Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Nano-hybrid Gels.

Artykuły w czasopismach na temat „Nano-hybrid Gels”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 16 najlepszych artykułów w czasopismach naukowych na temat „Nano-hybrid Gels”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Echeverría, Coro, Miguel Rubio i Daniel López. "Thermo-Reversible Hybrid Gels Formed from the Combination of Isotactic Polystyrene and [Fe(II) (4-Octadecyl-1,2,4-Triazole)3(ClO4)2]n Metallo-Organic Polymer: Thermal and Viscoelastic Properties". Polymers 11, nr 6 (1.06.2019): 957. http://dx.doi.org/10.3390/polym11060957.

Pełny tekst źródła
Streszczenie:
Nano-sized one-dimensional metallo-organic polymers, characterized by the phenomenon of spin transition, are excellent candidates for advanced technological applications such as optical sensors, storage, and information processing devices. However, the main drawback of this type of polymers is their fragile mechanical properties, which hinders its processing and handling, and makes their practical use unfeasible. To overcome this problem, in this work, hybrid thermo-reversible gels are synthesized by combination of a metallo-organic polymer and isotactic polystyrene (iPS) in cis-decaline. A detailed investigation of the thermal and viscoelastic properties of the hybrid gels, in terms of iPS and metallo-organic polymer concentration is performed by means of differential scanning calorimetry and oscillatory rheology, respectively. From the analysis of the thermal properties, three transitions have been determined upon heating: Monotectic transition of the iPS gel, melting of the iPS gel, and melting of the metal-organic polymer gel, which suggest that the gels of the two polymers are formed independently in the hybrid gel, as long as the two polymers are in concentrations above the corresponding critical gelation concentrations. Results regarding viscoelastic properties and morphology confirmed that hybrid gels consisted of an interpenetrated network of polymer gels, formed by iPS and metallo-organic poymer gels growing independently.
Style APA, Harvard, Vancouver, ISO itp.
2

Notley, Shannon M., i Drew R. Evans. "Aqueous processing of graphene–polymer hybrid thin film nano-composites and gels". Advances in Colloid and Interface Science 209 (lipiec 2014): 196–203. http://dx.doi.org/10.1016/j.cis.2014.04.006.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Bag, Braja Gopal, Abir Chandan Barai, Sk Nurul Hasan, Saikat Kumar Panja, Subrata Ghorai i Soumen Patra. "Terpenoids, nano-entities and molecular self-assembly". Pure and Applied Chemistry 92, nr 4 (28.04.2020): 567–77. http://dx.doi.org/10.1515/pac-2019-0812.

Pełny tekst źródła
Streszczenie:
AbstractPlant metabolites being renewable in nature have tremendous significance for the development of a sustainable society. In this manuscript we show that, terpenoids having nanometric lengths, commonly having several functional groups and several centers of chirality, can be utilized as renewable Molecular Functional Nanos (MFNs). The terpenoids spontaneously self-assembled in liquids yielding different morphologies such as vesicles, tubes, flowers, petals and fibers of nano- to micro-meter dimensions and supramolecular gels. The self-assemblies were utilized for the entrapment and release of fluorophores including anticancer drug, pollutant capture, generation of hybrid materials and catalysis.
Style APA, Harvard, Vancouver, ISO itp.
4

Shi, Jun, Li Zhang, Yingliang Liu, Shengang Xu i Shaokui Cao. "Biomineralized organic–inorganic hybrids aiming for smart drug delivery". Pure and Applied Chemistry 86, nr 5 (19.05.2014): 671–83. http://dx.doi.org/10.1515/pac-2013-0112.

Pełny tekst źródła
Streszczenie:
AbstractOrganic–inorganic hybrid materials have received great interest in the last 10 years in the controlled drug delivery area because of their excellent biocompatible, biomimetic, and pH-sensitive properties. Biomineralization is a biomineral-inspired route to prepare novel organic–inorganic hybrids, which involves a diffusion-controlled deposition of inorganic minerals within porous polymeric matrices. Proper combination of controlled biomineralization technique with the rational choice of polymer templates would lead to the successful development of smart self-assembled drug carriers. The present work mainly summarizes our recent work about the biomineralized organic–inorganic hybrid materials aiming for smart drug delivery including hybrid beads, membranes, and micro/nano gels. Furthermore, prospect for future development of the smart organic–inorganic hybrids is also discussed.
Style APA, Harvard, Vancouver, ISO itp.
5

Arruda, Marcela Monice, Marina Augusto Toppino, Gabriela Monteiro Barbosa, Hilton Túlio Costi, Cecy Martins Silva i Jesuína Lamartine Nogueira Araújo. "Effect of Fluoride Gels on the Surface Roughness of Different Composite Resins". Open Dentistry Journal 14, nr 1 (15.10.2020): 474–81. http://dx.doi.org/10.2174/1874210602014010474.

