Artykuły w czasopismach na temat „Nanocomposite, Electrical Properties”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Nanocomposite, Electrical Properties”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Sabo, Y. T., D. E. A. Boryo, I. Y. Chindo i A. M. Auwal. "Nanocomposites transformed from polystyrene waste/antimony, barium and nickel oxides nanoparticles with improved thermal and electrical properties". Nigerian Journal of Chemical Research 26, nr 2 (5.02.2022): 117–27. http://dx.doi.org/10.4314/njcr.v26i2.7.
Pełny tekst źródłaPolsterova, Helena. "Dielectric Properties of Nanocomposites Based on Epoxy Resin". ECS Transactions 105, nr 1 (30.11.2021): 461–66. http://dx.doi.org/10.1149/10501.0461ecst.
Pełny tekst źródłaV. C. Morais, Manuel, Marco Marcellan, Nadine Sohn, Christof Hübner i Frank Henning. "Process Chain Optimization for SWCNT/Epoxy Nanocomposite Parts with Improved Electrical Properties". Journal of Composites Science 4, nr 3 (14.08.2020): 114. http://dx.doi.org/10.3390/jcs4030114.
Pełny tekst źródłaCho, Kie Yong, A. Ra Cho, Yun Jae Lee, Chong Min Koo, Soon Man Hong, Seung Sangh Wang, Ho Gyu Yoon i Kyung Youl Baek. "Enhanced Electrical Properties of PVDF-TrFE Nanocomposite for Actuator Application". Key Engineering Materials 605 (kwiecień 2014): 335–39. http://dx.doi.org/10.4028/www.scientific.net/kem.605.335.
Pełny tekst źródłaKasım, Hasan, i Murat Yazıcı. "Electrical Properties of Graphene / Natural Rubber Nanocomposites Coated Nylon 6.6 Fabric under Cyclic Loading". Periodica Polytechnica Chemical Engineering 63, nr 1 (18.06.2018): 160–69. http://dx.doi.org/10.3311/ppch.12122.
Pełny tekst źródłaAbou El Fadl, Faten Ismail, Maysa A. Mohamed, Magida Mamdouh Mahmoud i Sayeda M. Ibrahim. "Studying the electrical conductivity and mechanical properties of irradiated natural rubber latex/magnetite nanocomposite". Radiochimica Acta 110, nr 2 (22.11.2021): 133–44. http://dx.doi.org/10.1515/ract-2021-1080.
Pełny tekst źródłaOuis, Nora, Assia Belarbi, Salima Mesli i Nassira Benharrats. "Improvement of Electrical Conductivity and Thermal Stability of Polyaniline-Maghnite Nanocomposites". Chemistry & Chemical Technology 17, nr 1 (27.03.2023): 118–25. http://dx.doi.org/10.23939/chcht17.01.118.
Pełny tekst źródłaAbdulla, Estabraq T. "Synthesis and electrical properties of conductive polyaniline/ SWCNT nanocomposites". Iraqi Journal of Physics (IJP) 15, nr 34 (8.01.2019): 106–13. http://dx.doi.org/10.30723/ijp.v15i34.126.
Pełny tekst źródłaAkhtarian, Shiva, Hadi Veladi i Sajedeh Mohammadi Aref. "Fabrication and characterization of conductive poly(dimethylsiloxane)-carbon nanotube nanocomposites for potential microsensor applications". Sensor Review 39, nr 1 (21.01.2019): 1–9. http://dx.doi.org/10.1108/sr-04-2017-0055.
Pełny tekst źródłaAl-Saleh, Mohammed H., i Mohammad R. Irshidat. "Effect of viscosity reducing agent on the properties of CNT/epoxy nanocomposites". Journal of Polymer Engineering 36, nr 4 (1.05.2016): 407–12. http://dx.doi.org/10.1515/polyeng-2015-0245.
Pełny tekst źródłaZheng, Wenyue, Lulu Ren, Xuetong Zhao, Can Wang, Lijun Yang i Ruijin Liao. "Roles of Al2O3@ZrO2 Particles in Modulating Crystalline Morphology and Electrical Properties of P(VDF-HFP) Nanocomposites". Molecules 27, nr 13 (4.07.2022): 4289. http://dx.doi.org/10.3390/molecules27134289.
