chavez, Victor Kessler, Joseph Hall, Roland Schmechel, Tom Schneider i in. "Silicon-based nanocomposites for thermoelectric application". physica status solidi (a) 213, nr 3 (7.01.2016): 497–514. http://dx.doi.org/10.1002/pssa.201532602.
Pełny tekst źródłaAksamija, Zlatan. "Lattice Thermal Transport in Si-based Nanocomposites for Thermoelectric Applications". Journal of Electronic Materials 44, nr 6 (15.11.2014): 1644–50. http://dx.doi.org/10.1007/s11664-014-3505-7.
Pełny tekst źródłaNozariasbmarz, Amin, i Daryoosh Vashaee. "Effect of Microwave Processing and Glass Inclusions on Thermoelectric Properties of P-Type Bismuth Antimony Telluride Alloys for Wearable Applications". Energies 13, nr 17 (1.09.2020): 4524. http://dx.doi.org/10.3390/en13174524.
Pełny tekst źródłaXiang, Yiqiu, Ling Xin, Jiwei Hu, Caifang Li, Jimei Qi, Yu Hou i Xionghui Wei. "Advances in the Applications of Graphene-Based Nanocomposites in Clean Energy Materials". Crystals 11, nr 1 (7.01.2021): 47. http://dx.doi.org/10.3390/cryst11010047.
Pełny tekst źródłaXiang, Yiqiu, Ling Xin, Jiwei Hu, Caifang Li, Jimei Qi, Yu Hou i Xionghui Wei. "Advances in the Applications of Graphene-Based Nanocomposites in Clean Energy Materials". Crystals 11, nr 1 (7.01.2021): 47. http://dx.doi.org/10.3390/cryst11010047.
Pełny tekst źródłaBisht, Neha, Priyesh More, Pawan Kumar Khanna, Reza Abolhassani, Yogendra Kumar Mishra i Morten Madsen. "Progress of hybrid nanocomposite materials for thermoelectric applications". Materials Advances 2, nr 6 (2021): 1927–56. http://dx.doi.org/10.1039/d0ma01030h.
Pełny tekst źródłaAli, Mariamu K., i Ahmed Abd Moneim. "Effect of Inorganic Doping on the Thermoelectric Behavior of Polyaniline Nanocomposites". Key Engineering Materials 835 (marzec 2020): 200–207. http://dx.doi.org/10.4028/www.scientific.net/kem.835.200.
Pełny tekst źródłaHorta Romarís, Laura, M. Victoria González Rodríguez, Bincheng Huang, P. Costa, Aurora Lasagabáster Latorre, S. Lanceros-Mendez i María José Abad López. "Multifunctional electromechanical and thermoelectric polyaniline–poly(vinyl acetate) latex composites for wearable devices". Journal of Materials Chemistry C 6, nr 31 (2018): 8502–12. http://dx.doi.org/10.1039/c8tc02327a.
Pełny tekst źródłaLuceño Sánchez, José, Rafael Peña Capilla i Ana Díez-Pascual. "High-Performance PEDOT:PSS/Hexamethylene Diisocyanate-Functionalized Graphene Oxide Nanocomposites: Preparation and Properties". Polymers 10, nr 10 (20.10.2018): 1169. http://dx.doi.org/10.3390/polym10101169.
Pełny tekst źródłaDolez, Patricia I. "Energy Harvesting Materials and Structures for Smart Textile Applications: Recent Progress and Path Forward". Sensors 21, nr 18 (20.09.2021): 6297. http://dx.doi.org/10.3390/s21186297.
Pełny tekst źródłaAdekoya, Gbolahan Joseph, Oluwasegun Chijioke Adekoya, Emmanuel Rotimi Sadiku, Yskandar Hamam i Suprakas Sinha Ray. "Effect of Borophene and Graphene on the Elastic Modulus of PEDOT:PSS Film—A Finite Element Study". Condensed Matter 7, nr 1 (23.02.2022): 22. http://dx.doi.org/10.3390/condmat7010022.
Pełny tekst źródłaLuceño-Sánchez, José A., Ana Charas i Ana M. Díez-Pascual. "Effect of HDI-Modified GO on the Thermoelectric Performance of Poly(3,4-ethylenedioxythiophene):Poly(Styrenesulfonate) Nanocomposite Films". Polymers 13, nr 9 (7.05.2021): 1503. http://dx.doi.org/10.3390/polym13091503.
Pełny tekst źródłaSłoma, Marcin, Maciej Andrzej Głód i Bartłomiej Wałpuski. "Printed Flexible Thermoelectric Nanocomposites Based on Carbon Nanotubes and Polyaniline". Materials 14, nr 15 (24.07.2021): 4122. http://dx.doi.org/10.3390/ma14154122.
