Gotowa bibliografia na temat „Nano-formulations for drug delivery”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Nano-formulations for drug delivery”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Nano-formulations for drug delivery"
Zhou, Xingli, Ying Hao, Liping Yuan, Sushmita Pradhan, Krista Shrestha, Ojaswi Pradhan, Hongjie Liu i Wei Li. "Nano-formulations for transdermal drug delivery: A review". Chinese Chemical Letters 29, nr 12 (grudzień 2018): 1713–24. http://dx.doi.org/10.1016/j.cclet.2018.10.037.
Pełny tekst źródłaXing, Yue, Peng Lu, Zhifeng Xue, Chunxia Liang, Bing Zhang, Dereje Kebebe, Hongfei Liu i Zhidong Liu. "Nano-Strategies for Improving the Bioavailability of Inhaled Pharmaceutical Formulations". Mini-Reviews in Medicinal Chemistry 20, nr 13 (20.08.2020): 1258–71. http://dx.doi.org/10.2174/1389557520666200509235945.
Pełny tekst źródłaVohra, Manisha, Mohammad Amir, Amit Sharma i Sheetu Wadhwa. "Formulation Strategies for Nose-to-Brain Drug Delivery". Journal of Pharmaceutical Technology, Research and Management 10, nr 1 (7.05.2022): 87–102. http://dx.doi.org/10.15415/jptrm.2022.101008.
Pełny tekst źródłaDonthi, Mahipal Reddy, Siva Ram Munnangi, Kowthavarapu Venkata Krishna, Ranendra Narayan Saha, Gautam Singhvi i Sunil Kumar Dubey. "Nanoemulgel: A Novel Nano Carrier as a Tool for Topical Drug Delivery". Pharmaceutics 15, nr 1 (3.01.2023): 164. http://dx.doi.org/10.3390/pharmaceutics15010164.
Pełny tekst źródłaLeong, Moong Yan, Yeo Lee Kong, Kevin Burgess, Won Fen Wong, Gautam Sethi i Chung Yeng Looi. "Recent Development of Nanomaterials for Transdermal Drug Delivery". Biomedicines 11, nr 4 (7.04.2023): 1124. http://dx.doi.org/10.3390/biomedicines11041124.
Pełny tekst źródłaNagar, Mohit. "Review on Nano-Emulsion Drug Delivery System and Formulation, Evaluation and Their Pharmaceutical Applications". International Journal Of Health Care And Nursing 2, nr 1 (27.07.2023): 35–61. http://dx.doi.org/10.55938/ijhcn.v2i1.43.
Pełny tekst źródłaPandya, Tosha, Kaushika Kaushika Patel, Rudree Pathak i Shreeraj Shah. "Liposomal Formulations In Cancer Therapy: Passive Versus Active Targeting". Asian Journal of Pharmaceutical Research and Development 7, nr 2 (14.04.2019): 35–38. http://dx.doi.org/10.22270/ajprd.v7i2.489.
Pełny tekst źródłaKotta, Sabna, Navneet Sharma, Prateek Raturi, Mohd Aleem i Rakesh Kumar Sharma. "Exploring Novel Strategies for Lipid-Based Drug Delivery". Journal of Nanotoxicology and Nanomedicine 3, nr 1 (styczeń 2018): 1–22. http://dx.doi.org/10.4018/jnn.2018010101.
Pełny tekst źródłaMantry, Shubhrajit, Shubham Shinde, Sahil Shaikh, Sumit Joshi i Ganesh Dama. "Emerging Implementation of Nano-Suspension Technology for Delivery of Poorly Soluble Drug for the Treatment of Helminths Disease". International Journal of Current Research and Review 14, nr 06 (2022): 43–50. http://dx.doi.org/10.31782/ijcrr.2022.14607.
Pełny tekst źródłaGupta, Chetna, Aadya Jaipuria i Nikesh Gupta. "Inhalable Formulations to Treat Non-Small Cell Lung Cancer (NSCLC): Recent Therapies and Developments". Pharmaceutics 15, nr 1 (31.12.2022): 139. http://dx.doi.org/10.3390/pharmaceutics15010139.
