Gotowa bibliografia na temat „Nanocomposite, Electrical Properties”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Nanocomposite, Electrical Properties”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Nanocomposite, Electrical Properties"
Sabo, Y. T., D. E. A. Boryo, I. Y. Chindo i A. M. Auwal. "Nanocomposites transformed from polystyrene waste/antimony, barium and nickel oxides nanoparticles with improved thermal and electrical properties". Nigerian Journal of Chemical Research 26, nr 2 (5.02.2022): 117–27. http://dx.doi.org/10.4314/njcr.v26i2.7.
Pełny tekst źródłaPolsterova, Helena. "Dielectric Properties of Nanocomposites Based on Epoxy Resin". ECS Transactions 105, nr 1 (30.11.2021): 461–66. http://dx.doi.org/10.1149/10501.0461ecst.
Pełny tekst źródłaV. C. Morais, Manuel, Marco Marcellan, Nadine Sohn, Christof Hübner i Frank Henning. "Process Chain Optimization for SWCNT/Epoxy Nanocomposite Parts with Improved Electrical Properties". Journal of Composites Science 4, nr 3 (14.08.2020): 114. http://dx.doi.org/10.3390/jcs4030114.
Pełny tekst źródłaCho, Kie Yong, A. Ra Cho, Yun Jae Lee, Chong Min Koo, Soon Man Hong, Seung Sangh Wang, Ho Gyu Yoon i Kyung Youl Baek. "Enhanced Electrical Properties of PVDF-TrFE Nanocomposite for Actuator Application". Key Engineering Materials 605 (kwiecień 2014): 335–39. http://dx.doi.org/10.4028/www.scientific.net/kem.605.335.
Pełny tekst źródłaKasım, Hasan, i Murat Yazıcı. "Electrical Properties of Graphene / Natural Rubber Nanocomposites Coated Nylon 6.6 Fabric under Cyclic Loading". Periodica Polytechnica Chemical Engineering 63, nr 1 (18.06.2018): 160–69. http://dx.doi.org/10.3311/ppch.12122.
Pełny tekst źródłaAbou El Fadl, Faten Ismail, Maysa A. Mohamed, Magida Mamdouh Mahmoud i Sayeda M. Ibrahim. "Studying the electrical conductivity and mechanical properties of irradiated natural rubber latex/magnetite nanocomposite". Radiochimica Acta 110, nr 2 (22.11.2021): 133–44. http://dx.doi.org/10.1515/ract-2021-1080.
Pełny tekst źródłaOuis, Nora, Assia Belarbi, Salima Mesli i Nassira Benharrats. "Improvement of Electrical Conductivity and Thermal Stability of Polyaniline-Maghnite Nanocomposites". Chemistry & Chemical Technology 17, nr 1 (27.03.2023): 118–25. http://dx.doi.org/10.23939/chcht17.01.118.
Pełny tekst źródłaAbdulla, Estabraq T. "Synthesis and electrical properties of conductive polyaniline/ SWCNT nanocomposites". Iraqi Journal of Physics (IJP) 15, nr 34 (8.01.2019): 106–13. http://dx.doi.org/10.30723/ijp.v15i34.126.
Pełny tekst źródłaAkhtarian, Shiva, Hadi Veladi i Sajedeh Mohammadi Aref. "Fabrication and characterization of conductive poly(dimethylsiloxane)-carbon nanotube nanocomposites for potential microsensor applications". Sensor Review 39, nr 1 (21.01.2019): 1–9. http://dx.doi.org/10.1108/sr-04-2017-0055.
Pełny tekst źródłaAl-Saleh, Mohammed H., i Mohammad R. Irshidat. "Effect of viscosity reducing agent on the properties of CNT/epoxy nanocomposites". Journal of Polymer Engineering 36, nr 4 (1.05.2016): 407–12. http://dx.doi.org/10.1515/polyeng-2015-0245.
Pełny tekst źródłaRozprawy doktorskie na temat "Nanocomposite, Electrical Properties"
Marashdeh, Wajeeh. "Relaxation Behavior and Electrical Properties of Polyimide/Graphene Nanocomposite". University of Cincinnati / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1595850361812632.