Pełny tekst źródłaGanguly, Shreyashi, Chen Zhou, Donald Morelli, Jeffrey Sakamoto, Ctirad Uher i Stephanie L. Brock. "Synthesis and evaluation of lead telluride/bismuth antimony telluride nanocomposites for thermoelectric applications". Journal of Solid State Chemistry 184, nr 12 (grudzień 2011): 3195–201. http://dx.doi.org/10.1016/j.jssc.2011.09.031.
Pełny tekst źródłaGalliani, Daniela, Simone Battiston, Riccardo Ruffo, Silvia Trabattoni i Dario Narducci. "Modulation of charge transport properties in poly(3,4-ethylenedioxythiophene) nanocomposites for thermoelectric applications". Journal of Physics D: Applied Physics 51, nr 3 (21.12.2017): 034002. http://dx.doi.org/10.1088/1361-6463/aa9ae2.
Pełny tekst źródłaShyni, P., P. P. Pradyumnan, P. Rajasekar, Aswathy M. Narayanan i Arun M. Umarji. "Graphitic carbon nitride-bismuth antimony telluride nanocomposites: A potential material for thermoelectric applications". Journal of Alloys and Compounds 853 (luty 2021): 156872. http://dx.doi.org/10.1016/j.jallcom.2020.156872.
Pełny tekst źródłaAli, Mariam K., i A. A. Moneim. "Investigation of Thermoelectric Performance of MoS2-Templated Polyaniline Nanocomposites". Key Engineering Materials 821 (wrzesień 2019): 103–10. http://dx.doi.org/10.4028/www.scientific.net/kem.821.103.
Pełny tekst źródłaKoskinen, Tomi, Taneli Juntunen i Ilkka Tittonen. "Large-Area Thermal Distribution Sensor Based on Multilayer Graphene Ink". Sensors 20, nr 18 (11.09.2020): 5188. http://dx.doi.org/10.3390/s20185188.
Pełny tekst źródłaKim, Seojin, You Young Byun, InYoung Lee, Woohyeon Cho, Gyungho Kim, Mario Culebras, Junho Jang i Chungyeon Cho. "Organic Thermoelectric Nanocomposites Assembled via Spraying Layer-by-Layer Method". Nanomaterials 13, nr 5 (25.02.2023): 866. http://dx.doi.org/10.3390/nano13050866.
Pełny tekst źródłaWakayama, Hiroaki, i Hirotaka Yonekura. "Synthesis of Inorganic Nanocomposites by Selective Introduction of Metal Complexes into a Self-Assembled Block Copolymer Template". Journal of Nanomaterials 2015 (2015): 1–6. http://dx.doi.org/10.1155/2015/905083.
Pełny tekst źródłaCho, Chungyeon, i Jihun Son. "Organic Thermoelectric Multilayers with High Stretchiness". Nanomaterials 10, nr 1 (23.12.2019): 41. http://dx.doi.org/10.3390/nano10010041.
Pełny tekst źródłaHuang, Congliang, Wenkai Zhen, Jinxin Zhong i Zizhen Lin. "Preparation and characterization of silica/carbon nanocomposites for a thermoelectric application". Materials Research Express 5, nr 8 (24.07.2018): 085023. http://dx.doi.org/10.1088/2053-1591/aaad38.
Pełny tekst źródłaMd Aspan, Rosnita, Noshin Fatima, Ramizi Mohamed, Ubaidah Syafiq i Mohd Adib Ibrahim. "An Overview of the Strategies for Tin Selenide Advancement in Thermoelectric Application". Micromachines 12, nr 12 (27.11.2021): 1463. http://dx.doi.org/10.3390/mi12121463.
Pełny tekst źródłaKamarudin, Muhammad Akmal, Shahrir Razey Sahamir, Robi Shankar Datta, Bui Duc Long, Mohd Faizul Mohd Sabri i Suhana Mohd Said. "A Review on the Fabrication of Polymer-Based Thermoelectric Materials and Fabrication Methods". Scientific World Journal 2013 (2013): 1–17. http://dx.doi.org/10.1155/2013/713640.
Pełny tekst źródłaLee, Seung Hwan, Yong Seok Kim i Jung Hyun Kim. "Synthesis of Polythiophene/Poly(3,4-ethylenedioxythiophene) Nanocomposites and Their Application in Thermoelectric Devices". Journal of Electronic Materials 43, nr 9 (11.07.2014): 3276–82. http://dx.doi.org/10.1007/s11664-014-3287-y.
Pełny tekst źródłaVysikaylo, P. I. "Quantum Size Effects Arising from Nanocomposites Physical Doping with Nanostructures Having High Electron Affinit". Herald of the Bauman Moscow State Technical University. Series Natural Sciences, nr 3 (96) (czerwiec 2021): 150–75. http://dx.doi.org/10.18698/1812-3368-2021-3-150-175.
