Gotowa bibliografia na temat „Nano-waveguides”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Nano-waveguides”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Nano-waveguides"
Cho, Chi-O., Young-Geun Roh, Yeonsang Park, Jae-Soong I, Heonsu Jeon, Beom-Seok Lee, Hye-Won Kim, Young-Ho Choe, Mingyu Sung i J. C. Woo. "Towards nano-waveguides". Current Applied Physics 4, nr 2-4 (kwiecień 2004): 245–49. http://dx.doi.org/10.1016/j.cap.2003.11.020.
Pełny tekst źródłaManaf, N. Aina C., Mohd Hanapiah M. Yusoff i M. Kamil Abd-Rahman. "Optimized Nano-Slot Silicon Waveguide Structures for Optical Sensing Applications". Advanced Materials Research 832 (listopad 2013): 212–17. http://dx.doi.org/10.4028/www.scientific.net/amr.832.212.
Pełny tekst źródłaHou, Zhishan, Siming Sun, Boyuan Zheng, Ruizhu Yang i Aiwu Li. "Stimuli-responsive protein-based micro/nano-waveguides". RSC Advances 5, nr 95 (2015): 77847–50. http://dx.doi.org/10.1039/c5ra15538j.
Pełny tekst źródłaMu, Jianwei, Lin Chen, Xun Li, Wei-Ping Huang, Lionel C. Kimerling i Jurgen Michel. "Hybrid nano ridge plasmonic polaritons waveguides". Applied Physics Letters 103, nr 13 (23.09.2013): 131107. http://dx.doi.org/10.1063/1.4823546.
Pełny tekst źródłaLim, Soon Thor, Ching Eng Png i Aaron J. Danner. "Embedded air core optical nano-waveguides". Journal of the Optical Society of America B 27, nr 10 (2.09.2010): 1937. http://dx.doi.org/10.1364/josab.27.001937.
Pełny tekst źródłaLao, Jieer, Jin Tao, Qi Jie Wang i Xu Guang Huang. "Tunable graphene-based plasmonic waveguides: nano modulators and nano attenuators". Laser & Photonics Reviews 8, nr 4 (26.03.2014): 569–74. http://dx.doi.org/10.1002/lpor.201300199.
Pełny tekst źródłaKhaleefia, Zainab Salam, Sh S. Mahdi i S. Kh Yaseen. "Prospect of CW Raman Laser in Silicon- on- Insulator Nano-Waveguides". Iraqi Journal of Physics (IJP) 18, nr 45 (30.05.2020): 9–20. http://dx.doi.org/10.30723/ijp.v18i45.507.
Pełny tekst źródłaFakhruldeen, H. F., i T. S. Mansour. "Design of Plasmonic NOT Logic Gate Based on Insulator – Metal – Insulator (IMI) waveguides". Advanced Electromagnetics 9, nr 1 (7.04.2020): 91–94. http://dx.doi.org/10.7716/aem.v9i1.1376.
Pełny tekst źródłaWang Zhi, 王智, 张丽梅 Zhang Limei, 陈颖川 Chen Yinchuan i 王健 Wang Jian. "Two Mode Interference for Nano SOI Waveguides". Chinese Journal of Lasers 39, nr 7 (2012): 0705003. http://dx.doi.org/10.3788/cjl201239.0705003.
Pełny tekst źródłaAldaya, I., A. Gil-Molina, J. L. Pita, L. H. Gabrielli, H. L. Fragnito i P. Dainese. "Nonlinear carrier dynamics in silicon nano-waveguides". Optica 4, nr 10 (5.10.2017): 1219. http://dx.doi.org/10.1364/optica.4.001219.
Pełny tekst źródłaRozprawy doktorskie na temat "Nano-waveguides"
Cheemalapati, Surya Venkatasekhar. "Nano-Photonic Waveguides for Chemical and Biomedical Sensing". Scholar Commons, 2016. http://scholarcommons.usf.edu/etd/6204.
Pełny tekst źródłaYou, Jie. "Calculation of bit error rates of optical signal transmission in nano-scale silicon photonic waveguides". Thesis, University College London (University of London), 2017. http://discovery.ucl.ac.uk/1565186/.
Pełny tekst źródłaCleary, Justin. "Surface Plasmon Hosts for Infrared Waveguides and Biosensors, and Plasmons in Gold-Black Nano-Structured Films". Doctoral diss., University of Central Florida, 2010. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/3562.
Pełny tekst źródłaPh.D.
Department of Physics
Sciences
Physics PhD
Mahmoud, Othman Naema. "Modelling Schottky Contact Surface Plasmon Nano-detector". Thesis, Université d'Ottawa / University of Ottawa, 2015. http://hdl.handle.net/10393/33015.
