Gotowa bibliografia na temat „Nanocomposites for thermoelectric applications”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Nanocomposites for thermoelectric applications”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Nanocomposites for thermoelectric applications"
Vignesh, C., K. Vinoth, L. Chinnappa i Jeronsia J. Emima. "Controlled Synthesis of Polyaniline/Iron Oxide Nanocomposites for Thermoelectric Applications". Research Journal of Chemistry and Environment 27, nr 7 (15.06.2023): 23–33. http://dx.doi.org/10.25303/2707rjce023033.
Pełny tekst źródłaTanusilp, Sora-at, i Ken Kurosaki. "Si-Based Materials for Thermoelectric Applications". Materials 12, nr 12 (17.06.2019): 1943. http://dx.doi.org/10.3390/ma12121943.
Pełny tekst źródłaChen, Gang. "Heat Transport in Superlattices and Nanocomposites for Thermoelectric Applications". Advances in Science and Technology 46 (październik 2006): 104–10. http://dx.doi.org/10.4028/www.scientific.net/ast.46.104.
Pełny tekst źródłaVidakis, Nectarios, Markos Petousis, Lazaros Tzounis, Emmanuel Velidakis, Nikolaos Mountakis i Sotirios A. Grammatikos. "Polyamide 12/Multiwalled Carbon Nanotube and Carbon Black Nanocomposites Manufactured by 3D Printing Fused Filament Fabrication: A Comparison of the Electrical, Thermoelectric, and Mechanical Properties". C 7, nr 2 (23.04.2021): 38. http://dx.doi.org/10.3390/c7020038.
Pełny tekst źródłaChang, Sujie, Xiaomin Wang, Qiaoling Hu, Xigui Sun, Aiguo Wang, Xiaojun Dong, Yu Zhang, Lei Shi i Qilei Sun. "Self-Assembled Nanocomposites and Nanostructures for Environmental and Energy Applications". Crystals 12, nr 2 (17.02.2022): 274. http://dx.doi.org/10.3390/cryst12020274.
Pełny tekst źródłaTzounis, Lazaros, Markos Petousis, Sotirios Grammatikos i Nectarios Vidakis. "3D Printed Thermoelectric Polyurethane/Multiwalled Carbon Nanotube Nanocomposites: A Novel Approach towards the Fabrication of Flexible and Stretchable Organic Thermoelectrics". Materials 13, nr 12 (26.06.2020): 2879. http://dx.doi.org/10.3390/ma13122879.
Pełny tekst źródłaKim, Jun Yeob, Jin Young Oh i Tae Il Lee. "Multi-dimensional nanocomposites for stretchable thermoelectric applications". Applied Physics Letters 114, nr 4 (28.01.2019): 043902. http://dx.doi.org/10.1063/1.5080622.
Pełny tekst źródłaDíez-Pascual, Ana M. "Environmentally Friendly Synthesis of Poly(3,4-Ethylenedioxythiophene): Poly(Styrene Sulfonate)/SnO2 Nanocomposites". Polymers 13, nr 15 (25.07.2021): 2445. http://dx.doi.org/10.3390/polym13152445.
Pełny tekst źródłaVeeman, Dhinakaran, M. Varsha Shree, P. Sureshkumar, T. Jagadeesha, L. Natrayan, M. Ravichandran i Prabhu Paramasivam. "Sustainable Development of Carbon Nanocomposites: Synthesis and Classification for Environmental Remediation". Journal of Nanomaterials 2021 (18.09.2021): 1–21. http://dx.doi.org/10.1155/2021/5840645.
Pełny tekst źródłaNozariasbmarz, Amin, Jerzy S. Krasinski i Daryoosh Vashaee. "N-Type Bismuth Telluride Nanocomposite Materials Optimization for Thermoelectric Generators in Wearable Applications". Materials 12, nr 9 (10.05.2019): 1529. http://dx.doi.org/10.3390/ma12091529.
Pełny tekst źródłaRozprawy doktorskie na temat "Nanocomposites for thermoelectric applications"
GALLIANI, DANIELA. "Poly(3,4-ethylendioxythiophene) based materials for thermoelectric applications". Doctoral thesis, Università degli Studi di Milano-Bicocca, 2018. http://hdl.handle.net/10281/199131.