Pełny tekst źródła
Streszczenie:
Background: The pH of fluoride gels influences the roughness of composite resins, which affects their clinical durability. Objective: To evaluate the effect of fluoride gels (1.23% acidified phosphate fluoride and neutral fluoride) on the morphology of different composite resins after finishing and polishing. Methods: We prepared sixty specimens with a diameter of 5 mm and a height of 2 mm. The specimens were then divided into six groups (n = 10), according to the type of composite resin (Z250 micro-hybrid (Z), Filtek Z350 XT nanoparticles (XT), and Tetric N-Ceram nano-hybrid (TC)) and fluoride gel treatment (1.23% acidified phosphate (APF) or neutral fluoride (NF)) to measure surface roughness (Ra). The material was light-cured using an LED-curing unit (Elipar Freelight Deep Cure-3M/ESPE) for 20 s with a light intensity of 1.200 mW/cm2. Ra measurements were performed before and after treatment with different fluoride gels using a rugosimeter (Mitutoyo SJ210). After Ra, we selected two samples from each group for evaluation using scanning electron microscopy. Data were analyzed using the Shapiro-Wilk, ANOVA, and Tukey tests, with a significance of 5%. Results: The average Ra before and after NF did not differ statistically. The average Ra values of the groups treated with APF showed statistically significant differences. The photomicrographs of the groups treated with NF were similar to those of the groups without fluoride treatment. The APF-treated groups showed significant morphological changes. Conclusion: NF did not promote changes in the morphology of the evaluated composite resins, in contrast to APF, which caused significant changes.
Style APA, Harvard, Vancouver, ISO itp.
6

He, Fang, Hai Lei Zhao, Xian Hui Qu, Wei Hua Qiu i Wei Jiang Wu. "Synthesis and Properties of Silica Aerogel by Using Acid Silica Sol and TEOS as Silicon Sources". Key Engineering Materials 336-338 (kwiecień 2007): 1509–12. http://dx.doi.org/10.4028/www.scientific.net/kem.336-338.1509.

Pełny tekst źródła
Streszczenie:
Silica aerogels were synthesized from hybrid silicon sources of TEOS and acid silica sol by two-step sol-gel method and supercritical drying. Different chemical compositions of the starting solution were altered in order to make an insight into the relationship between process parameters and the microstructural characteristics of resulting silica aerogels. The results indicate that a certain amount of acid silica sol may promote the gelation process while excessive nano-scaled silica particles easily result in dense structure and low specific surface area. The gelation time increases with the increasing water amount. Excessive water will lead to weak network structure of silica gels and thus larger shrinkage and lower porosity of the resulting silica aerogels.
Style APA, Harvard, Vancouver, ISO itp.
7

Marelli, Benedetto, Chiara E. Ghezzi, Dirk Mohn, Wendelin J. Stark, Jake E. Barralet, Aldo R. Boccaccini i Showan N. Nazhat. "Accelerated mineralization of dense collagen-nano bioactive glass hybrid gels increases scaffold stiffness and regulates osteoblastic function". Biomaterials 32, nr 34 (grudzień 2011): 8915–26. http://dx.doi.org/10.1016/j.biomaterials.2011.08.016.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Boffito, Monica, Carlotta Pontremoli, Sonia Fiorilli, Rossella Laurano, Gianluca Ciardelli i Chiara Vitale-Brovarone. "Injectable Thermosensitive Formulation Based on Polyurethane Hydrogel/Mesoporous Glasses for Sustained Co-Delivery of Functional Ions and Drugs". Pharmaceutics 11, nr 10 (1.10.2019): 501. http://dx.doi.org/10.3390/pharmaceutics11100501.

Pełny tekst źródła
Streszczenie:
Mini-invasively injectable hydrogels are widely attracting interest as smart tools for the co-delivery of therapeutic agents targeting different aspects of tissue/organ healing (e.g., neo-angiogenesis, inflammation). In this work, copper-substituted bioactive mesoporous glasses (Cu-MBGs) were prepared as nano- and micro-particles and successfully loaded with ibuprofen through an incipient wetness method (loaded ibuprofen approx. 10% w/w). Injectable hybrid formulations were then developed by dispersing ibuprofen-loaded Cu-MBGs within thermosensitive hydrogels based on a custom-made amphiphilic polyurethane. This procedure showed almost no effects on the gelation potential (gelation at 37 °C within 3–5 min). Cu2+ and ibuprofen were co-released over time in a sustained manner with a significantly lower burst release compared to MBG particles alone (burst release reduction approx. 85% and 65% for ibuprofen and Cu2+, respectively). Additionally, released Cu2+ species triggered polyurethane chemical degradation, thus enabling a possible tuning of gel residence time at the pathological site. The overall results suggest that hybrid injectable thermosensitive gels could be successfully designed for the simultaneous localized co-delivery of multiple therapeutics.
Style APA, Harvard, Vancouver, ISO itp.
9

Tan, Qiaoyin, Cuicui Wu, Lei Li, Weide Shao i Min Luo. "Nanomaterial-Based Prosthetic Limbs for Disability Mobility Assistance: A Review of Recent Advances". Journal of Nanomaterials 2022 (31.03.2022): 1–10. http://dx.doi.org/10.1155/2022/3425297.