Pełny tekst źródłaHuda, Gazi Mostafa. "Modification of Plasmonic Nano Structures' Absorption and Scattering Under Evanescent Wave Illumination Above Optical Waveguides or With the Presence of Different Material Nano Scale Atomic Force Microscope Tips". UKnowledge, 2014. http://uknowledge.uky.edu/ece_etds/43.
Pełny tekst źródłaAl-Taiy, Hassanain Majeed [Verfasser], i Thomas [Akademischer Betreuer] Schneider. "Investigation of the Stimulated Brillouin Scattering (SBS) Gain Enhancement in Silicon Nano-Waveguides and Applications / Hassanain Majeed Al-Taiy ; Betreuer: Thomas Schneider". Braunschweig : Technische Universität Braunschweig, 2017. http://d-nb.info/1175817775/34.
Pełny tekst źródłaLombardo, David. "Design and Fabrication of Suspended Waveguides With Photonic Grating Structures". University of Dayton / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1591796311145344.
Pełny tekst źródłaKuprenaite, Sabina. "Heterogeneous integration of functional thin films for acoustic and optical devices". Thesis, Bourgogne Franche-Comté, 2019. http://www.theses.fr/2019UBFCD039.
Pełny tekst źródłaThe control of microstructure and surface morphology is essential for the thin films to be applied in optical and acoustic devices. Thin films of TiO2, LaNiO3 and ZnO and their heterostructures in this work were obtained by radio frequency (RF) magnetron sputtering and metalorganic chemical vapor deposition (MOCVD) techniques. The optimization of deposition parameters, such as temperature, total chamber pressure, O2 partial pressure and growth rate, led to high structural quality of functional thin films and their heterostructures. The orientation of epitaxial ZnO and TiO2 thin films was tuned not only through lattice matching with various substrates, but as well through deposition conditions. The optical quality of TiO2 films was mostly optimized through elimination of microstructural defects and increasing oxygen non-stoichiometry. It was shown that microstructural and lattice defects in polycrystalline and epitaxial films played a key role in optical propagation losses. Effect of substrate polarity on the structural, optical and acoustic properties of ZnO-based thin films was studied, as well. The sacrificial and/or seed layers were identified for heterogeneous intégration of functional acoustical and optical films with semiconductor substrates
Vernon, Kristy C. "Strongly localised plasmons in metallic nanostructures". Thesis, Queensland University of Technology, 2008. https://eprints.qut.edu.au/19318/2/Kristy_Vernon_Citation.pdf.
Pełny tekst źródłaVernon, Kristy C. "Strongly localised plasmons in metallic nanostructures". Queensland University of Technology, 2008. http://eprints.qut.edu.au/19318/.
Pełny tekst źródłaKsiążki na temat "Nano-waveguides"
Gordillo, Oscar Adrian Jimenez. Interfacing nanophotonic waveguides with the macro and the nano scales. [New York, N.Y.?]: [publisher not identified], 2022.
Znajdź pełny tekst źródłaCzęści książek na temat "Nano-waveguides"
Chen, Chii-Chang. "Slow Light in Nano-structured Waveguides". W Topics in Applied Physics, 421–26. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-9392-6_21.
Pełny tekst źródłaSchuster, Tobias, René Landgraf, Andreas Finn i Michael Mertig. "Biosensing with Optical Waveguides". W Bio and Nano Packaging Techniques for Electron Devices, 557–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28522-6_28.
Pełny tekst źródłaTakazawa, K., J. Inoue i K. Mitsuishi. "Miniaturized Photonic Circuit Components Constructed from Organic Dye Nanofiber Waveguides". W Nano-Optics and Nanophotonics, 119–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-45082-6_5.
Pełny tekst źródłaRieske, Ralf. "Photonic System Integration of Optical Waveguides in MOEMS". W Bio and Nano Packaging Techniques for Electron Devices, 539–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28522-6_27.
Pełny tekst źródłaChen, Feng, i Javier R. Vázquez de Aldana. "Direct Femtosecond Laser Writing of Optical Waveguides in Dielectrics". W Laser Micro-Nano-Manufacturing and 3D Microprinting, 185–210. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59313-1_6.
Pełny tekst źródłaSemenova, I. V., G. V. Dreiden i A. M. Samsonov. "Nonlinear Bulk Elastic Waves in Layered Solid Waveguides". W Experimental Analysis of Nano and Engineering Materials and Structures, 591–92. Dordrecht: Springer Netherlands, 2007. http://dx.doi.org/10.1007/978-1-4020-6239-1_293.