Pełny tekst źródłaCuenca-Bracamonte, Quimberly, Mehrdad Yazdani-Pedram i Héctor Aguilar-Bolados. "Electrical Properties of Polyetherimide-Based Nanocomposites Filled with Reduced Graphene Oxide and Graphene Oxide-Barium Titanate-Based Hybrid Nanoparticles". Polymers 14, nr 20 (11.10.2022): 4266. http://dx.doi.org/10.3390/polym14204266.
Pełny tekst źródłaDoagou-Rad, Saeed, Aminul Islam i Jakob Søndergaard Jensen. "Correlation of mechanical and electrical properties with processing variables in MWCNT reinforced thermoplastic nanocomposites". Journal of Composite Materials 52, nr 26 (4.04.2018): 3681–97. http://dx.doi.org/10.1177/0021998318768390.
Pełny tekst źródłaStanciu, Nicoleta-Violeta, Felicia Stan, Ionut-Laurentiu Sandu, Catalin Fetecau i Adriana-Madalina Turcanu. "Thermal, Rheological, Mechanical, and Electrical Properties of Polypropylene/Multi-Walled Carbon Nanotube Nanocomposites". Polymers 13, nr 2 (7.01.2021): 187. http://dx.doi.org/10.3390/polym13020187.
Pełny tekst źródłaYoo, S. H., J. K. Yang, Sung Tag Oh, Kae Myung Kang, Sung Goon Kang, C. J. Lee i Yong Ho Choa. "The Synthesis and Characteristics of Homogenously Dispersed CNT-Al2O3 Nanocomposites by the Thermal CVD Method and Pulsed Electric Current Sintering Process". Solid State Phenomena 121-123 (marzec 2007): 295–98. http://dx.doi.org/10.4028/www.scientific.net/ssp.121-123.295.
Pełny tekst źródłaMin, Daomin, Chenyu Yan, Rui Mi, Chao Ma, Yin Huang, Shengtao Li, Qingzhou Wu i Zhaoliang Xing. "Carrier Transport and Molecular Displacement Modulated dc Electrical Breakdown of Polypropylene Nanocomposites". Polymers 10, nr 11 (30.10.2018): 1207. http://dx.doi.org/10.3390/polym10111207.
Pełny tekst źródłaKandulna, R., U. Das, Ms Rimpi, B. Kachhap i N. Prasad. "Hybrid Polymeric Nanocomposites Based High Performance Oleds: A Review". Shodh Sankalp Journal 1, nr 3 (1.09.2021): 16–34. http://dx.doi.org/10.54051/shodh.2021.1.3.1.
Pełny tekst źródłaZAVYALOV, S. A., E. I. GRIGORIEV, A. S. ZAVYALOV, I. A. MISURKIN, S. V. TITOV, T. S. ZHURAVLEVA, I. V. KLIMENKO, A. N. PIVKINA, E. M. KELDER i J. SCHOONMAN. "STRUCTURE AND PROPERTIES OF TITANIUM–POLYMER THIN FILM NANOCOMPOSITES". International Journal of Nanoscience 04, nr 01 (luty 2005): 149–61. http://dx.doi.org/10.1142/s0219581x05003000.
Pełny tekst źródłaTarawneh, Mou’ad A., Sahrim Ahmad i Ruey Shan Chen. "Mechanical, thermal, and electrical properties of graphene oxide–multiwalled carbon nanotubes-filled thermoplastic elastomer nanocomposite". Journal of Elastomers & Plastics 49, nr 4 (9.08.2016): 345–55. http://dx.doi.org/10.1177/0095244316661753.
Pełny tekst źródłaSahan, Mukhalad S. "Morphological and Electrical properties of Polyvinylpyrrolidone/Multi-walled Carbon Nanotubes Nanocomposite with Graphene". BASRA JOURNAL OF SCIENCE 40, nr 1 (3.06.2022): 128–37. http://dx.doi.org/10.29072/basjs.20220107.
