Gotowa bibliografia na temat „NANO PHASE CHANGE”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „NANO PHASE CHANGE”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "NANO PHASE CHANGE"
Long, Jian You. "Study on Phase-Change Temperature and Latent Heat of Organic Phase-Change Nano-Fluid". Advanced Materials Research 152-153 (październik 2010): 1591–94. http://dx.doi.org/10.4028/www.scientific.net/amr.152-153.1591.
Pełny tekst źródłaChu, Cheng Hung, Ming Lun Tseng, Chiun Da Shiue, Shuan Wei Chen, Hai-Pang Chiang, Masud Mansuripur i Din Ping Tsai. "Fabrication of phase-change Ge_2Sb_2Te_5 nano-rings". Optics Express 19, nr 13 (15.06.2011): 12652. http://dx.doi.org/10.1364/oe.19.012652.
Pełny tekst źródłaSinha-Ray, S., R. P. Sahu i A. L. Yarin. "Nano-encapsulated smart tunable phase change materials". Soft Matter 7, nr 19 (2011): 8823. http://dx.doi.org/10.1039/c1sm05973d.
Pełny tekst źródłaPereira, José, Ana Moita i António Moreira. "An Overview of the Nano-Enhanced Phase Change Materials for Energy Harvesting and Conversion". Molecules 28, nr 15 (30.07.2023): 5763. http://dx.doi.org/10.3390/molecules28155763.
Pełny tekst źródłaLong, Jian You. "Study on Thermal Conductivity of Organic Phase-Change Nano-Fluid". Advanced Materials Research 152-153 (październik 2010): 1579–82. http://dx.doi.org/10.4028/www.scientific.net/amr.152-153.1579.
Pełny tekst źródłaKersting, Benedikt, i Martin Salinga. "Exploiting nanoscale effects in phase change memories". Faraday Discussions 213 (2019): 357–70. http://dx.doi.org/10.1039/c8fd00119g.
Pełny tekst źródłaShi, L. P., i T. C. Chong. "Nanophase Change for Data Storage Applications". Journal of Nanoscience and Nanotechnology 7, nr 1 (1.01.2007): 65–93. http://dx.doi.org/10.1166/jnn.2007.18007.
Pełny tekst źródłaTeng, Tun Ping, Bo Gu Lin i Yun Yu Yeh. "Characterization of Heat Storage by Nanocomposite-Enhanced Phase Change Materials". Advanced Materials Research 287-290 (lipiec 2011): 1448–55. http://dx.doi.org/10.4028/www.scientific.net/amr.287-290.1448.
Pełny tekst źródłaIrwan, M. A. M., C. S. Nor Azwadi, Y. Asako i J. Ghaderian. "Review on numerical simulations for nano-enhanced phase change material (NEPCM) phase change process". Journal of Thermal Analysis and Calorimetry 141, nr 2 (21.11.2019): 669–84. http://dx.doi.org/10.1007/s10973-019-09038-2.
Pełny tekst źródłaRao, Feng, Kun Ren, Yifeng Gu, Zhitang Song, Liangcai Wu, Xilin Zhou, Bo Liu, Songlin Feng i Bomy Chen. "Nano composite Si2Sb2Te film for phase change memory". Thin Solid Films 519, nr 16 (czerwiec 2011): 5684–88. http://dx.doi.org/10.1016/j.tsf.2011.03.015.
Pełny tekst źródłaRozprawy doktorskie na temat "NANO PHASE CHANGE"
Huang, Yaoting. "Fundamental studies on nano-composite phase change materials (PCM) for cold storage applications". Thesis, University of Birmingham, 2019. http://etheses.bham.ac.uk//id/eprint/8844/.
Pełny tekst źródłaXing, Keqiang. "Numerical Investigation on the Heat Transfer Enhancement Using Micro/Nano Phase-Change Particulate Flow". FIU Digital Commons, 2007. http://digitalcommons.fiu.edu/etd/28.
Pełny tekst źródłaHernandez, Gerardo Rodriguez. "Study of mixed mode electro-optical operations of Ge2Sb2Te5". Thesis, University of Oxford, 2017. https://ora.ox.ac.uk/objects/uuid:5bb8c1f5-2f4b-4eb0-a61a-3978af04211f.