Pełny tekst źródłaKröning, Katharina, Beate Krause, Petra Pötschke i Bodo Fiedler. "Nanocomposites with p- and n-Type Conductivity Controlled by Type and Content of Nanotubes in Thermosets for Thermoelectric Applications". Nanomaterials 10, nr 6 (10.06.2020): 1144. http://dx.doi.org/10.3390/nano10061144.
Pełny tekst źródłaKshirsagar, Anuraj S., Chaitanya Hiragond, Abhijit Dey, Priyesh V. More i Pawan K. Khanna. "Band Engineered I/III/V–VI Binary Metal Selenide/MWCNT/PANI Nanocomposites for Potential Room Temperature Thermoelectric Applications". ACS Applied Energy Materials 2, nr 4 (4.03.2019): 2680–91. http://dx.doi.org/10.1021/acsaem.9b00013.
Pełny tekst źródłaLiu, Naiming, Wade A. Jensen, Mona Zebarjadi i Jerrold A. Floro. "Tunable β-FeSi2 – Si1-yGey nanocomposites by a novel React/Transform Spark Plasma Sintering approach for thermoelectric applications". Materials Today Physics 4 (marzec 2018): 19–27. http://dx.doi.org/10.1016/j.mtphys.2018.02.004.
Pełny tekst źródłaMachrafi, H. "An extended thermodynamic model for size-dependent thermoelectric properties at nanometric scales: Application to nanofilms, nanocomposites and thin nanocomposite films". Applied Mathematical Modelling 40, nr 3 (luty 2016): 2143–60. http://dx.doi.org/10.1016/j.apm.2015.09.044.
Pełny tekst źródłaKosalathip, V., T. Kumpeerapun, S. Migot, B. Lenoir i A. Dauscher. "Thermoelectric Properties of BixSbyTezSew Nanocomposite Materials". Advanced Materials Research 55-57 (sierpień 2008): 809–12. http://dx.doi.org/10.4028/www.scientific.net/amr.55-57.809.
Pełny tekst źródłaTsai, Chen-Chih, Binyamin Rubin, Eugen Tatartschuk, Jeffery R. Owens, Igor Luzinov i Konstantin G. Kornev. "Efficiency of Microwave Heating of Weakly Loaded Polymeric Nanocomposites". Journal of Engineered Fibers and Fabrics 7, nr 2_suppl (czerwiec 2012): 155892501200702. http://dx.doi.org/10.1177/155892501200702s07.
Pełny tekst źródłaKalakonda, Parvathalu, Pranay Bhasker Kalakonda i Sreenivas Banne. "Studies of electrical, thermal, and mechanical properties of single-walled carbon nanotube and polyaniline of nanoporous nanocomposites". Nanomaterials and Nanotechnology 11 (1.01.2021): 184798042110011. http://dx.doi.org/10.1177/18479804211001140.
Pełny tekst źródłaEl-Shamy, Ahmed gamal. "Novel hybrid nanocomposite based on Poly(vinyl alcohol)/ carbon quantum dots/fullerene (PVA/CQDs/C60) for thermoelectric power applications". Composites Part B: Engineering 174 (październik 2019): 106993. http://dx.doi.org/10.1016/j.compositesb.2019.106993.
Pełny tekst źródłaQiu, Lin, Shuwen Zhou, Ying Li, Wen Rui, Pengfei Cui, Changli Zhang, Yongsheng Yu i in. "Silica-Coated Fe3O4 Nanoparticles as a Bifunctional Agent for Magnetic Resonance Imaging and ZnII Fluorescent Sensing". Technology in Cancer Research & Treatment 20 (1.01.2021): 153303382110365. http://dx.doi.org/10.1177/15330338211036539.
Pełny tekst źródłaEl-Shamy, Ahmed Gamal. "New free-standing and flexible PVA/Carbon quantum dots (CQDs) nanocomposite films with promising power factor and thermoelectric power applications". Materials Science in Semiconductor Processing 100 (wrzesień 2019): 245–54. http://dx.doi.org/10.1016/j.mssp.2019.04.004.
Pełny tekst źródłaLiu, Bin, Jizhu Hu, Jun Zhou i Ronggui Yang. "Thermoelectric Transport in Nanocomposites". Materials 10, nr 4 (15.04.2017): 418. http://dx.doi.org/10.3390/ma10040418.
Pełny tekst źródłaLiu, Weishu, Xiao Yan, Gang Chen i Zhifeng Ren. "Recent advances in thermoelectric nanocomposites". Nano Energy 1, nr 1 (styczeń 2012): 42–56. http://dx.doi.org/10.1016/j.nanoen.2011.10.001.
Pełny tekst źródła