Pełny tekst źródłaIntrinsically conductive polymers (ICPs) are a class of organic materials characterized by unique features. They are lightweight, flexible and easy to process and print, as expected from polymers, but, also, they can conduct electricity up to metallic conductivities. Such an exceptional pairing of characteristics enables the development of flexible and printed electronic devices, which are of a particularly appealing for portable electronic devices, even integrated in the human body (e.g. implantable biosensors) or worn (e.g. smartwatches). Even thermoelectric (TE) application of ICPs recently gained a lot of attention. An organic TE generator (OTEG) can convert heat into electrical energy by means of the Seebeck effect. This technology aims to recover heat produced as low-grade side-product of energy consumption and to transform it into exploitable energy. Even though ICPs showed promising TE properties, their use is still hindered by low TE efficiencies, which cannot compete with the inorganic benchmark (i.e. tellurides). The design of better ICPs for TE application must start from a deep knowledge of which techniques and treatments impact the charge transport features. The intrinsic complexity of ICP systems, however, often makes this task difficult, preventing a full comprehension of the phenomena involved. This PhD project focused on the impact of different parameters on TE properties of ICPs, aiming at the needed deeper understanding on how charge transport is affected. The specific ICP poly(3,4-ethylendioxythiophene) -PEDOT- was investigated modifying different parameters at three different levels of system perturbation. First, the role of polymerization conditions and post-polymerization treatments was studied. Different polymerization techniques, oxidants and solvents have been used for the same ICP, and the occurring changes have been investigated. Moreover, PEDOT oxidation level was tuned to optimize TE efficiency. At a second level, the monomer molecular structure was modified to prepare a PEDOT-based copolymer. The copolymer included conjugated (i.e. conductive) and not conjugated (i.e. not conductive) portions, which deeply impacted the charge transport behaviour. The results show the versatility of this strategy, still barely explored in TE field, and how final transport properties can be finely tuned by means of molecular modifications. Finally, at a third level, PEDOT macroscopic features were tuned by embedding inorganic nanostructure. Such a strategy is usually exploited to improve TE efficiency by means of nanostructuration beneficial effects already known in inorganic materials. Nanoparticles of two different metal oxides (CuO and Mn3O4) of different size and shape were dispersed in PEDOT matrix. Evaluation of humidity and oxidation level effects on charge transport features allowed to obtain novel insights into transport properties in nanocomposites.
Hsieh, Yu-Yun. "Nanostructured Carbon-Based Composites for Energy Storage and Thermoelectric Applications". University of Cincinnati / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=ucin157322525150617.
Pełny tekst źródłaHao, Qing. "Nanocomposites as thermoelectric materials". Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/61606.
Pełny tekst źródłaCataloged from PDF version of thesis.
Includes bibliographical references.
Thermoelectric materials have attractive applications in electric power generation and solid-state cooling. The performance of a thermoelectric device depends on the dimensionless figure of merit (ZT) of the material, defined as ZT = S2o-T / k, where S is the Seebeck coefficient, o is the electrical conductivity, k is the thermal conductivity, and T is the absolute temperature. In recent years, the idea of using nanotechnology to further improve the figure of merit of conventional thermoelectric materials has triggered active research and led to many exciting results. Most of the reported ZT enhancements are based on thin films and nanowires in which the thermal conductivity reduction plays a central role. We pursue the nanocomposite approach as an alternative to superlattices in the quest for high ZT materials. These nanocomposites are essentially nano-grained bulk materials that are synthesized by hot pressing nanoparticles into a bulk form. The interfaces inside a nanocomposite strongly scatter phonons but only slightly affect the charge carrier transport. Therefore, we can significantly reduce the lattice thermal conductivity and even somewhat increase the power factor S2 U, resulting in higher ZT than for bulk materials. Compared with expensive thin-film superlattices, nanocomposites will have significant advantages in mass production, device construction and operation. This thesis covers my studies on bismuth antimony telluride nanocomposites and some recent work on Co 4Sb12-based nanocomposites. In bismuth antimony telluride nanocomposites, we have achieved a peak ZT of 1.4 at 100 'C, a 40% increase in ZT over the bulk material. This is the first significant ZT increase in this material system in fifty years. The same approach has also yielded a peak ZT around 1.2 in Yb filled Co4Sbi 2 nanocomposites. During the process, great efforts were dedicated to assuring accurate and dependable property measurements of thermoelectric nanocomposites. In addition to comparing measurement results between the commercial setups and a homebuilt measurement system, the high ZT obtained in bismuth antimony telluride nanocomposites was further confirmed by a device cooling test. To better understand the measured thermoelectric properties of nanocomposites, theoretical analysis based on the Boltzmann transport equation was performed. Furthermore, frequency-dependent Monte Carlo simulations of the phonon transport were conducted on 2D periodic porous silicon and 3D silicon nanocomposites. In the thermoelectrics field, the latter one provided the first accurate prediction for phonon size effects in a given nanocomposite. For charge carriers in thermoelectric nanocomposites, their transport can be significantly affected by the interfacial electronic states. To address this, impedance measurements were conducted on nanocomposites to determine the electronic barrier height at the grain interfaces, which is critical for the detailed theoretical analysis of the interfacial charge transport and energy conversion processes. Although large amount of work has been done using this technique to understand the defect states and the barrier height on the grain boundaries of polycrystalline silicon or oxides, this method has not been applied to thermoelectric materials. Along another line, a simple bandgap measurement technique with nanopowders was developed based on the Fourier Transform Infrared Spectroscopy. This provided a convenient way to quickly check the bandgaps of various thermoelectric nanocomposites, which is also crucial for theoretical studies.