Pełny tekst źródłaRozprawy doktorskie na temat "Nano-formulations for drug delivery"
Santos, Paulo Antonio Fernandes Gomes. "Transdermal drug delivery using spray formulations". Thesis, University College London (University of London), 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.497653.
Pełny tekst źródłaHenriques, Neves Vieira R. I. "Volatile formulations for (trans) dermal drug delivery". Thesis, University College London (University of London), 2013. http://discovery.ucl.ac.uk/1393591/.
Pełny tekst źródłaTandya, Andrian Chemical Sciences & Engineering Faculty of Engineering UNSW. "Dense gas particle processing for alternative drug delivery formulations". Awarded by:University of New South Wales. School of Chemical Sciences and Engineering, 2006. http://handle.unsw.edu.au/1959.4/25480.
Pełny tekst źródłaPaulsson, Mattias. "Controlled Release Gel Formulations for Mucosal Drug Delivery". Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Univ.-bibl. [distributör], 2001. http://publications.uu.se/theses/91-554-5173-X/.
Pełny tekst źródłaSubramanian, Sneha. "Proliposome and prosurfactosome formulations for pulmonary drug delivery". Thesis, University of Central Lancashire, 2015. http://clok.uclan.ac.uk/16722/.
Pełny tekst źródłaMarshall, D. J. "The use of accelerants in topical formulations". Thesis, Open University, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.234278.
Pełny tekst źródłaBandyopadhyay, Sulalit. "Biodegradable Nano-Clusters as Drug Delivery Vehicles". Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for kjemisk prosessteknologi, 2012. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-22677.
Pełny tekst źródłaAbdalghafor, H. M. "Mechanistic studies on topical drug delivery from liquid crystal formulations". Thesis, University College London (University of London), 2014. http://discovery.ucl.ac.uk/1426962/.
Pełny tekst źródłaAngel, Aimee B. (Aimee Brigitte) 1977. "A controllable, nano-volumetric, transdermal drug delivery device". Thesis, Massachusetts Institute of Technology, 2002. http://hdl.handle.net/1721.1/89352.
Pełny tekst źródłaWeight, Alisha K. (Alisha Kessel). "Enhancing pharmaceutical formulations to improve efficacy and delivery of drug molecules". Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/82323.
Pełny tekst źródłaCataloged from PDF version of thesis.
Includes bibliographical references.
Major impediments to the full utility of current and potential drugs include issues of resistance and delivery. To address these challenges, in this thesis two directions of research were pursued: (1) the use of multivalent polymeric inhibitors to overcome drug resistance in human and avian influenza and (2) low-viscosity, high-concentration protein suspensions for therapeutic antibody, in particular monoclonal antibody (MAb), delivery. (1) Influenza resistance to small molecule neuraminidase (NA) inhibitors is spreading. Little emphasis, however, has been placed on alternative formulations of inhibitors. We investigated the design of multivalent antivirals, wherein small molecule ligands of viral proteins are conjugated via a linker to a linear polymeric backbone. Unexpectedly, we found that a poly-L-glutamine bearing pendant zanamivir (ZA) groups is at least as potent as those containing both ZA and sialic acid (SA). By examining the structure-activity relationship of such monofunctional conjugates, we show that the most potent one has 10% ZA attached to a neutral, high molecular weight backbone through a short alkyl linker. Importantly, we also demonstrate that such a polymer conjugate entirely compensates for weakened binding in and has 2,000-fold enhanced anti-viral potency against, ZA-resistant strains. We further evaluated this optimized inhibitor in vivo and observed that it is an effective therapeutic of established infection in ferrets and reduces viral titers up to 190-fold when used as a combined prophylactic/therapeutic in mice. Additionally, we see no evidence that the conjugate stimulates an immune response in mice upon repeat administration. (2) Typically, high doses of MAb therapeutics are required for clinical effect. Ideally, these MAbs would be delivered by subcutaneous injection of a small liquid volume. Such highly concentrated MAb solutions, however, are far more viscous than the 50 centipose (cP) permitted by the FDA. We evaluated approaches to reduce formulation viscosity by forming protein suspensions. Aqueous suspensions induced by poly(ethylene glycol), precipitating salts, or ethanol actually increased viscosity. However, non-aqueous suspensions of amorphous antibody powders in organic solvents that have s 1 hydrogen atom available for hydrogen-bonding, exhibited up to a 38-fold decrease in viscosity.
by Alisha K. Weight.