Pełny tekst źródła
Streszczenie:
The emergence of new hybrid nanomaterial has enabled prosthetic devices to have more performance and significantly improved the quality of life of the disabled. Due to the biosensing properties of prosthetic limbs made of nanomaterials, a large number of nanocomposites have been designed, developed, and evaluated for various prosthetic limbs, such as e-skin, e-skin’s neurotactility sensing, human prosthetic interface tissue engineering, bones, and biosensors. Nano-based materials are also considered to be the new generation of scientific and technological materials for the preparation of various prosthetic devices for the disabled, which can effectively improve the sense of use of the disabled and achieve functional diversity. The study described various nanomaterials for prosthetic devices, and introduced some basic components of nanocomposites; their applications are in three areas, such as bone, skin, and nerve, and evaluated and summarized the advantages of these applications. The results show that (1) carbon-based nanomaterials as neural materials have been studied most deeply. Due to that strong stability of the carbon-based material and the simple transmission mechanism, the cost can be controlled in manufacturing the artificial limb. Materials with human-computer interaction function are the research focus in the future. (2) Skin nanomaterials are mainly composite materials, generally containing metal- and carbon-based materials. Ionic gels, ionic liquids, hydrogels, and elastomers have become the focus of attention due to the sensitivity, multimodal, and memory properties of their materials. (3) Outstanding nanomaterials for bone are fibrous materials, metallic synthetic materials, and composite materials, with extremely high hardness, weight, and toughness. Of the skeletal materials, the choice of prosthetic socket material is the most important and is typically based on fiber laminate composites. Some of these materials make sensors for durability and performance that can be used for large-scale clinical testing.
Style APA, Harvard, Vancouver, ISO itp.
10

Javed, Bilal, Xinyi Zhao, Daxiang Cui, James Curtin i Furong Tian. "Enhanced Anticancer Response of Curcumin- and Piperine-Loaded Lignin-g-p (NIPAM-co-DMAEMA) Gold Nanogels against U-251 MG Glioblastoma Multiforme". Biomedicines 9, nr 11 (21.10.2021): 1516. http://dx.doi.org/10.3390/biomedicines9111516.

Pełny tekst źródła
Streszczenie:
Glioblastoma multiforme (GBM) is the most aggressive and commonly diagnosed brain cancer and is highly resistant to routine chemotherapeutic drugs. The present study involves the synthesis of Lignin-g-p (NIPAM-co-DMAEMA) gold nanogel, loaded with curcumin and piperine, to treat GBM. The ongoing study has the application potential to (1) overcome the limitations of drugs biodistribution, (2) enhance the toxicity of anticancer drugs against GBM, and (3) identify the drugs uptake pathway. Atom transfer radical polymerization was used to synthesize the Lignin-g-PNIPAM network, crosslinked with the gold nanoparticles (GNPs) to self-assemble into nanogels. The size distribution and morphological analysis confirmed that the drug-loaded gold nanogels are spherical and exist in the size of 180 nm. The single and combinatorial toxicity effects of curcumin- and piperine-loaded Lignin-g-p (NIPAM-co-DMAEMA) gold nanogels were studied against U-251 MG GBM cells. A cytotoxicity analysis displayed anticancer properties. IC50 of curcumin- and piperine-loaded gold nanogels were recorded at 30 μM and 35 μM, respectively. Immunostaining and Western blot analysis confirmed the protein expression of caspase-3 and cleaved caspase-3 in cells treated with drug-loaded nanogels. Kinetic drug release revealed 86% release of hybrid curcumin–piperine from gold nanogel after 250 min at pH 4. Atomic absorption spectroscopic analysis confirmed that the drug-loaded nanogels have better internalization or association with the cancer cells than the GNPs or nano-gels alone. Morphological studies further confirmed that the curcumin and piperine nanogels penetrate the cells via endocytic pathways and induce caspase-3-related apoptosis. The experimental evidence shows the enhanced properties of combinatorial curcumin–piperine gold nanogels (IC50: 21 μM) to overcome the limitations of conventional chemotherapeutic treatments of glioma cells.
Style APA, Harvard, Vancouver, ISO itp.
11

Bag, Braja Gopal, i Shib Shankar Dash. "Self-assembly of sodium and potassium betulinates into hydro- and organo-gels: entrapment and removal studies of fluorophores and synthesis of gel–gold nanoparticle hybrid materials". RSC Advances 6, nr 21 (2016): 17290–96. http://dx.doi.org/10.1039/c5ra25167b.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Kuznetsov, Vyacheslav A., Petr O. Kushchev, Irina V. Ostankova, Alexander Yu Pulver, Natalia A. Pulver, Stanislav V. Pavlovich i Rimma A. Poltavtseva. "Modern Approaches to the Medical Use of pH- and Temperature-Sensitive Copolymer Hydrogels (Review)". Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases 22, nr 4 (15.12.2020): 417–29. http://dx.doi.org/10.17308/kcmf.2020.22/3113.