Pełny tekst źródłaSultan, Adil, Sharique Ahmad i Faiz Mohammad. "Synthesis, Characterization and Electrical Properties of Polypyrrole/ Zirconia Nanocomposite and its Application as Ethene Gas Sensor". Polymers and Polymer Composites 25, nr 9 (listopad 2017): 695–704. http://dx.doi.org/10.1177/096739111702500908.
Pełny tekst źródłaABD RAZAK, SAIFUL IZWAN, SHARIF HUSSEIN SHARIF ZEIN i ABDUL LATIF AHMAD. "MnO2-FILLED MULTIWALLED CARBON NANOTUBE/POLYANILINE NANOCOMPOSITES: EFFECT OF LOADING ON THE CONDUCTION PROPERTIES AND ITS PERCOLATION THRESHOLD". Nano 06, nr 01 (luty 2011): 81–91. http://dx.doi.org/10.1142/s1793292011002378.
Pełny tekst źródłaNguyen, Trong Tung, i Ngoc Huyen Duong. "Effect of TiO2Rutile Additive on Electrical Properties of PPy/TiO2Nanocomposite". Journal of Nanomaterials 2016 (2016): 1–6. http://dx.doi.org/10.1155/2016/4283696.
Pełny tekst źródłaAlhashmi Alamer, Fahad. "Highly Conductive Flexible Conductor Based on PEDOT:PSS/MWCNTs Nano Composite". Crystals 13, nr 2 (21.01.2023): 192. http://dx.doi.org/10.3390/cryst13020192.
Pełny tekst źródłaThabet, Ahmed, i Youssef A. Mobarak. "Predictable Models and Experimental Measurements for Electric Properties of Polypropylene Nanocomposite Films". International Journal of Electrical and Computer Engineering (IJECE) 6, nr 1 (1.02.2016): 120. http://dx.doi.org/10.11591/ijece.v6i1.9108.
Pełny tekst źródłaThabet, Ahmed, i Youssef A. Mobarak. "Predictable Models and Experimental Measurements for Electric Properties of Polypropylene Nanocomposite Films". International Journal of Electrical and Computer Engineering (IJECE) 6, nr 1 (1.02.2016): 120. http://dx.doi.org/10.11591/ijece.v6i1.pp120-129.
Pełny tekst źródłaMostaani, F., M. R. Moghbeli i H. Karimian. "Electrical conductivity, aging behavior, and electromagnetic interference (EMI) shielding properties of polyaniline/MWCNT nanocomposites". Journal of Thermoplastic Composite Materials 31, nr 10 (1.11.2017): 1393–415. http://dx.doi.org/10.1177/0892705717738294.
Pełny tekst źródłaPati, Manoj Kumar. "Mechanical, Thermal, Optical and Electrical Properties of Graphene/ Poly (sulfaniic acid) Nanocomposite". Journal of Advance Nanobiotechnology 2, nr 4 (30.08.2018): 39–50. http://dx.doi.org/10.28921/jan.2018.02.25.
Pełny tekst źródłaDul, Sithiprumnea, Alessandro Pegoretti i Luca Fambri. "Effects of the Nanofillers on Physical Properties of Acrylonitrile-Butadiene-Styrene Nanocomposites: Comparison of Graphene Nanoplatelets and Multiwall Carbon Nanotubes". Nanomaterials 8, nr 9 (29.08.2018): 674. http://dx.doi.org/10.3390/nano8090674.
Pełny tekst źródłaChen, Zhou, Junfeng Hu, Jiajun Ju i Tairong Kuang. "Fabrication of Poly(butylene succinate)/Carbon Black Nanocomposite Foams with Good Electrical Conductivity and High Strength by a Supercritical CO2 Foaming Process". Polymers 11, nr 11 (10.11.2019): 1852. http://dx.doi.org/10.3390/polym11111852.
Pełny tekst źródłaSu, Li Fen, Lei Miao i Sakae Tanemura. "ZnO/SiO2 Nanocomposite Cryogels Prepared by Vacuum Freeze Drying". Materials Science Forum 663-665 (listopad 2010): 1242–46. http://dx.doi.org/10.4028/www.scientific.net/msf.663-665.1242.