by Qing Hao.
Ph.D.
Muto, Andrew (Andrew Jerome). "Device testing and characterization of thermoelectric nanocomposites". Thesis, Massachusetts Institute of Technology, 2008. http://hdl.handle.net/1721.1/44915.
Pełny tekst źródłaThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Includes bibliographical references (p. 67-68).
It has become evident in recent years that developing clean, sustainable energy technologies will be one of the world's greatest challenges in the 21st century. Thermoelectric materials can potentially make a contribution by increasing energy efficiency of some systems. Thermoelectric materials may play a role in the large scale energy industry, specifically in the applications of refrigeration and waste heat recovery. In this work a novel thermoelectric material will be tested for conversion efficiency. A Bi₂Te₃ nanocomposite has been developed by the joint effort of Prof. Gang Chen's group at MIT and Prof. Zhifeng Ren's group at Boston College. The material exhibits enhanced thermoelectric properties from optimized nanoscale structures and can be easily manufactured in large quantities. In order to better characterize its performance a novel power conversion measurement system has been developed that can measure the conversion efficiency directly. The measurement system design will be described in detail; important design considerations will be addressed such as measuring heat flux, optimizing the load matching condition and reducing electrical contact resistance. Finally the measured efficiency will be compared to the calculated efficiency from a temperature-dependent properties model. It will be shown that a Ni layer must be attached to the nanocomposite to allow soldering and power conversion testing. Results of this work will show that the nanocomposite efficiency is higher than the commercial standard. Electrical contact remains a challenge in realizing the potential efficiency.
by Andrew Muto.
S.M.
Доброжан, Олександр Анатолійович, Александр Анатольевич Доброжан, Oleksandr Anatoliiovych Dobrozhan, Анатолій Сергійович Опанасюк, Анатолий Сергеевич Опанасюк, Anatolii Serhiiovych Opanasiuk, Денис Ігорович Курбатов i in. "Thermoelectric properties of the colloidal Bi2S3-based nanocomposites". Thesis, Jadavpur University, 2017. http://essuir.sumdu.edu.ua/handle/123456789/65347.
Pełny tekst źródłaLee, Hohyun 1978. "Modeling and characterization of thermoelectric properties of SiGe nanocomposites". Thesis, Massachusetts Institute of Technology, 2009. http://hdl.handle.net/1721.1/50589.
Pełny tekst źródłaPage 164 blank.
Includes bibliographical references.
Direct energy conversion between thermal and electrical energy based on thermoelectric effects is attractive for potential applications in waste heat recovery and environmentally-friendly refrigeration. The energy conversion efficiency is related to the thermoelectric figure of merit ZT, which is proportional to the electrical conductivity, the square of the Seebeck coefficient, and the inverse of the thermal conductivity. Currently, the low ZT values of available materials restrict the large scale applications of this technology. Recently, however, significant enhancements in ZT were reported in nanostructured materials such as superlattices mainly due to their low thermal conductivities. According to the studies on heat transfer mechanisms in nanostructures, the reduced thermal conductivity of nanostructures is mainly attributed to the increased scattering of phonons at interfaces. Based on this idea, nanocomposites are also expected to have a lower thermal conductivity than their bulk counterparts of the same chemical configuration. Nanocomposites are materials with constituents of less than 100 nm in size. They can be fabricated with a low cost just by mixing nano sized particles followed by consolidation of nano sized powders. In this thesis, SiGe nanocomposites are investigated for power generation at high temperature. The material properties are characterized at different temperatures, and the optimized process conditions are explored experimentally. In addition, theoretical studies are carried out for better understanding of transport phenomena and our experimental results.