Pełny tekst źródłaNygren, Kristian. "Magnetron Sputtering of Nanocomposite Carbide Coatings for Electrical Contacts". Doctoral thesis, Uppsala universitet, Oorganisk kemi, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-302063.
Pełny tekst źródłaNoël, Amélie. "Electrical properties of film-forming polymer/graphene nanocomposites : Elaboration through latex route and characterization". Thesis, Saint-Etienne, EMSE, 2014. http://www.theses.fr/2014EMSE0767/document.
Pełny tekst źródłaPrinted electronics, particularly on flexible and textile substrates, raised a strong interest during the past decades. This project presents a procedure that provides a complete and consistent candidate for conductive inks based on a graphene/polymer nanocomposite material. It consists in the synthesis of conductive inks nanocomposites comprising polymer particles (latex) with low glass transition temperature, Tg, and graphene platelets, for the conductive properties. The conductive particles, named Nanosize Multilayered Graphene (NMG), are prepared by wet grinding delamination of micro-graphite suspensions stabilized by various surfactants and/or polymeric stabilizers. This solvent-free procedure allows the formation of NMG suspensions with low thickness (1-10 sheets). Polymer particles are synthetized by surfactant-free emulsion polymerization with acrylates monomers.Physical blending of latex particles and NMG platelets are performed to obtain conductive nanocomposites inks. Adding NMG induce a low percolation threshold and a sharp increase of the electrical and mechanical properties of the nanocomposites. Moreover, the polymer particles diameters have an impact on these properties.To increase the formation of a well-defined cellular microstructure, the nanocomposites are also synthetized by in situ polymerization in presence of NMG platelets, using emulsion, miniemulsion or dispersion polymerization. The excellent electrical properties of these nanocomposites associated to their flexibility make these materials suitable candidates for the production of conductive inks for textile printing applications
Ayewah, Daniel Osagie Oyinkuro. "Characterization of surfactant dispersed single wall nanotube - polystyrene matrix nanocomposite". Thesis, [College Station, Tex. : Texas A&M University, 2007. http://hdl.handle.net/1969.1/ETD-TAMU-1397.
Pełny tekst źródłaHoussat, Mohammed. "Nanocomposite electrical insulation : multiscale characterization and local phenomena comprehension". Thesis, Toulouse 3, 2020. http://www.theses.fr/2020TOU30211.
Pełny tekst źródłaIn the electrical insulation field, it was demonstrated that nanocomposite (NC) organic/inorganic hybrid materials assure a distinct improvement of their high temperature/high voltage functioning and allow the electrical insulation to strengthen its dielectric properties. Recently, it was shown that some modifications of the electrical properties such as permittivity, dielectric breakdown, partial discharges resistance or lifetime are often awarded to the nanoparticle/matrix interphase, a region where the presence of the nanoparticle changes the matrix properties. Moreover, recent studies show that the nanoparticle surface functionalization allows a better dispersion of the particles within the host matrix. This better dispersion affects the interphase zone and plays a major role in the nanocomposite properties improvement as well. However, the role of the interphase remains theoretical and few experimental results exist to describe this phenomenon. Accordingly, because of its nanometer scale, the interphase properties characterization remains a challenge. Two main studies are carried out, during this thesis work, that can provide a better understanding of structure-properties relationships in polymer nanocomposite. First, Atomic Force Microscopy (AFM) is employed to make at the same time qualitative and quantitative measurements of these interaction zones within Polyimide/Silicon Nitride (PI/Si3N4) nanocomposite. The Peak Force Quantitative Nano Mechanical (PF QNM) AFM mode reveals the presence of the interphase by measuring mechanical properties (Young modulus, deformation or adhesion). Electrostatic force microscope (EFM) mode is used in order to detect and measure the matrix and interphase local permittivity. Moreover, the aim of this work is to present the effect of the surface functionalization of silicon nitride (Si3N4) nanoparticles on the interphase regions. Mechanical and electrical quantitative results permit comparing the interphase dimension and properties between treated and untreated Si3N4 nanoparticles. As a result, this new approach to characterize the nanocomposite interphase zone using local measurements confronts experimental results with theoretical models. A new model based on the obtained experimental results is proposed. In addition, the second part of this study presents a macroscopic investigation on the dielectric properties and breakdown strength of neat polyimide, untreated and treated nanocomposite films. Results reveal the interphase role on the reduction of the electrode polarization (EP) phenomenon due to ionic movements especially at high temperatures. For untreated nanoparticles, these effects are less important due to the aggregate formation. In contrast, an EP drastic decrease is obtained by functionalizing the nanofiller surface with a silane coupling agent. Finally, the high temperature breakdown strength for all samples is investigated and shows a considerable increase of nanocomposites dielectric performance at high temperature compared to neat PI
DeGeorge, Vincent G. "Chemical Partitioning and Resultant Effects on Structure and Electrical Properties in Co-Containing Magnetic Amorphous Nanocomposites for Electric Motors". Research Showcase @ CMU, 2017. http://repository.cmu.edu/dissertations/885.