Pełny tekst źródłaZhang, Guanhua. "Fabrication, characterization and thermo-physical properties of micro- and nano- scaled phase change materials for thermal energy storage". Thesis, University of Warwick, 2013. http://wrap.warwick.ac.uk/57041/.
Pełny tekst źródłaWang, Yuan. "Liquid-vapour phase change and multiphase flow heat transfer in single micro-channels using pure liquids and nano-fluids". Thesis, University of Edinburgh, 2011. http://hdl.handle.net/1842/5752.
Pełny tekst źródłaJohn, Jimmy. "VO2 nanostructures for dynamically tunable nanophotonic devices". Thesis, Lyon, 2020. http://www.theses.fr/2020LYSEI044.
Pełny tekst źródłaInformation has become the most valuable commodity in the world. This drive to the new information age has been propelled by the ability to transmit information faster, at the speed of light. This erupted the need for finer researches on controlling the information carriers more efficiently. With the advancement in this sector, majority of the current technology for controlling the light, face certain roadblocks like size, power consumption and are built to be passive or are restrained technologically to be less active (Si- backed technology). Even though nothing travels faster than light, the real speed at which information can be carried by light is the speed at which we can modulate or control it. My task in this thesis aimed at investigating the potential of VO2, a phase change material, for nano-photonics, with a specific emphasis on how to circumvent the drawbacks of the material and to design and demonstrate efficient integrated devices for efficient manipulation of light both in telecommunication and visible spectrum. In addition to that we experimentally demonstrate the multipolar resonances supported by VO2 nanocrystals (NCs) can be dynamically tuned and switched leveraging phase change property of VO2. And thus achieving the target tailoring of intrinsic property based on Mie formalism by reducing the dimensions of VO2 structures comparable to the wavelength of operation, creating a scope for user defined tunable metamaterial
Ray, Kamal Kanti. "Characterization of phase state, morphological, mechanical and electrical properties of nano- and macro-dimensional materials". Diss., University of Iowa, 2019. https://ir.uiowa.edu/etd/7017.
Pełny tekst źródłaFay, Aurélien. "Couplage variable entre un qubit de charge et un qubit de phase". Phd thesis, Université Joseph Fourier (Grenoble), 2008. http://tel.archives-ouvertes.fr/tel-00310131.
Pełny tekst źródłaNous avons mesuré par spectroscopie micro-onde les premiers niveaux d'énergie du circuit couplé en fonction des paramètres de contrôle. Les mesures des états quantiques des qubits de charge et de phase sont réalisées par une mesure d'échappement du SQUID dc avec une impulsion de flux nanoseconde appliquée dans celui-ci. La mesure de l'ACPT utilise un nouveau processus quantique : l'état excité de l'ACPT est transféré adiabatiquement vers l'état excité du SQUID durant l'impulsion de flux.
Notre circuit permet de manipuler indépendamment chaque qubit tout comme il permet d'intriquer les états quantiques des deux circuits. Nous avons observé des anti-croisements des niveaux d'énergie des deux qubits lorsqu'ils sont mis en résonance. Le couplage a été mesuré sur une large gamme de fréquence, pouvant varier de 60 MHz à 1.1 GHz. Nous avons réussi à obtenir un couplage variable entre le qubit de charge et le qubit de phase. Nous avons analysé théoriquement la dynamique quantique de notre circuit. Cette analyse a permis de bien expliquer le couplage variable mesuré par une combinaison entre un couplage Josephson et un couplage capacitif entre les deux qubits.
Guen, Eloise. "Microscopie thermique à sonde locale : Etalonnages, protocoles de mesure et applications quantitatives sur des matériaux nanostructurés". Thesis, Lyon, 2020. http://www.theses.fr/2020LYSEI003.