(cont.) Grain boundaries in nanocomposites can scatter phonons, when their mean free paths are longer than the grain size. Mean free paths of electrons are usually shorter than the grain size of nanocomposites, so that the electrical conductivities of nanocomposites are not expected to change significantly. However, the experimental results show that nanostructures indeed affect electron transport. The grain boundary effects on electron transport are investigated to explain the experiments. Furthermore, the effects of nanosized pores are explored. Our experimental results show that pores in nanocomposites degrade the electrical conductivity more than predicted by effective medium theories. A scattering model is developed to understand the transport phenomena in porous materials. These modeling studies can also be used to guide sample preparation conditions.
by Hohyun Lee.
Ph.D.
Yelgel, Ovgu Ceyda. "Thermoelectric properties of V-VI semiconductor alloys and nanocomposites". Thesis, University of Exeter, 2013. http://hdl.handle.net/10871/14110.
Pełny tekst źródłaDai, Prè Marta/M. "Nanocomposites for optical applications". Doctoral thesis, Università degli studi di Padova, 2012. http://hdl.handle.net/11577/3422168.
Pełny tekst źródłaNegli ultimi anni le nanotecnologie sono diventate uno dei maggiori campi di interesse e di rilevanza scientifica e la ricerca di nuovi materiali riguarda la chimica, la fisica, la medicina e anche l'ingegneria. I nanomateriali vengono classificati in base alla loro dimensione ed al rapporto superficie/volume, caratteristiche che permettono il loro impiego in numerose applicazioni, soprattutto nel campo ottico. In questi lavoro di tesi sono stati valutati differenti nanocompositi sintetizzati con tecniche messe a punto in modo tale da ottenere peculiari caratteristiche di dimensione, distribuzione, omogeneità e di facile produzione, anche a livello industriale. Il progetto di dottorato può essere suddiviso in due parti: a) nanoparticelle e nanocompositi per applicazioni nel fotovoltaico; b) nanoparticelle e nanocompositi che emettono nel NIR. La prima parte del lavoro si inserisce nel progetto Europeo ORION, ovvero "ottimizzazione di celle solari al silicio, materiali plastici e tecnologie per lo sviluppo di più efficienti sistemi fotovoltaici a concentrazione". Ha riguardato principalmente la messa a punto di materiali e di tecnologie dei sistemi a concentrazione tali da riuscire a ridurre il rapporto costo/watt ed aumentare l'efficienza. Sono stati quindi studiati e sviluppati nanocompositi plastici contenenti nanoparticelle che sono in grado di modificare lo spettro solare e di aumentare di conseguenza l'efficienza di assorbimento delle celle solari. Inoltre le proprietà funzionali dei materiali sviluppati sono state messe a punto in termini di processabilità e di prestazioni. Infatti il materiale deve avere buone proprietà ottiche tra cui una trasmittanza dell'85-92% per 1-2 mm di spessore ed una conversione della luce nel range tra 300-500 nm e 600-900 nm. Il polimetilmetacrilato (PMMA) è risultato essere il polimero di selezione per applicazioni ottiche. Diversi tipi di nanoparticelle che assorbono nell'UV, tra cui ZnS:Mn, CdS:Mn e ZnO, sono state sintetizzate utilizzando tecniche colloidali. Sono stati messi a punto protocolli di precipitazione-ridispersione in modo da purificare, concentrare le nanoparticelle e ridisperdere in seguito in appositi solventi organici, dove è solubile anche il PMMA. Dal momento che la maggior parte dell'energia dissipata (~ 52%) dipende dal mismatch spettrale, definito come perdita termica o quantica, mentre la grande parte ad alta energia viene persa sotto forma di calore legato allo scattering di fotoni e quindi riduce maggiormente l'efficienza di conversione dell'energia delle celle solari a base di silicio. La parte dell'ultravioletto (UV) dello spettro solare (circa 7% dell'intero spettro) non può essere sfruttato completamente dalle celle solari al Si. Sono state così valutate le caratteristiche elettro-ottiche prima e dopo deposizione sulla superficie delle celle solari delle stesse nanoparticelle inserite nel polimero determinando l'effetto antiriflesso e della down-shifting sull'efficienza. La seconda parte del lavoro si è focalizzata sulla sintesi di nanoparticelle di Seleniuro di Piombo (PbSe) and di core-shell, dove l'interno di PbSe è rivestito da uno strato di CdSe, così da stabilizzare le proprietà di emissione di questi materiali. Infine queste nanoparticelle sono state incorporate in diverse matrici, tra cui Ormocer e PMMA mantenendo le loro proprietà di luminescenza. Questi nuovi materiali trovano future applicazioni in microcavità ottiche che incorporano quantum dots e litografia.