Pełny tekst źródłaAl, Mafarage Ali M. "Processing and Properties of Multifunctional Two-Dimensional Nanocomposite Based on Single Wall Carbon Nanotubes". Wright State University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=wright1556310855748631.
Pełny tekst źródłaOlenych, I. B., O. I. Aksimentyeva i Yu Yu Horbenko. "Electrical Properties of Hybrid Composites Based on Poly(3,4-ethylenedioxythiophene) with ZnO and Porous Silicon Nanoparticles". Thesis, Sumy State University, 2015. http://essuir.sumdu.edu.ua/handle/123456789/42552.
Pełny tekst źródłaEzat, Gulstan S. "The influence of multi-walled carbon nanotubes on the properties of polypropylene nanocomposite : the enhancement of dispersion and alignment of multiwalled carbon nanotube in polypropylene nanocomposite and its effect on the mechanical, thermal, rheological and electrical properties". Thesis, University of Bradford, 2012. http://hdl.handle.net/10454/5703.
Pełny tekst źródłaNedfors, Nils. "Synthesis and Characterization of Multifunctional Carbide- and Boride-based Thin Films". Doctoral thesis, Uppsala universitet, Oorganisk kemi, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-219040.
Pełny tekst źródłaKsiążki na temat "Nanocomposite, Electrical Properties"
Wang, Qing, i Lei Zhu. Functional polymer nanocomposites for energy storage and conversion. Redaktorzy Wang Qing, Zhu Lei i American Chemical Society. Division of Polymeric Materials: Science and Engineering. Washington, D.C: American Chemical Society, 2010.
Znajdź pełny tekst źródłaWang, Qing. Functional polymer nanocomposites for energy storage and conversion. Washington, D.C: American Chemical Society, 2010.
Znajdź pełny tekst źródłaZnO bao mo zhi bei ji qi guang, dian xing neng yan jiu. Shanghai Shi: Shanghai da xue chu ban she, 2010.
Znajdź pełny tekst źródłaHuang, Xingyi, i Chunyi Zhi. Polymer Nanocomposites: Electrical and Thermal Properties. Springer, 2018.
Znajdź pełny tekst źródłaHuang, Xingyi, i Chunyi Zhi. Polymer Nanocomposites: Electrical and Thermal Properties. Springer, 2016.
Znajdź pełny tekst źródłaHuang, Xingyi, i Chunyi Zhi. Polymer Nanocomposites: Electrical and Thermal Properties. Springer London, Limited, 2016.
Znajdź pełny tekst źródłaAraújo, Ana Cláudia Vaz de. Síntese de nanopartículas de óxido de ferro e nanocompósitos com polianilina. Brazil Publishing, 2021. http://dx.doi.org/10.31012/978-65-5861-120-2.
Pełny tekst źródłaNovel Nanocomposites: Optical, Electrical, Mechanical and Surface Related Properties. MDPI, 2021. http://dx.doi.org/10.3390/books978-3-0365-2248-7.