Pełny tekst źródłaHrenechen, Jeferson Matos, Celso de Araujo Duarte, Ney Pereira Mattoso Filho i Evaldo Ribeiro. "Electrical and Optical Properties of Silicone Oil/Carbon Nanotube Nanocomposites". Journal of Nanoscience and Nanotechnology 21, nr 4 (1.04.2021): 2185–95. http://dx.doi.org/10.1166/jnn.2021.19073.
Pełny tekst źródłaArief, Yanuar Z., Mohd Izairi Ismail, Mohamad Zul Hilmey Makmud, Aulia, Zuraimy Adzis i Nor Asiah Muhamad. "Partial Discharge Characteristics of Natural Rubber Blends with Inorganic Nanofiller as Electrical Insulating Material". Applied Mechanics and Materials 284-287 (styczeń 2013): 188–92. http://dx.doi.org/10.4028/www.scientific.net/amm.284-287.188.
Pełny tekst źródłaHabib, Nasser Abdullah, Buong Woei Chieng, Norkhairunnisa Mazlan, Umer Rashid, Robiah Yunus i Suraya Abdul Rashid. "Elastomeric Nanocomposite Based on Exfoliated Graphene Oxide and Its Characteristics without Vulcanization". Journal of Nanomaterials 2017 (2017): 1–11. http://dx.doi.org/10.1155/2017/8543137.
Pełny tekst źródłaBugaev, N. M., Ekaterina L. Kuznetsova i Kyaw Ye Ko. "Thermophysical and Magnetic Properties of Magnetite – Polyethylene Composite". International Journal of Mechanics 15 (9.09.2021): 165–71. http://dx.doi.org/10.46300/9104.2021.15.19.
Pełny tekst źródłaArmentano, Ilaria, Matteo Gigli, Francesco Morena, Chiara Argentati, Luigi Torre i Sabata Martino. "Recent Advances in Nanocomposites Based on Aliphatic Polyesters: Design, Synthesis, and Applications in Regenerative Medicine". Applied Sciences 8, nr 9 (24.08.2018): 1452. http://dx.doi.org/10.3390/app8091452.
Pełny tekst źródłaRamakrishnaiah, Thejas, Prasanna Gunderi Dhananjaya, Chaturmukha Vakwadi Sainagesh, Sathish Reddy, Swaroop Kumaraswamy i Naveen Chikkahanumajja Surendranatha. "A review: electrical and gas sensing properties of polyaniline/ferrite nanocomposites". Sensor Review 42, nr 1 (5.01.2022): 164–75. http://dx.doi.org/10.1108/sr-02-2021-0051.
Pełny tekst źródłaBilisik, Kadir, i Mahmuda Akter. "Graphene nanoplatelets/epoxy nanocomposites: A review on functionalization, characterization techniques, properties, and applications". Journal of Reinforced Plastics and Composites 41, nr 3-4 (7.10.2021): 99–129. http://dx.doi.org/10.1177/07316844211049277.
Pełny tekst źródłaFilice, Simona, Stefano Boscarino, Mario Scuderi, Sebania Libertino, Clelia Galati, Antonio Terrasi i Silvia Scalese. "AZO Nanoparticles-Decorated CNTs for UV Light Sensing: A Structural, Chemical, and Electro-Optical Investigation". Nanomaterials 13, nr 1 (3.01.2023): 215. http://dx.doi.org/10.3390/nano13010215.
Pełny tekst źródłaVanin, A. I., Yu A. Kumzerov, V. G. Solov’ev, S. D. Khanin, S. E. Gango, M. S. Ivanova, M. M. Prokhorenko, S. V. Trifonov, A. V. Cvetkov i M. V. Yanikov. "Electrical and Optical Properties of Nanocomposites Fabricated by the Introduction of Iodine in Porous Dielectric Matrices". Glass Physics and Chemistry 47, nr 3 (maj 2021): 229–34. http://dx.doi.org/10.1134/s1087659621030123.