Akdogan, Volkan. "Thermoelectric power generator for automotive applications". Thesis, University of Nottingham, 2016. http://eprints.nottingham.ac.uk/37702/.
Pełny tekst źródłaAlothman, Abdulmohsen Abdulrahman. "Modeling and Applications of Thermoelectric Generators". Diss., Virginia Tech, 2016. http://hdl.handle.net/10919/79846.
Pełny tekst źródłaPh. D.
Książki na temat "Nanocomposites for thermoelectric applications"
Jayatissa, Ahalapitiya. Applications of Nanocomposites. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003247074.
Pełny tekst źródłaZlatić, Veljko, i Alex C. Hewson, red. Properties and Applications of Thermoelectric Materials. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-90-481-2892-1.
Pełny tekst źródłaFesenko, Olena, i Leonid Yatsenko, red. Nanocomposites, Nanostructures, and Their Applications. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-17759-1.
Pełny tekst źródłaFesenko, Olena, i Leonid Yatsenko, red. Nanocomposites, Nanophotonics, Nanobiotechnology, and Applications. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-06611-0.
Pełny tekst źródłaThomas, Sabu. Rubber nanocomposites: Preparation, properties, and applications. Singapore: John Wiley & Sons, 2010.
Znajdź pełny tekst źródłaTripathy, Deba Kumar, i Bibhu Prasad Sahoo, red. Properties and Applications of Polymer Nanocomposites. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-53517-2.
Pełny tekst źródłaThomas, Sabu. Rubber nanocomposites: Preparation, properties, and applications. Hoboken, N.J: Wiley, 2010.
Znajdź pełny tekst źródłaNATO, Advanced Research Workshop on Properties and Applications of Thermoelectric Materials (2008 Hvar Croatia). Properties and applications of thermoelectric materials: The search for new materials for thermoelectric devices. Dordrecht: Springer, 2009.
Znajdź pełny tekst źródłaNATO Advanced Research Workshop on Properties and Applications of Thermoelectric Materials (2008 Hvar, Croatia). Properties and applications of thermoelectric materials: The search for new materials for thermoelectric devices. Dordrecht: Springer, 2009.
Znajdź pełny tekst źródłaZlatic, Veljko, i Alex Hewson, red. New Materials for Thermoelectric Applications: Theory and Experiment. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-4984-9.
Pełny tekst źródłaCzęści książek na temat "Nanocomposites for thermoelectric applications"
Gregory, Otto J., Ximing Chen, Matin Amani, Brian Monteiro i Andrew Carracia. "Thin Film Nanocomposites for Thermoelectric Applications". W Ceramic Transactions Series, 111–24. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470931011.ch11.
Pełny tekst źródłaGhafari, Ehsan, Frederico Severgnini, Seyedali Ghahari, Yining Feng, Eu Jin Lee, Chaoyi Zhang, Xiaodong Jiang i Na Lu. "Thermoelectric Nanocomposite for Energy Harvesting". W Multifunctional Nanocomposites for Energy and Environmental Applications, 173–202. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527342501.ch8.
Pełny tekst źródłaYao, Qin, Lidong Chen i Sanyin Qu. "Conducting Polymer-Based Nanocomposites for Thermoelectric Applications". W Fundamentals of Conjugated Polymer Blends, Copolymers and Composites, 339–78. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119137160.ch6.
Pełny tekst źródłaMata-Padilla, José M., Carlos Alberto Ávila-Orta, Víctor J. Cruz-Delgado i Juan G. Martínez-Colunga. "Nanostructured Polymers for Thermoelectric Conversion". W Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications, 3393–419. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-36268-3_147.