Pełny tekst źródłaAyyar, Manikandan, Anish Khan, Abdullah Mohammed Ahmed Asiri i Imran Khan. Magnetic Nanoparticles and Polymer Nanocomposites: Structural, Electrical and Optical Properties and Applications [Volume 2]. Elsevier Science & Technology, 2023.
Znajdź pełny tekst źródłaAyyar, Manikandan, Anish Khan, Abdullah Mohammed Ahmed Asiri i Imran Khan. Magnetic Nanoparticles and Polymer Nanocomposites: Structural, Electrical and Optical Properties and Applications, Volume 2. Elsevier Science & Technology, 2023.
Znajdź pełny tekst źródłaCzęści książek na temat "Nanocomposite, Electrical Properties"
Tsekmes, Alex, Peter Morshuis i Gary C. Stevens. "Chapter 8 Electrical Properties of Polymer Nanocomposites". W Tailoring of Nanocomposite Dielectrics, 218–42. Penthouse Level, Suntec Tower 3, 8 Temasek Boulevard, Singapore 038988: Pan Stanford Publishing Pte. Ltd., 2016. http://dx.doi.org/10.1201/9781315201535-9.
Pełny tekst źródłaBhatt, Chandni, Ram Swaroop i A. L. Sharma. "Structural and Electrical Properties of Polymer Nanocomposite Films". W Springer Proceedings in Physics, 373–87. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29096-6_50.
Pełny tekst źródłaSilva, Jaime, Ricardo Simoes i Senentxu Lanceros-Mendez. "Modeling Carbon Nanotube Electrical Properties in CNT/Polymer Composites". W New Frontiers of Nanoparticles and Nanocomposite Materials, 287–95. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/8611_2012_64.
Pełny tekst źródłaShen, Wei, Mengyao Han, Qinrong Li, Daomin Min i Shengtao Li. "Preparation of PP/MgO Nanocomposite Films and Study on Its Dielectric Properties". W Lecture Notes in Electrical Engineering, 582–90. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-1532-1_62.
Pełny tekst źródłaSingh, Sudhanshu, Nitesh Singh Rajput, Deepshikha Rathore i Umesh Kumar Dwivedi. "Development and Electrical Properties of Titanium Dioxide-Based Polymer Nanocomposite Structures". W Lecture Notes in Mechanical Engineering, 271–80. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-4059-2_22.
Pełny tekst źródłaEl Ansary, Zakaria, Ilham Bouknaitir, Silvia Soreto Teixeira, Lamyaa Kreit, Annamaria Panniello, Paola Fini, Marinella Striccoli, Mohamed El Hasnaoui, Luís Cadillon Costa i Mohammed Essaid Achour. "Electrical Properties in PMMA/Carbon-Dots Nanocomposite Films Below the Percolation Threshold". W NATO Science for Peace and Security Series B: Physics and Biophysics, 235–50. Dordrecht: Springer Netherlands, 2020. http://dx.doi.org/10.1007/978-94-024-2018-0_19.
Pełny tekst źródłaTaib, Misliana MD, Suriani Ibrahim i Shaifulazuar Rozali. "Structural and Electrical Properties of Graphene Oxide/Nickel Oxide Based Polymer Nanocomposite". W Lecture Notes in Mechanical Engineering, 981–90. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9505-9_86.
Pełny tekst źródłaMiglietta, Maria Lucia, Brigida Alfano, Tiziana Polichetti, Ettore Massera, Fausta Loffredo, Fulvia Villani, Anna De Girolamo Del Mauro i Paola Delli Veneri. "Investigation on the Sensing Properties at Room Temperature of a Graphene/SnO2 Nanocomposite Towards CO2". W Lecture Notes in Electrical Engineering, 34–39. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-25706-3_6.