Pełny tekst źródłaScanning thermal microscopy (SThM) is a technique that allows characterizing the thermal properties of nanomaterials and helps understanding heat transfer at submicron scales. To interpret the measurements, parameters influencing heat transfer between the probe and the sample are studied. Firstly, three resistive SThM probes, differing in particular by their micro and nanometric radii of curvature, are analyzed and a systematic methodology for the measurements is proposed. It is put forward that the sensitive zone to thermal conductivity of bulk planar materials is limited to few W.m-1.K-1 for the three probes. For the more conductive materials, SThM measurements are dominated by interfacial thermal resistance. Heat transfer at the solid-solid nanocontact between the probe and the sample can be both ballistic and diffusive. It is further demonstrated that surface roughness strongly impacts SThM measurements, decreasing heat transfer at the contact by more than 50 % in some cases. This work is used for characterizations of nanomaterials. The determination of the thermal conductivity of SiO2 thin film on silicon substrate indicates that thicknesses of a few nanometers up to 1 µm are detected by certain probes. Phase transition temperature measurement by SThM is also studied, using a calibration with bulk polymers. The application of this calibration for the characterization of polymer thin films demonstrates the influence of the substrate and the thin film thickness on the temperature determined by SThM. These results demonstrate that scanning thermal microscopy allows obtaining quantitative measurements
Maaza, Malik. "Latent and thermal energy storage enhancement of silver nanowires-nitrate molten salt for concentrated solar power". University of Western Cape, 2020. http://hdl.handle.net/11394/8038.
Pełny tekst źródłaPhase change material (PCM) through latent heat of molten salt, is a convincing way for thermal energy storage in CSP applications due to its high volume density. Molten salt, with (60% NaNO3 and 40% KNO3) has been used extensively for energy storage however; the low thermal conductivity and specific heat have limited its large implementation in solar applications. For that, molten salt with the additive of silver nanowires (AgNWs) was synthesized and characterized. This research project aims to investigate the thermophysical properties enhancement of nanosalt (Mixture of molten salt and silver nanowires). The results obtained showed that by simply adjusting the temperature, Silver nanowires with high aspect ratio have been synthesized through the enhanced PVP polyol process method. SEM results revealed a network of silver nanowires and TEM results confirmed the presence of silver nanowires with an average diameter of 129 nm and 16 μm in length.
Części książek na temat "NANO PHASE CHANGE"
Wu, Liangcai, i Zhitang Song. "Phase Change Materials for Memory Application". W Advanced Nano Deposition Methods, 267–84. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2016. http://dx.doi.org/10.1002/9783527696406.ch14.
Pełny tekst źródłaPapade, C. V., i A. B. Kanase-Patil. "Nano-Mixed Phase Change Material for Solar Cooker Application". W Engineering Optimization: Methods and Applications, 165–75. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-4502-1_8.
Pełny tekst źródłaKannan, K. Gopi, R. Kamatchi i D. Dsilva Winfred Rufuss. "Potential Applications of Nano-Enhanced Phase Change Material Composites". W Composite and Composite Coatings, 233–42. New York: CRC Press, 2022. http://dx.doi.org/10.1201/9781003109723-13.
Pełny tekst źródłaValance, S., M. Coref, J. Réthoré i R. de Borsf. "Solid Phase Change Observation Using Digital Image Correlation". W Experimental Analysis of Nano and Engineering Materials and Structures, 465–66. Dordrecht: Springer Netherlands, 2007. http://dx.doi.org/10.1007/978-1-4020-6239-1_231.
Pełny tekst źródłaSundararajan, Swati, i Asit B. Samui. "Smart Nano-Enhanced Organic Phase Change Materials for Thermal Energy Storage Applications". W Advanced Polymeric Systems, 3–29. New York: River Publishers, 2022. http://dx.doi.org/10.1201/9781003337058-2.
Pełny tekst źródłaAthikesavan, Muthu Manokar, Fausto Pedro García Márquez, Mohamed Thalib Mohamed Rafeek i Ravishankar Sathyamurthy. "Annual Yield, Energy and Economic Analysis of Tubular Solar Stills with Phase Change Material and Nano-enhanced Phase Change Material". W Proceedings of the Fifteenth International Conference on Management Science and Engineering Management, 463–72. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-79206-0_35.
Pełny tekst źródłaHayat, Muhammad Aamer, i Yong Chen. "A Brief Review on Nano Phase Change Material-Based Polymer Encapsulation for Thermal Energy Storage Systems". W Springer Proceedings in Energy, 19–26. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63916-7_3.
Pełny tekst źródłaBora, Neetu, Jaspreet Singh Aulakh i Deepika P. Joshi. "Thermal Properties of Nano-SiO2/Paraffin Composite Phase Change Material for Thermal Energy Storage". W Green Energy and Technology, 367–74. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-2279-6_31.