Ph.D.in Biological Chemistry
Książki na temat "Nano-formulations for drug delivery"
1961-, Osborne David W., Amann Anton H. 1942- i Colloid and Surface Science Symposium (61st : 1987 : Ann Arbor, Mich.), red. Topical drug delivery formulations. New York: M. Dekker, 1990.
Znajdź pełny tekst źródłaPathak, Yashwant, Vijaykumar Sutariya i Anjali A. Hirani, red. Nano-Biomaterials For Ophthalmic Drug Delivery. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29346-2.
Pełny tekst źródłaLamprou, Dimitrios, red. Nano- and Microfabrication Techniques in Drug Delivery. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-26908-0.
Pełny tekst źródłaTrissel, Lawrence A. Trissel's stability of compounded formulations. Wyd. 5. Washington, DC: American Pharmacists Association, 2012.
Znajdź pełny tekst źródłaRajendran, Rajakumari, Hanna J. Maria, Sabu Thomas i Nandakumar Kalarikkal. Handbook of Research on Nano-Drug Delivery and Tissue Engineering. Boca Raton: Apple Academic Press, 2022. http://dx.doi.org/10.1201/9781003161196.
Pełny tekst źródłaEbrahimi, Meysam. Nano Drug Delivery to Brain Cancer: Medicine to help treat cancer. Saarbrücken: LAP LAMBERT Academic Publishing, 2017.
Znajdź pełny tekst źródłaLeong, Thomas Seak Hou, Sivakumar Manickam, Gregory J. O. Martin, Wu Li i Muthupandian Ashokkumar. Ultrasonic Production of Nano-emulsions for Bioactive Delivery in Drug and Food Applications. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73491-0.
Pełny tekst źródłaOsborne, David W., i Anton H. Amann, red. Topical Drug Delivery Formulations. CRC Press, 1989. http://dx.doi.org/10.1201/9780367803933.
Pełny tekst źródłaOsbome, David, i Anton Amann, red. Topical Drug Delivery Formulations. CRC Press, 1989. http://dx.doi.org/10.1201/b14194.
Pełny tekst źródłaOsborne, David W., i Anton H. Amann. Topical Drug Delivery Formulations. Taylor & Francis Group, 1989.
Znajdź pełny tekst źródłaCzęści książek na temat "Nano-formulations for drug delivery"
Mudassir, Jahanzeb, i Muhammad Sohail Arshad. "Bioinspired Nano-Formulations". W Drug Delivery Using Nanomaterials, 85–108. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003168584-4.
Pełny tekst źródłaBatchelor, Hannah. "Rectal Drug Delivery". W Pediatric Formulations, 303–10. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4899-8011-3_20.
Pełny tekst źródłaPapazoglou, Elisabeth S., i Aravind Parthasarathy. "Nano Drug Delivery". W BioNanotechnology, 31–45. Cham: Springer International Publishing, 2007. http://dx.doi.org/10.1007/978-3-031-01618-9_3.
Pełny tekst źródłaBreitkreutz, Jörg, i Joachim Boos. "Drug Delivery and Formulations". W Pediatric Clinical Pharmacology, 91–107. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-20195-0_4.
Pełny tekst źródłaMcCray, Scott B., i David K. Lyon. "Green Drug Delivery Formulations". W Green Techniques for Organic Synthesis and Medicinal Chemistry, 613–30. Chichester, UK: John Wiley & Sons, Ltd, 2012. http://dx.doi.org/10.1002/9780470711828.ch23.
Pełny tekst źródłaBatchelor, Hannah. "Nasal, Ocular and Otic Drug Delivery". W Pediatric Formulations, 273–301. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4899-8011-3_19.
Pełny tekst źródłaMurnane, Darragh, i Marc B. Brown. "The Challenges of Paediatric Pulmonary Drug Delivery". W Pediatric Formulations, 253–72. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4899-8011-3_18.