Pełny tekst źródła
Streszczenie:
This article provides the review of the medical use of pH- and temperature-sensitive polymer hydrogels. Such polymers are characterised by their thermal and pH sensitivity in aqueous solutions at the functioning temperature of living organisms and can react to the slightest changes in environmental conditions. Due to these properties, they are called stimuli-sensitive polymers. This response to an external stimulus occurs due to the amphiphilicity (diphilicity) of these (co)polymers. The term hydrogels includes several concepts of macrogels and microgels. Microgels, unlike macrogels, are polymer particles dispersed in a liquid and are nano- or micro-objects. The review presents studies reflecting the main methods of obtainingsuch polymeric materials, including precipitation polymerisation, as the main, simplest, and most accessible method for mini-emulsion polymerisation, microfluidics, and layer-by-layer adsorption of polyelectrolytes. Such systems will undoubtedly be promising for use in biotechnology and medicine due to the fact that they are liquid-swollen particles capable of binding and carrying various low to high molecular weight substances. It is also important that slight heating and cooling or a slight change in the pH of the medium shifts the system from a homogeneous to a heterogeneous state and vice versa. This providesthe opportunity to use these polymers as a means of targeted drug delivery, thereby reducing the negative effect of toxic substances used for treatment on the entire body and directing the action to a specific point. In addition, such polymers can be used to create smart coatings of implanted materials, as well as an artificial matrix for cell and tissue regeneration, contributing to a significant increase in the survival rate and regeneration rate of cells and tissues. References 1. Gisser K. R. C., Geselbracht M. J., Cappellari A.,Hunsberger L., Ellis A. B., Perepezko J., et al. Nickeltitaniummemory metal: A "Smart" material exhibitinga solid-state phase change and superelasticity. Journalof Chemical Education. 1994;71(4): 334. DOI: https://doi.org/10.1021/ed071p3342. Erman B., Flory P.J.. Critical phenomena andtransitions in swollen polymer networks and in linearmacromolecules. Macromolecules. 1986;19(9): 2342–2353. DOI: https://doi.org/10.1021/ma00163a0033. Tanaka T., Fillmore D., Sun S.-T., Nishio I.,Swislow G., Shah A. Phase transitions in ionic gels.Physical Review Letters. 1980;45(20): 1636–1639. DOI:https://doi.org/10.1103/physrevlett.45.16364. Polymer Gels. DeRossi D., Kajiwara K., Osada Y.,Yamauchi A. (eds.). Boston, MA: Springer US; 1991.354 p. DOI: https://doi.org/10.1007/978-1-4684-5892‑35. Ilmain F., Tanaka T., Kokufuta E. Volumetransition in a gel driven by hydrogen bonding. Nature.1991;349(6308): 400–401. DOI: https://doi.org/10.1038/349400a06. Kuhn W., Hargitay B., Katchalsky A., EisenbergH. Reversible dilation and contraction by changing thestate of ionization of high-polymer acid networks.Nature. 1950;165(4196): 514–516. DOI: https://doi.org/10.1038/165514a07. Steinberg I. Z., Oplatka A., Katchalsky A.Mechanochemical engines. Nature. 1966;210(5036):568-571. DOI: https://doi.org/10.1038/210568a08. Tian H., Tang Z., Zhuang X., Chen X., Jing X.Biodegradable synthetic polymers: Preparation,functionalization and biomedical application. Progressin Polymer Science. 2012;37(2): 237–280. DOI: https://doi.org/10.1016/j.progpolymsci.2011.06.0049. Gonçalves C., Pereira P., Gama M. Self-Assembledhydrogel nanoparticles for drug delivery applications.Materials. 2010;3(2): 1420–1460. DOI: https://doi.org/10.3390/ma302142010. Pangburn T. O., Petersen M. A., Waybrant B.,Adil M. M., Kokkoli E. Peptide- and Aptamer-functionalizednanovectors for targeted delivery of therapeutics.Journal of Biomechanical Engineering. 2009;131(7):074005. DOI: https://doi.org/10.1115/1.316076311. Caldorera-Moore M. E., Liechty W. B., PeppasN. A. Responsive theranostic systems: integrationof diagnostic imaging agents and responsive controlledrelease drug delivery carriers. Accounts of ChemicalResearch. 2011;44(10): 1061–1070. DOI: https://doi.org/10.1021/ar200177712. Das M., Sanson N., Fava D., Kumacheva E.Microgels loaded with gold nanorods: photothermallytriggered volume transitions under physiologicalconditions†’. Langmuir. 2007;23(1): 196–201. DOI:https://doi.org/10.1021/la061596s13. Oh J. K., Lee D. I., Park J. M. Biopolymer-basedmicrogels/nanogels for drug delivery applications.Progress in Polymer Science. 2009;34(12): 1261–1282.DOI: https://doi.org/10.1016/j.progpolymsci.2009.08.00114. Oh J. K., Drumright R., Siegwart D. J.,Matyjaszewski K. The development of microgels/nanogels for drug delivery applications. Progress inPolymer Science. 2008;33(4): 448–477. DOI: https://doi.org/10.1016/j.progpolymsci.2008.01.00215. Talelli M., Hennink W. E. Thermosensitivepolymeric micelles for targeted drug delivery.Nanomedicine. 2011;6(7): 1245–1255. DOI: https://doi.org/10.2217/nnm.11.9116. Bromberg L., Temchenko M., Hatton T. A. Smartmicrogel studies. Polyelectrolyte and drug-absorbingproperties of microgels from polyether-modifiedpoly(acrylic acid). Langmuir. 2003;19(21): 8675–8684.DOI: https://doi.org/10.1021/la030187i17. Vinogradov S. V. Polymeric nanogel formulationsof nucleoside analogs. Expert Opinion on Drug Delivery.2007;4(1): 5–17. DOI: https://doi.org/10.1517/17425247.4.1.518. Vinogradov S. V. Colloidal microgels in drugdelivery applications. Current Pharmaceutical Design.2006;12(36): 4703–4712. DOI: https://doi.org/10.2174/13816120677902625419. Kabanov A. V., Vinogradov S. V. Nanogels aspharmaceutical carriers: finite networks of infinitecapabilities. Angewandte Chemie International Edition.2009;48(30): 5418–5429. DOI: https://doi.org/10.1002/anie.20090044120. Lee E. S., Gao Z., Bae Y. H. Recent progress intumor pH targeting nanotechnology. Journal ofControlled Release. 