Pełny tekst źródłaVaradaraj, Praveen Kumar, Sandeep D., Ravi Kiran N., Balaji Padya i P. K. Jain. "Xylitol Based Phase Change Material with Graphene Nano Platelets as Fillers for Thermal Energy Management". W Learning and Analytics in Intelligent Systems, 551–58. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-24314-2_66.
Pełny tekst źródłaSoni, Vikram, i Arvind Kumar. "Behavior of Nano-enhanced Phase Change Material in a Spherical Thermal Battery During Unrestricted Melting". W Advances in Energy Research, Vol. 1, 309–19. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2666-4_31.
Pełny tekst źródłaStreszczenia konferencji na temat "NANO PHASE CHANGE"
Shi, L. P., T. C. Chong, X. Q. Wei, R. Zhao, W. J. Wang, H. X. Yang, H. K. Lee i in. "Investigation of Nano-Phase Change for Phase Change Random Access Memory". W 2006 7th Annual Non-Volatile Memory Technology Symposium. IEEE, 2006. http://dx.doi.org/10.1109/nvmt.2006.378881.
Pełny tekst źródłaZeng, Xie, Haifeng Hu, Yongkang Gao, Dengxin Ji, Nan Zhang, Haomin Song, Kai Liu i Qiaoqiang Gan. "Phase change dispersion of plasmonic nano-objects". W CLEO: Applications and Technology. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/cleo_at.2015.jtu5a.76.
Pełny tekst źródłaBaris, Oksen T., i Sanjiv Sinha. "Nano-Structured Phase Change Materials and Their Calorimetry". W ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-11799.
Pełny tekst źródłaBurrow, Joshua A., Md Shah Alam, Evan M. Smith, Riad Yahiaoui, Ryan Laing, Piyush J. Shah, Thomas Searles i in. "Reconfigurable chiral phase change nanomaterials". W CLEO: Science and Innovations. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/cleo_si.2023.sm3h.6.
Pełny tekst źródłaShi, Luping. "Nano Phase Change for Data Storage and Beyond". W Joint International Symposium on Optical Memory and Optical Data Storage. Washington, D.C.: OSA, 2011. http://dx.doi.org/10.1364/isom_ods.2011.otub4.
Pełny tekst źródłaZeng, Xie, Haifeng Hu, Yongkang Gao, Dengxin Ji, Nan Zhang, Haomin Song, Kai Liu i Qiaoqiang Gan. "Revealing dispersive phase change in plasmonic nano-objects". W Frontiers in Optics. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/fio.2015.fm3b.5.
Pełny tekst źródłaKawabata, Ken-ichi, Rei Asami, Takashi Azuma, Hideki Yoshikawa i Shin-ichiro Umemura. "Cavitation assisted HIFU with phase-change nano droplet". W 2008 IEEE Ultrasonics Symposium (IUS). IEEE, 2008. http://dx.doi.org/10.1109/ultsym.2008.0187.
Pełny tekst źródłaMiao, X. S., B. J. Zeng, Z. Li i W. L. Zhou. "Nanopatterning by phase change nanolithography". W 2012 7th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS). IEEE, 2012. http://dx.doi.org/10.1109/nems.2012.6196708.
Pełny tekst źródłaLi, Yiming, Chih-Hong Hwang, Yi-Ting Kuo i Hui-Wen Cheng. "Structure Effect of Cylindrical-Shaped GeSbTe Alloy on Phase Transition in Phase Change Memory". W 2008 8th IEEE Conference on Nanotechnology (NANO). IEEE, 2008. http://dx.doi.org/10.1109/nano.2008.109.
Pełny tekst źródłaColburn, Shane, Alan Zhan, Sanchit Deshmukh, Jason Myers, Jesse Frantz, Eric Pop i Arka Majumdar. "Metasurfaces Based on Nano-Patterned Phase-Change Memory Materials". W CLEO: Science and Innovations. Washington, D.C.: OSA, 2017. http://dx.doi.org/10.1364/cleo_si.2017.sm3n.6.
Pełny tekst źródłaRaporty organizacyjne na temat "NANO PHASE CHANGE"
Wicker, Louise, i Nissim Garti. Entrapment and controlled release of nutraceuticals from double emulsions stabilized by pectin-protein hybrids. United States Department of Agriculture, październik 2004. http://dx.doi.org/10.32747/2004.7695864.bard.
Pełny tekst źródła