Pełny tekst źródłaWu, Ming, Hai Rong Liu, Wei Jun Tong i De Xiu Huang. "Design and Analysis of 2D Photonic Crystal Waveguides for High Coupling Efficiency". W Semiconductor Photonics: Nano-Structured Materials and Devices, 27–29. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-471-5.27.
Pełny tekst źródłaWasley, Nicholas Andrew. "Disorder Limited Photon Propagation and Anderson Localisation in Photonic Crystal Waveguides". W Nano-photonics in III-V Semiconductors for Integrated Quantum Optical Circuits, 31–49. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-01514-9_3.
Pełny tekst źródłaTakahara, Junichi. "Negative Dielectric Optical Waveguides for Nano-Optical Guiding". W Plasmonic, 33–62. Jenny Stanford Publishing, 2019. http://dx.doi.org/10.1201/9780429066429-2.
Pełny tekst źródłaZia, Rashid, i Mark Brongersma. "Chapter 7 Metal stripe surface plasmon waveguides". W Advances in Nano-Optics and Nano-Physics, 191–218. Elsevier, 2006. http://dx.doi.org/10.1016/s1871-0018(06)02007-3.
Pełny tekst źródłaStreszczenia konferencji na temat "Nano-waveguides"
Satuby, Yinon, Nikolai Berkovitch i Meir Orenstein. "Coupling of nano-stripe and nano-slot plasmonic waveguides". W 2007 Quantum Electronics and Laser Science Conference. IEEE, 2007. http://dx.doi.org/10.1109/qels.2007.4431683.
Pełny tekst źródłaFeigenbaum, Eyal, i Meir Orenstein. "Plasmonic Coaxial Nano-Cavities and Waveguides". W 2006 IEEE LEOS Annual Meeting. IEEE, 2006. http://dx.doi.org/10.1109/leos.2006.279028.
Pełny tekst źródłaYamauchi, Junji, Takashi Hashimoto, Yuu Wakabayashi i Hisamatsu Nakano. "Polarization converters using optical nano-waveguides". W Integrated Photonics Research, Silicon and Nanophotonics. Washington, D.C.: OSA, 2012. http://dx.doi.org/10.1364/iprsn.2012.im3b.6.
Pełny tekst źródłaYikai Su, Qiang Li, Fangfei Liu, Ziyang Zhang i Min Qiu. "Optical signal processing in silicon nano-waveguides". W 2008 Joint Conference of the Opto-Electronics and Communications Conference (OECC) and the Australian Conference on Optical Fibre Technology (ACOFT). IEEE, 2008. http://dx.doi.org/10.1109/oeccacoft.2008.4610555.
Pełny tekst źródłaYoshida, Yasuhiko, Isamu Wakabayashi i Takayuki Kawahara. "Scaling limit of silicon nano-wire waveguides". W 2016 5th International Symposium on Next-Generation Electronics (ISNE). IEEE, 2016. http://dx.doi.org/10.1109/isne.2016.7543307.
Pełny tekst źródłaHong-Son Chu, Iftikhar Ahmed, Wei-Bin Ewe i Er-Ping Li. "Guiding light in different plasmoic nano-slot waveguides for nano-interconnect application". W Exhibition. IEEE, 2008. http://dx.doi.org/10.1109/apemc.2008.4559944.
Pełny tekst źródłaSun, F., i Z. Zhou. "Size Reduction Technology of SOI-based Nano-waveguides". W 2007 Conference on Lasers and Electro-Optics - Pacific Rim. IEEE, 2007. http://dx.doi.org/10.1109/cleopr.2007.4391270.
Pełny tekst źródłaAsquini, Rita, Luca Martini, Antonio d'Alessandro, Paolo Pasini, Cesare Chiccoli i Claudio Zannoni. "Nano-structured liquid crystal waveguides for optofluidic applications". W 2015 IEEE 15th International Conference on Nanotechnology (IEEE-NANO). IEEE, 2015. http://dx.doi.org/10.1109/nano.2015.7388994.
Pełny tekst źródłaEdwards, Brian, i Nader Engheta. "Suspended MIM Optical Waveguides with Optical Nano-Antennas". W CLEO: QELS_Fundamental Science. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/cleo_qels.2014.ftu2k.1.
Pełny tekst źródłaFox, A. Mark. "Chiral Quantum Photonics in Semiconductor Nano-Photonic Waveguides". W 2019 21st International Conference on Transparent Optical Networks (ICTON). IEEE, 2019. http://dx.doi.org/10.1109/icton.2019.8840202.
Pełny tekst źródła