2008;132(3): 164–170. DOI: https://doi.org/10.1016/j.jconrel.2008.05.00321. Dong H., Mantha V., Matyjaszewski K.Thermally responsive PM(EO)2MA magnetic microgelsvia activators generated by electron transfer atomtransfer radical polymerization in miniemulsion.Chemistry of Materials. 2009;21(17): 3965–3972. DOI:https://doi.org/10.1021/cm901143e22. Nayak S., Lyon L. A. Soft nanotechnology withsoft nanoparticles. Angewandte Chemie InternationalEdition. 2005;44(47): 7686–7708. DOI: https://doi.org/10.1002/anie.20050132123. Hennink W. E., van Nostrum C. F. Novelcrosslinking methods to design hydrogels. AdvancedDrug Delivery Reviews. 2012;64: 223–236. DOI: https://doi.org/10.1016/j.addr.2012.09.00924. Motornov M., Roiter Y., Tokarev I., Minko S.Stimuli-responsive nanoparticles, nanogels and capsulesfor integrated multifunctional intelligent systems.Progress in Polymer Science. 2010;35(1-2): 174–211. DOI:https://doi.org/10.1016/j.progpolymsci.2009.10.00425. Saunders B. R., Laajam N., Daly E., Teow S.,Hu X., Stepto R. Microgels: From responsive polymercolloids to biomaterials. Advances in Colloid andInterface Science. 2009;147-148: 251–262. DOI: https://doi.org/10.1016/j.cis.2008.08.00826. Landfester K. Miniemulsion polymerizationand the structure of polymer and hybrid nanoparticles.chemInform. 2009;40(33). DOI: https://doi.org/10.1002/chin.20093327927. Seo M., Nie Z., Xu S., Mok M., Lewis P.C.,Graham R., et al. Continuous microfluidic reactors forpolymer particles. Langmuir. 2005;21(25): 11614–11622. DOI: https://doi.org/10.1021/la050519e28. Nie Z., Li W., Seo M., Xu S., Kumacheva E. Janusand ternary particles generated by microfluidicsynthesis: design, synthesis, and self-assembly. Journalof the American Chemical Society. 2006;128(29): 9408–9412. DOI: https://doi.org/10.1021/ja060882n29. Seiffert S., Thiele J., Abate A. R., Weitz D. A.Smart microgel capsules from macromolecularprecursors. Journal of the American Chemical Society.2010;132(18): 6606–6609. DOI: https://doi.org/10.1021/ja102156h30. Rossow T., Heyman J. A., Ehrlicher A. J.,Langhoff A., Weitz D. A., Haag R., et al. Controlledsynthesis of cell-Laden Microgels by Radical-FreeGelation in Droplet Microfluidics. Journal of theAmerican Chemical Society. 2012;134(10): 4983–4989.DOI: https://doi.org/10.1021/ja300460p31. Perry J. L., Herlihy K. P., Napier M. E.,DeSimone J. M. PRINT: A novel platform toward shapeand size specific nanoparticle theranostics. Accountsof Chemical Research. 2011;44(10): 990–998. DOI:https://doi.org/10.1021/ar200031532. Caruso F., Sukhorukov G. Coated Colloids:Preparation, characterization, assembly and utilization.In: Decher G., Schlenoff J. B., editors. MultilayerThin Films. Weinheim, FRG: Wiley-VCH Verlag GmbH& Co. KGaA; 2002. p. 331-362.33. Sauzedde F., Elaïssari A., Pichot C. Hydrophilicmagnetic polymer latexes. 2. Encapsulation ofadsorbed iron oxide nanoparticles. Colloid & PolymerScience. 1999;277(11): 1041–1050. DOI: https://doi.org/10.1007/s00396005048834. Sauzedde F., Elaïssari A., Pichot C. Hydrophilicmagnetic polymer latexes. 1. Adsorption of magneticiron oxide nanoparticles onto various cationic latexes.Colloid & Polymer Science. 1999;277(9): 846–855. DOI:https://doi.org/10.1007/s00396005046135. Pich A., Richtering W. Microgels by PrecipitationPolymerization: Synthesis, Characterization, andFunctionalization. In: Pich A., Richtering W. (eds.)Chemical Design of Responsive Microgels. SpringerHeidelberg Dordrecht London New York; 2011. p. 1–37.DOI: https://doi.org/10.1007/978-3-642-16379-136. Yamada N., Okano T., Sakai H., Karikusa F.,Sawasaki Y., Sakurai Y. Thermo-responsive polymericsurfaces; control of attachment and detachment ofcultured cells. Die Makromolekulare Chemie, RapidCommunications. 1990;11(11): 571–576. DOI: https://doi.org/10.1002/marc.1990.03011110937. Kushida A., Yamato M., Konno C., Kikuchi A.,Sakurai Y., Okano T. Decrease in culture temperaturereleases monolayer endothelial cell sheets togetherwith deposited fibronectin matrix from temperatureresponsiveculture surfaces. Journal of BiomedicalMaterials Research. 1999;45(4): 355–362. DOI: https://doi.org/10.1002/(sici)1097-4636(19990615)45:4<355::aid-jbm10>3.0.co;2-738. Sekine H., Shimizu T., Dobashi I., Matsuura K.,Hagiwara N., Takahashi M., et al. Cardiac cell sheettransplantation improves damaged heart function viasuperior cell survival in comparison with dissociatedcell injection. Tissue Engineering Part A. 2011;17(23-24): 2973–2980. DOI: https://doi.org/10.1089/ten.tea.2010.065939. Nishida K., Yamato M., Hayashida Y.,Watanabe K., Yamamoto K., Adachi E., et al. Corneal reconstruction with tissue-engineered cell sheetscomposed of autologous oral mucosal epithelium. TheNew England Journal of Medicine. 2004;351(12): 1187–1196. DOI: https://doi.org/10.1056/nejmoa04045540. Kanzaki M., Yamato M., Yang J., Sekine H.,Kohno C., Takagi R., et al. Dynamic sealing of lungair leaks by the transplantation of tissue engineeredcell sheets. Biomaterials. 2007;28(29): 4294–4302.DOI: https://doi.org/10.1016/j.biomaterials.2007.06.00941. Iwata T., Yamato M., Tsuchioka H., Takagi R.,Mukobata S., Washio K., et al. Periodontal regenerationwith multi-layered periodontal ligament-derived cellsheets in a canine model. Biomaterials. 