Pełny tekst źródłaChandra, R. B. Jagadeesh, B. Shivamurthy, M. Sathish Kumar, Niranjan N. Prabhu i Devansh Sharma. "Mechanical and Electrical Properties and Electromagnetic-Wave-Shielding Effectiveness of Graphene-Nanoplatelet-Reinforced Acrylonitrile Butadiene Styrene Nanocomposites". Journal of Composites Science 7, nr 3 (14.03.2023): 117. http://dx.doi.org/10.3390/jcs7030117.
Pełny tekst źródłaYang, Mei Jun, Wei Jun Luo, Qiang Shen, Hong Yi Jiang i Lian Meng Zhang. "Preparation and Thermoelectric Properties of Bi-Doped Mg2Si Nanocomposites". Advanced Materials Research 66 (kwiecień 2009): 17–20. http://dx.doi.org/10.4028/www.scientific.net/amr.66.17.
Pełny tekst źródłaNOH, HYUN-JI, SUNG-PILL NAM, SUNG-GAP LEE, BYEONG-LIB AHN, WOO-SIK WON, HYOUNG-GWAN WOO i SANG-MAN PARK. "ELECTRICAL AND MECHANICAL CHARACTERISTICS OF EPOXY-NANOCLAY COMPOSITE". Modern Physics Letters B 23, nr 31n32 (30.12.2009): 3925–30. http://dx.doi.org/10.1142/s0217984909022010.
Pełny tekst źródłaDarabi, Marjan, i Masoud Rajabi. "Synthesis of Cu-CNTs nanocomposites via double pressing double sintering method". Metallurgical and Materials Engineering 23, nr 4 (9.01.2018): 319–34. http://dx.doi.org/10.30544/244319.
Pełny tekst źródłaAhmadian Hoseini, Amir Hosein, Elnaz Erfanian, Milad Kamkar, Uttandaraman Sundararaj, Jian Liu i Mohammad Arjmand. "Waste to Value-Added Product: Developing Electrically Conductive Nanocomposites Using a Non-Recyclable Plastic Waste Containing Vulcanized Rubber". Polymers 13, nr 15 (23.07.2021): 2427. http://dx.doi.org/10.3390/polym13152427.
Pełny tekst źródłaAhmed, R. M., i R. M. M. Morsi. "Polymer nanocomposite dielectric and electrical properties with quantum dots nanofiller". Modern Physics Letters B 31, nr 30 (26.10.2017): 1750278. http://dx.doi.org/10.1142/s0217984917502785.
Pełny tekst źródłaWang, Shaojing, Peng Xu, Xiangyi Xu, Da Kang, Jie Chen, Zhe Li i Xingyi Huang. "Tailoring the Electrical Energy Storage Capability of Dielectric Polymer Nanocomposites via Engineering of the Host–Guest Interface by Phosphonic Acids". Molecules 27, nr 21 (25.10.2022): 7225. http://dx.doi.org/10.3390/molecules27217225.
Pełny tekst źródłaMelo, Diego S., Idalci C. Reis, Júlio C. Queiroz, Cicero R. Cena, Bacus O. Nahime, José A. Malmonge i Michael J. Silva. "Evaluation of Piezoresistive and Electrical Properties of Conductive Nanocomposite Based on Castor-Oil Polyurethane Filled with MWCNT and Carbon Black". Materials 16, nr 8 (19.04.2023): 3223. http://dx.doi.org/10.3390/ma16083223.
Pełny tekst źródłaPattanshetti, Virappa Virupaxappa, G. M. Shashidhara i Mysore Guruswamy Veena. "Dielectric and thermal properties of magnesium oxide/poly(aryl ether ketone) nanocomposites". Science and Engineering of Composite Materials 25, nr 5 (25.09.2018): 915–25. http://dx.doi.org/10.1515/secm-2016-0273.
Pełny tekst źródłaBackes, Eduardo H., Fabio R. Passador, Christian Leopold, Bodo Fiedler i Luiz A. Pessan. "Electrical, thermal and thermo-mechanical properties of epoxy/multi-wall carbon nanotubes/mineral fillers nanocomposites". Journal of Composite Materials 52, nr 23 (12.03.2018): 3209–17. http://dx.doi.org/10.1177/0021998318763497.
Pełny tekst źródła