Pełny tekst źródłaMata-Padilla, José M., Carlos A. Ávila-Orta, Víctor J. Cruz-Delgado i Juan G. Martínez-Colunga. "Nanostructured Polymers for Thermoelectric Conversion". W Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications, 1–27. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-11155-7_147-1.
Pełny tekst źródłaLin, Zongqiong, i Qichun Zhang. "Nanostructured Polymers and Polymer/Inorganic Nanocomposites for Thermoelectric Applications". W Polymer-Engineered Nanostructures for Advanced Energy Applications, 559–76. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57003-7_14.
Pełny tekst źródłaChen, Gang. "Heat Transport in Superlattices and Nanocomposites for Thermoelectric Applications". W Mass and Charge Transport in Inorganic Materials III, 104–10. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/3-908158-02-8.104.
Pełny tekst źródłaShalaby, Mustafa, Salwa Hamdy, Ishtihadah Islam, Kulwinder Kaur, Aamer Nazir i Shakeel Ahmad Khandy. "Bulk and Nanocomposite Thermoelectrics: Synthesis, Properties, and Applications". W Advances in Nanocomposite Materials for Environmental and Energy Harvesting Applications, 959–1016. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-94319-6_31.
Pełny tekst źródłaKlobes, Benedikt, Dimitrios Bessas i Raphaël P. Hermann. "High Energy X-ray and Neutron Scattering on Bi2Te3Nanowires, Nanocomposites, and Bulk Materials". W Thermoelectric Bi2Te3Nanomaterials, 119–39. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527672608.ch7.
Pełny tekst źródłaLan, Yucheng, i Zhifeng Ren. "Thermoelectric Nanocomposites for Thermal Energy Conversion". W NanoScience and Technology, 371–443. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-32023-6_11.
Pełny tekst źródłaStreszczenia konferencji na temat "Nanocomposites for thermoelectric applications"
S, Susithra, Anuradha M. Ashok i Manoharan V K. "Perovskite Oxide Nanocomposites for Thermoelectric Applications". W Proceedings of the First International Conference on Combinatorial and Optimization, ICCAP 2021, December 7-8 2021, Chennai, India. EAI, 2021. http://dx.doi.org/10.4108/eai.7-12-2021.2314603.
Pełny tekst źródłaLee, Hohyun, Daryoosh Vashaee, Xiaowei Wang, Giri Joshi, Gaohua Zhu, Dezhi Wang, Zhifeng Ren i in. "Thermoelectric Transport in Silicon Germanium Nanocomposite". W ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-67436.
Pełny tekst źródłaLiang, Xin-wei, Ning-yu Zeng, Jian Li, Zheng-Yong Huang i Jian-ying Zhao. "Bi2Te3/Ti3C2Tx Nanocomposites and Its Thermoelectric Properties Study". W 2022 IEEE International Conference on High Voltage Engineering and Applications (ICHVE). IEEE, 2022. http://dx.doi.org/10.1109/ichve53725.2022.9961477.
Pełny tekst źródłaSon, Youngsuk, Monalisa Mazumder i Theodorian Borca-Tasciuc. "Anisotropic Thermal Diffusivity Measurements in Nanostructured Samples Using a Photothermoelectric Technique". W ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-16296.
Pełny tekst źródłaSingh, Dhruv, Jayathi Y. Murthy i Timothy S. Fisher. "Thermal Transport in Finite-Sized Nanocomposites". W ASME 2008 Heat Transfer Summer Conference collocated with the Fluids Engineering, Energy Sustainability, and 3rd Energy Nanotechnology Conferences. ASMEDC, 2008. http://dx.doi.org/10.1115/ht2008-56385.
Pełny tekst źródłaYang, Ronggui, Gang Chen i Mildred S. Dresselhaus. "Thermal Conductivity of Core-Shell Nanostructures: From Nanowires to Nanocomposites". W ASME 2005 Summer Heat Transfer Conference collocated with the ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems. ASMEDC, 2005. http://dx.doi.org/10.1115/ht2005-72198.
Pełny tekst źródłaFerrer-Argemi, Laia, Jonathan Sullivan i Jaeho Lee. "Effects of Silicide Inclusion Shape on Thermal Transport of Silicon-Based Nanowires and Nanocomposites for Thermoelectric Applications". W 2019 18th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm). IEEE, 2019. http://dx.doi.org/10.1109/itherm.2019.8757263.