2009;30(14):2716–2723. DOI: https://doi.org/10.1016/j.biomaterials.2009.01.03242. Sawa Y., Miyagawa S., Sakaguchi T., Fujita T.,Matsuyama A., Saito A., et al. Tissue engineeredmyoblast sheets improved cardiac function sufficientlyto discontinue LVAS in a patient with DCM: report ofa case. Surgery Today. 2012;42(2): 181–184. DOI:https://doi.org/10.1007/s00595-011-0106-443. Ohki T., Yamato M., Ota M., Takagi R.,Murakami D., Kondo M., et al. Prevention of esophagealstricture after endoscopic submucosal dissection usingtissue-engineered cell sheets. Gastroenterology.2012;143(3): 582–588. DOI: https://doi.org/10.1053/j.gastro.2012.04.05044. Ebihara G., Sato M., Yamato M., Mitani G.,Kutsuna T., Nagai T., et al. Cartilage repair intransplanted scaffold-free chondrocyte sheets usinga minipig model. Biomaterials. 2012;33(15): 3846–3851. DOI: https://doi.org/10.1016/j.biomaterials.2012.01.05645. Sato M., Yamato M., Hamahashi K., Okano T.,Mochida J. Articular cartilage regeneration using cellsheet technology. The Anatomical Record. 2014;297(1):36–43. DOI: https://doi.org/10.1002/ar.2282946. Kuramoto G., Takagi S., Ishitani K., Shimizu T.,Okano T., Matsui H. Preventive effect of oral mucosalepithelial cell sheets on intrauterine adhesions. HumanReproduction. 2014;30(2): 406–416. DOI: https://doi.org/10.1093/humrep/deu32647. Yamamoto K., Yamato M., Morino T.,Sugiyama H., Takagi R., Yaguchi Y., et al. Middle earmucosal regeneration by tissue-engineered cell sheettransplantation. NPJ Regenerative Medicine. 2017;2(1):6. DOI: https://doi.org/10.1038/s41536-017-0010-748. Gan D., Lyon L. A. Synthesis and Proteinadsorption resistance of PEG-modified poly(Nisopropylacrylamide) core/shell microgels.Macromolecules. 2002;35(26): 9634–9639. DOI: https://doi.org/10.1021/ma021186k49. Veronese F. M., Mero A. The impact ofPEGylation on biological therapies. BioDrugs.2008;22(5): 315–329. DOI: https://doi.org/10.2165/00063030-200822050-0000450. Sahay G., Alakhova D. Y., Kabanov A. V.Endocytosis of nanomedicines. Journal of ControlledRelease. 2010;145(3): 182–195. DOI: https://doi.org/10.1016/j.jconrel.2010.01.03651. Nolan C. M., Reyes C. D., Debord J. D.,García A. J., Lyon L. A. Phase transition behavior,protein adsorption, and cell adhesion resistance ofpoly(ethylene glycol) cross-linked microgel particles.Biomacromolecules. 2005;6(4): 2032–2039. DOI:https://doi.org/10.1021/bm050008752. Scott E. A., Nichols M. D., Cordova L. H., GeorgeB. J., Jun Y.-S., Elbert D. L. Protein adsorption and celladhesion on nanoscale bioactive coatings formed frompoly(ethylene glycol) and albumin microgels.Biomaterials. 2008;29(34): 4481–4493. DOI: https://doi.org/10.1016/j.biomaterials.2008.08.00353. South A. B., Whitmire R. E., García A. J.,Lyon L. A. Centrifugal deposition of microgels for therapid assembly of nonfouling thin films. ACS AppliedMaterials & Interfaces. 2009;1(12): 2747–2754. DOI:https://doi.org/10.1021/am900543554. Wang Q., Uzunoglu E., Wu Y., Libera M. Selfassembledpoly(ethylene glycol)-co-acrylic acidmicrogels to inhibit bacterial colonization of syntheticsurfaces. ACS Applied Materials & Interfaces. 2012;4(5):2498–2506. DOI: https://doi.org/10.1021/am300197m55. Wang Q., Libera M. Microgel-modified surfacesenhance short-term osteoblast response. Colloids andSurfaces B: Biointerfaces. 2014;118: 202–209. DOI:https://doi.org/10.1016/j.colsurfb.2014.04.00256. Tsai H.-Y., Vats K., Yates M. Z., Benoit D. S. W.Two-dimensional patterns of poly(N-isopropylacrylamide)microgels to spatially control fibroblastadhesion and temperature-responsive detachment.Langmuir. 2013;29(39): 12183–12193. DOI: https://doi.org/10.1021/la400971g57. Lynch I. , Miller I. , Gallagher W. M. ,Dawson K. A. Novel method to prepare morphologicallyrich polymeric surfaces for biomedical applicationsvia phase separation and arrest of microgel particles.The Journal of Physical Chemistry B. 2006;110(30):14581–14589. DOI: https://doi.org/10.1021/jp061166a58. Li Y., Chen P., Wang Y., Yan S., Feng X., Du W.,et al. Rapid assembly of heterogeneous 3D cellmicroenvironments in a microgel array. AdvancedMaterials. 2016;28(18): 3543–3548. DOI: https://doi.org/10.1002/adma.20160024759. Bridges A. W., Singh N., Burns K. L., BabenseeJ. E., Andrew Lyon L., García A. J. Reduced acuteinflammatory responses to microgel conformalcoatings. Biomaterials. 2008;29(35): 4605–4615. DOI:https://doi.org/10.1016/j.biomaterials.2008.08.01560. Bridges A. W., Whitmire R. E., Singh N.,Templeman K. L., Babensee J. E., Lyon L. A., et al.Chronic inflammatory responses to microgel-basedimplant coatings. Journal of Biomedical Materials Research Part A. 2010;94A(1): 252–258. DOI: https://doi.org/10.1002/jbm.a.3266961. Gutowski S. M., Templeman K. L., South A. B.,Gaulding J. C., Shoemaker J. T., LaPlaca M. C., et al.Host response to microgel coatings on neuralelectrodes implanted in the brain. Journal of BiomedicalMaterials Research Part A. 2014;102(5): 1486–1499.DOI: https://doi.org/10.1002/jbm.a.3479962. da Silva R. M. P., Mano J. F., Reis R. L. Smartthermoresponsive coatings and surfaces for tissueengineering: switching cell-material boundaries.Trends in Biotechnology. 2007;25(12): 577–583. DOI:https://doi.org/10.1016/j.tibtech.2007.08.01463. Schmidt S., Zeiser M., Hellweg T., Duschl C.,Fery A., Möhwald H. Adhesion and mechanicalproperties of PNIPAM microgel films and theirpotential use as switchable cell culture substrates.Advanced Functional Materials. 2010;20(19): 3235–3243. DOI: https://doi.org/10.1002/adfm.20100073064. Uhlig K., Wegener T., He J., Zeiser M., BookholdJ., Dewald I., et al. Patterned thermoresponsivemicrogel coatings for noninvasive processing ofadherent cells. Biomacromolecules. 2016;17(3): 1110–1116. DOI: https://doi.org/10.1021/acs.biomac.5b01728
Style APA, Harvard, Vancouver, ISO itp.
13