Pełny tekst źródłaWilson, C. G. "Scintigraphic Evaluation of Polymeric Formulations for Ophthalmic Use". W Ophthalmic Drug Delivery, 141–50. New York, NY: Springer New York, 1987. http://dx.doi.org/10.1007/978-1-4757-4175-9_14.
Pełny tekst źródłaKwok, Philip Chi Lip, Rania Osama Salama i Hak-Kim Chan. "Proteins, Peptides, and Controlled-Release Formulations for Inhalation". W Inhalation Drug Delivery, 121–44. Chichester, UK: John Wiley & Sons, Ltd, 2013. http://dx.doi.org/10.1002/9781118397145.ch7.
Pełny tekst źródłaPatel, Viralkumar F., Darragh Murnane i Marc B. Brown. "Buccal/Sublingual Drug Delivery for the Paediatric Population". W Pediatric Formulations, 205–15. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4899-8011-3_15.
Pełny tekst źródłaStreszczenia konferencji na temat "Nano-formulations for drug delivery"
George, Ashline, i Jerin Cyriac. "Nano particle based drug delivery systems". W 2017 Third International Conference on Advances in Electrical, Electronics, Information, Communication and Bio-Informatics (AEEICB). IEEE, 2017. http://dx.doi.org/10.1109/aeeicb.2017.7972386.
Pełny tekst źródłaRautiola, Davin, i Ronald A. Siegel. "Nasal Spray Device for Administration of Two-Part Drug Formulations". W 2019 Design of Medical Devices Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/dmd2019-3216.
Pełny tekst źródłaAditi i Kushal Qanungo. "Nano particles as drug delivery agents for antitubercular drugs". W INTERNATIONAL CONFERENCE ON HUMANS AND TECHNOLOGY: A HOLISTIC AND SYMBIOTIC APPROACH TO SUSTAINABLE DEVELOPMENT: ICHT 2022. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0112810.
Pełny tekst źródłaDa, Anqi. "Applications of Nano-drugs and Tumor Microenvironment Sensitive Nano-drug Delivery Systems". W ICBBS '20: 2020 9th International Conference on Bioinformatics and Biomedical Science. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3431943.3431944.
Pełny tekst źródłaGhosh, Ruby N., Aamir A. Khan, Reza Loloee i Scott Howard. "Novel Inorganic Nano-scale Phosphorescencent Probe for One or Two-photon Oxygen Imaging". W Optical Molecular Probes, Imaging and Drug Delivery. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/omp.2013.mw5c.4.
Pełny tekst źródłaCisek, Richard, Kennedy Brittain, MacAulay Harvey, Saranyan Pillai, Sean D. Christie i Danielle Tokarz. "Measurement of the Crystalline Structure of Collagen-Like Scaffolds of Otoconia in the Mouse Vestibular System by Second Harmonic Generation Microscopy". W Optical Molecular Probes, Imaging and Drug Delivery. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/omp.2023.om4e.1.
Pełny tekst źródłaBavali, A., P. Parvin i R. Karimi. "Blue Spectral Shift of Laser-Induced Fluorescence Due to Suspension of Nano-structures in Rd6G Solution". W Optical Molecular Probes, Imaging and Drug Delivery. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/omp.2015.om4d.2.
Pełny tekst źródłaMalek, Alaeddin, Hanif Heidari i Maryam Vali. "Artificial magnetic nano-swimmer in drug delivery". W 2015 22nd Iranian Conference on Biomedical Engineering (ICBME). IEEE, 2015. http://dx.doi.org/10.1109/icbme.2015.7404165.
Pełny tekst źródłaMingjun Zhang, Tzyh-Jong Tarn i Ning Xi. "Micro/nano-devices for controlled drug delivery". W IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004. IEEE, 2004. http://dx.doi.org/10.1109/robot.2004.1308128.
Pełny tekst źródłaNakano, Masahiro, Hiroyuki Matsuura, Dong-Ying Ju, Takashi Kumazawa, Shinzo Kimura, Yusuke Uozumi, Nobuhito Tonohata i in. "Drug Delivery System Using Nano-Magnetic Fluid". W 2008 3rd International Conference on Innovative Computing Information and Control. IEEE, 2008. http://dx.doi.org/10.1109/icicic.2008.237.
Pełny tekst źródła