Pełny tekst źródłaLandry, E. S., i A. J. H. McGaughey. "Designing Si/Si1−xGex Superlattices With Tailored Thermal Transport Properties". W ASME 2008 Heat Transfer Summer Conference collocated with the Fluids Engineering, Energy Sustainability, and 3rd Energy Nanotechnology Conferences. ASMEDC, 2008. http://dx.doi.org/10.1115/ht2008-56473.
Pełny tekst źródłaCelik, Emrah, Cagri Oztan, Yiqun Zhou, Roger LeBlanc, Oguz Genc i Sedat Ballikaya. "Enhancement of Thermoelectric Figure of Merit of Bi2Te3 Using Carbon Dots". W ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-88280.
Pełny tekst źródłaSamvedi, Vikas, i Vikas Tomar. "Role of Interface Thermal Boundary Resistance, Straining, and Morphology in Thermal Conductivity of a Set of Si-Ge Superlattices and Biomimetic Si-Ge Nanocomposites". W ASME 2011 Pacific Rim Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Systems. ASMEDC, 2011. http://dx.doi.org/10.1115/ipack2011-52284.
Pełny tekst źródłaRaporty organizacyjne na temat "Nanocomposites for thermoelectric applications"
Shakouri, Ali, Nobby Kobayashi, Zhixi Bian, John Bowers, Art Gossard, Arun Majumdar, Rajeev Ram, Tim Sands, Josh Zide i Lon Bell. Metal-Semiconductor Nanocomposites for High Efficiency Thermoelectric Power Generation. Fort Belvoir, VA: Defense Technical Information Center, grudzień 2013. http://dx.doi.org/10.21236/ada606254.
Pełny tekst źródłaCross, L. E. Nanocomposites for Electronic Applications. Volume 1. Fort Belvoir, VA: Defense Technical Information Center, czerwiec 1993. http://dx.doi.org/10.21236/ada267070.
Pełny tekst źródłaCross, L. E. Nanocomposites for Electronic Applications. Volume 3. Fort Belvoir, VA: Defense Technical Information Center, czerwiec 1993. http://dx.doi.org/10.21236/ada267073.
Pełny tekst źródłaWei, Kung-Hwa. High-Sensitivity Conjugated Polymer/Nanoparticle Nanocomposites for Infrared Sensor Applications. Fort Belvoir, VA: Defense Technical Information Center, marzec 2011. http://dx.doi.org/10.21236/ada538201.
Pełny tekst źródłaStokes, Kevin L., i Charles J. O'Connor. Investigation of Nanophase Materials for Thermoelectric Applications. Fort Belvoir, VA: Defense Technical Information Center, kwiecień 2004. http://dx.doi.org/10.21236/ada424526.
Pełny tekst źródłaFitzgerald, Eugene A., Merton C. Flemings i Mayank Bulsara. Development of Heterostructure Materials for Thermoelectric Device Applications. Fort Belvoir, VA: Defense Technical Information Center, sierpień 2005. http://dx.doi.org/10.21236/ada455752.
Pełny tekst źródłaPavlicek, Anna, red. Polymer Nanocomposites - Additives, properties, applications, environmental aspects (NanoTrust-Dossier No. 052en – February 2020. Vienna: self, 2022. http://dx.doi.org/10.1553/ita-nt-052en.
Pełny tekst źródłaAgarwal, Vivek, Shelton Jacinto i Yanliang Zhang. Thermoelectric Generator Powered Wireless Sensor Node Prototype for Nuclear Applications. Office of Scientific and Technical Information (OSTI), styczeń 2018. http://dx.doi.org/10.2172/1467405.
Pełny tekst źródłaBrittain, W. M. Special Applications RTG Technology Program: Thermoelectric module development summary report. Office of Scientific and Technical Information (OSTI), wrzesień 1988. http://dx.doi.org/10.2172/10176632.
Pełny tekst źródłaReyes-Esqueda, Jorge-Alejandro. Linear and Nonlinear Plasmonics from Isotropic and Anisotropic Integrated Nanocomposites for Quantum Information Applications. Fort Belvoir, VA: Defense Technical Information Center, styczeń 2014. http://dx.doi.org/10.21236/ada596457.
Pełny tekst źródła