Bag, Braja Gopal, i Subhajit Das. "Self-assembly study of ammonium oleanolate and generation of gel– gold nanoparticle hybrid material". Prayogik Rasayan 1, nr 1 (2017). http://dx.doi.org/10.53023/p.rasayan-201704283.

Pełny tekst źródła
Streszczenie:
A solution of oleanolic acid, a renewable nano-sized monohydroxy triterpenic acid in tetrahydrofuran, transformed into a gel instantly at room temperature on treatment with aqueous ammonia. Study of the self-assembly properties of ammonium oleanolate in water and aqueous solvent mixtures indicated that it self-assembles in the aqueous solvent mixtures forming gels in DMSO-water and DMF-water. Fibrillar networks with optical birefringence properties were observed by polarized optical microscopy. Scanning electron microscopy of the dried gel samples indicated fibrillar networks with fibers of nano to micrometer diameters. The thermodynamic parameters calculated from the gel to sol transition temperatures indicated the stability of the gels. A gel-gold nanoparticles hybrid material has also been prepared and characterized by HRTEM, EDX, SAED and surface Plasmon resonance studies.
Style APA, Harvard, Vancouver, ISO itp.
14

Gao, Menghan, Hong Deng i Weiqi Zhang. "Hyaluronan based Multifunctional Nano-carriers for Combination Cancer Therapy". Current Topics in Medicinal Chemistry 20 (22.09.2020). http://dx.doi.org/10.2174/1568026620666200922113846.