Pełny tekst źródłaCarturan, S., A. Antonaci, G. Maggioni, A. Quaranta, M. Tonezzer, R. Milan, G. Mattei i P. Mazzoldi. "Optical Sensing Properties Towards Ethanol Vapors of Au-Polyimide Nanocomposite Films Synthesized by Different Chemical Routes". W Lecture Notes in Electrical Engineering, 51–54. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-90-481-3606-3_6.
Pełny tekst źródłaDesouky, Mai, Ahmed Medhat, Mona Samir, Dina Salah i Amal Kasry. "Structure and Properties Manipulations of Graphene: Towards Developing High Sensitivity Optical and Electrical Sensors". W Advances in Nanocomposite Materials for Environmental and Energy Harvesting Applications, 941–57. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-94319-6_30.
Pełny tekst źródłaStreszczenia konferencji na temat "Nanocomposite, Electrical Properties"
Thaler, Dominic, Nahal Aliheidari i Amir Ameli. "Electrical Properties of Additively Manufactured Acrylonitrile Butadiene Styrene/Carbon Nanotube Nanocomposite". W ASME 2018 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/smasis2018-8002.
Pełny tekst źródłaLi, Hua, i Gang Li. "Computational Analysis of Strain Effects on Electrical Transport Properties of Crystalline Nanocomposite Thin Films". W ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-64641.
Pełny tekst źródłaNgabonziza, Yves, Jackie Li i Carol F. Barry. "Electrical Conductivity and Elastic Properties of MWCNT-PP Nanocomposites". W ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-68431.
Pełny tekst źródłaMinnich, Austin, i Gang Chen. "Modeling the Thermoelectric Properties of Nanocomposites". W ASME 2008 3rd Energy Nanotechnology International Conference collocated with the Heat Transfer, Fluids Engineering, and Energy Sustainability Conferences. ASMEDC, 2008. http://dx.doi.org/10.1115/enic2008-53003.
Pełny tekst źródłaKotin, Igor A., Irina V. Antonova, Regina A. Soots i Victor Ya Prinz. "Electrical properties of nanocomposite graphene-organic monolayers". W 2010 11th International Conference and Seminar of Young Specialists on Micro/Nanotechnologies and Electron Devices (EDM 2010). IEEE, 2010. http://dx.doi.org/10.1109/edm.2010.5568658.
Pełny tekst źródłaReddy, R. J., R. Asmatulu i W. S. Khan. "Electrical Properties of Recycled Plastic Nanocomposites Produced by Injection Molding". W ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-40259.
Pełny tekst źródłaOskouyi, Amirhossein B., Uttandraman Sundararaj i Pierre Mertiny. "A Numerical Model to Study the Effect of Temperature on Electrical Conductivity of Polymer-CNT Nanocomposites". W ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-62602.
Pełny tekst źródłaDas, S. K., i R. Prakash. "Electrical properties of multiwalled carbon nanotubes /polyaniline nanocomposite". W 2009 International Conference on Emerging Trends in Electronic and Photonic Devices & Systems (ELECTRO-2009). IEEE, 2009. http://dx.doi.org/10.1109/electro.2009.5441048.
Pełny tekst źródłaHirano, Y., R. Hanaoka, N. Osawa, K. Miyagi, Y. Fujita i Y. Kanamaru. "Electrical and mechanical properties of nanocomposite materials containing electrically dispersed MWCNTs". W 2016 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP). IEEE, 2016. http://dx.doi.org/10.1109/ceidp.2016.7785466.
Pełny tekst źródłaNgabonziza, Yves, i Jackie Li. "Electrical Conductivity and Elastic Properties of Carbon Nanotube Reinforced Polycarbonate Nanocomposites". W ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-62685.
Pełny tekst źródłaRaporty organizacyjne na temat "Nanocomposite, Electrical Properties"
Barnes, Eftihia, Jennifer Jefcoat, Erik Alberts, Hannah Peel, L. Mimum, J, Buchanan, Xin Guan i in. Synthesis and characterization of biological nanomaterial/poly(vinylidene fluoride) composites. Engineer Research and Development Center (U.S.), wrzesień 2021. http://dx.doi.org/10.21079/11681/42132.
Pełny tekst źródła