Pełny tekst źródła
Streszczenie:
: Hyaluronan (HA) is a natural linear polysaccharide that has excellent hydrophilicity, biocompatibility, biodegradability, and low immunogenicity, making it one of the most attractive biopolymers used for biomedical researches and applications. Due to the multiple functional sites on HA and its intrinsic affinity for CD44, a receptor highly expressed on various cancer cells, HA has been widely engineered to construct different drug-loading nanoparticles (NPs) for CD44- targeted anti-tumor therapy. When a cocktail of drugs is co-loaded in HA NP, a multifunctional nano-carriers could be obtained, which features as a highly effective and self-targeting strategy to combat the cancers with CD44 overexpression. The HA-based multidrug nano-carriers can be a combination of different drugs, various therapeutic modalities, or the integration of therapy and diagnostics (theranostics). Up to now, there are many types of HA-based multidrug nano-carriers constructed by different formulation strategies including drug co-conjugates, micelles, nano-gels and hybrid NP of HA and so on. This multidrug nano-carrier takes the full advantages of HA as NP matrix, drug carriers and targeting ligand, representing a simplified and biocompatible platform to realize the targeted and synergistic combination therapy against the cancers. In this review, recent progresses about HA-based multidrug nano-carriers for combination cancer therapy are summarized and its potential challenges for translational applications have been discussed.
Style APA, Harvard, Vancouver, ISO itp.
15

Bag, Braja Gopal, Subhajit Das, Sk Nurul Hasan, Abir Chandan Barai, Subrata Ghorai, Saikat K. Panja, Chhabi Garai i Sanjit Santra. "Terpenoids in Early 21st Century: From Renewable Functional Nano-entities to Advanced Materials". Prayogik Rasayan 2, nr 1 (2018). http://dx.doi.org/10.53023/p.rasayan-20171222.

Pełny tekst źródła
Streszczenie:
Plant metabolites can serve as renewable chemicals for the development of a sustainable society. Terpenoids are the major component of over 500,000 plant secondary metabolites reported till date. Monoterpenoid (C10) to tetraterpenoid (C40) all the terpenoid have recently been shown to have nanometric lengths. Studies on the self-assembly of terpenoids, have drawn the attention of scientific community in recent years due to many of its potential and realized applications in medicine, drug delivery, pollutant capture, metal nanoparticle hybrid material, selective damage of cancer cells, etc. In this review, we have discussed the isolation of seven terpenoids from plants and their self-assembly properties in different liquids, even without functional transformation. The utilization of the resulting supramolecular architectures such as vesicles, spheres, flowers and fibrillar networks of nano- to micro-meter dimensions and gels have also been discussed paving the way for a green, renewable and sustainable world.
Style APA, Harvard, Vancouver, ISO itp.
16

Singh, Jatinder, Isha Dhamija, Harmanpreet Meehenian, Neeraj Kumar, Simran Simran, Muskan Muskan, Madan L. Verma i Sandeep Kumar. "Chronicle updates in cyclodextrin-based carriers for drug delivery". Bulletin of the National Research Centre 46, nr 1 (11.07.2022). http://dx.doi.org/10.1186/s42269-022-00904-y.

Pełny tekst źródła
Streszczenie:
Abstract Background Cyclodextrins offer a range of biomedical applications in the pharmaceutical and biotechnology industries. Cyclodextrins (CDs) are oligosaccharides composed of glucose as repeating units (6–9 repeating units given terms α, β, γ and δ, respectively). Its inner core size varies with the type of CD, and this variation finds its fitness with small- to larger-sized organic drug molecules to resolve its delivery problems. Employment of CDs in drug delivery was conceptualized since its initial development (Year 1891). However, the very first pharmaceutical product was in the market in 1976. CDs not only act as carrier or as self-assembly hydrogel or hybrid gels for delivery of hydrophobic drugs but also reported as a modifier of the gelling temperature of agarose and make it suitable for drug delivery. Main body This review represents the trend of research on CDs with reference to drug delivery. Phase I (1975–1980) CD research trend shows inclination towards β-CD molecules for inclusion complex with a wide range of drugs. Decade of phase II (1981–1990) worked majorly on other natural CDs with a glimpse of its derivative for drug delivery system. Critical literature surveys from the years 1991–2000 (phase III) provide research visualization of CD derivatives supported with animal studies. Phase IV (2001–2010) can be attributed as the golden period of CDs with its extreme exploitation in many novel drug delivery systems (aerosols, microemulsion, polymeric nanoparticles, osmotic pumps, and sustain release), while in most last decade CDs were observed in association with nanoscale systems. Conclusions In the view of its incessant utilization in wider applications including drug carrier, gel, gel modifier and nano-composite modifier properties, its chronicle update in the drug delivery knowledge database would inspire the researchers for multidisciplinary research. To sum up, almost every emerging novel drug delivery system in the near future will make the earnest effort to take advantage of the properties of CDs for their better efficacy, stability, prevention of toxicity and patient acceptability.
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii