Gotowa bibliografia na temat „Nano-catalysis”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Nano-catalysis”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Nano-catalysis"
Yentekakis, Ioannis V., Dimitrios P. Gournis i Michael A. Karakassides. "Nanomaterials in Catalysis Applications". Catalysts 13, nr 3 (21.03.2023): 627. http://dx.doi.org/10.3390/catal13030627.
Pełny tekst źródłaYang, Fan, Dehui Deng, Xiulian Pan, Qiang Fu i Xinhe Bao. "Understanding nano effects in catalysis". National Science Review 2, nr 2 (11.05.2015): 183–201. http://dx.doi.org/10.1093/nsr/nwv024.
Pełny tekst źródłaSulikowski, B. "Nano-structured materials for catalysis". Catalysis Today 114, nr 2-3 (maj 2006): 125. http://dx.doi.org/10.1016/j.cattod.2006.03.002.
Pełny tekst źródłaMolenbroek, Alfons M., Stig Helveg, Henrik Topsøe i Bjerne S. Clausen. "Nano-Particles in Heterogeneous Catalysis". Topics in Catalysis 52, nr 10 (26.06.2009): 1303–11. http://dx.doi.org/10.1007/s11244-009-9314-1.
Pełny tekst źródłaPolshettiwar, Vivek, i Rajender S. Varma. "Green chemistry by nano-catalysis". Green Chemistry 12, nr 5 (2010): 743. http://dx.doi.org/10.1039/b921171c.
Pełny tekst źródłaLou, Bai Yang, Han Zhou i Bin Xu. "The Effects of Nano Pt/Carbon Black Compound Coating on the Electro-Catalysis Properties of the Graphite Electrode". Applied Mechanics and Materials 55-57 (maj 2011): 1774–77. http://dx.doi.org/10.4028/www.scientific.net/amm.55-57.1774.
Pełny tekst źródłaTheofanidis, Stavros, Vladimir Galvita, Christos Konstantopoulos, Hilde Poelman i Guy Marin. "Fe-Based Nano-Materials in Catalysis". Materials 11, nr 5 (17.05.2018): 831. http://dx.doi.org/10.3390/ma11050831.
Pełny tekst źródłaTONG, MIN-MING, MU NIU i TAO LIU. "A SENSOR OF ACETONE BASED ON ION-SENSITIVE FIELD-EFFECT TRANSISTOR". International Journal of Information Acquisition 06, nr 02 (czerwiec 2009): 127–32. http://dx.doi.org/10.1142/s0219878909001813.
Pełny tekst źródłaBa, Shu Hong, Zhe Zhang, Ming Hui Yan, Zhe Xing Sun i Xin Peng Teng. "Effect of Nano-CuO on Luminous Intensity of Pyrotechnics Composite Containing KClO4 and Al". Applied Mechanics and Materials 217-219 (listopad 2012): 669–72. http://dx.doi.org/10.4028/www.scientific.net/amm.217-219.669.
Pełny tekst źródłaZhang, Yan, Xinjiang Cui, Feng Shi i Youquan Deng. "Nano-Gold Catalysis in Fine Chemical Synthesis". Chemical Reviews 112, nr 4 (23.11.2011): 2467–505. http://dx.doi.org/10.1021/cr200260m.
Pełny tekst źródłaRozprawy doktorskie na temat "Nano-catalysis"
Elrabei, Abubakar Osman Zina <1994>. "Supramolecular Catalysis in Confined Nano-space". Master's Degree Thesis, Università Ca' Foscari Venezia, 2022. http://hdl.handle.net/10579/20687.
Pełny tekst źródłaAhn, Sun Yhik. "Carbon based nano-composite interfaces for electro-catalysis". Thesis, University of Bath, 2016. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.698985.
Pełny tekst źródłaXu, Jiahui. "Catalytic properties of nano ceria in heterogeneous catalysis". Thesis, University of Oxford, 2010. http://ora.ox.ac.uk/objects/uuid:02e68ff9-ce28-475a-bd08-6b60bcda64e7.
Pełny tekst źródłaJegadeesan, Gautham. "Environmental catalysis using nano-sized bimetallic particles : selenium remediation /". Available to subscribers only, 2005. http://proquest.umi.com/pqdweb?did=1068236761&sid=29&Fmt=2&clientId=1509&RQT=309&VName=PQD.
Pełny tekst źródłaZhang, Yeshui. "Hydrogen and carbon nano-materials from the pyrolysis-catalysis of wastes". Thesis, University of Leeds, 2017. http://etheses.whiterose.ac.uk/18509/.
Pełny tekst źródłaKim, Kyungduk. "Novel Nanocatalyst for the Selective Hydrogenation of Bio-Oil Model Compounds". Thesis, The University of Sydney, 2016. http://hdl.handle.net/2123/16353.
Pełny tekst źródłaGarrido, Torres José A. "Density functional theory investigations of molecules on surfaces : from nano-electronics to catalysis". Thesis, University of St Andrews, 2017. http://hdl.handle.net/10023/15618.
Pełny tekst źródłaSnyder, Brian. "An investigation into bimetallic hollow nanoparticles in catalysis". Thesis, Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/47614.
Pełny tekst źródłaDuanmu, Chuansong. "Expanding applications of iron oxide nanoparticles by surface functionalization : from magnetic resonance imaging to nano-catalysis /". Available to subscribers only, 2009. http://proquest.umi.com/pqdweb?did=1967917191&sid=4&Fmt=2&clientId=1509&RQT=309&VName=PQD.
Pełny tekst źródłaLi, Richard Ph D. Massachusetts Institute of Technology. "Catalysis and manufacturing of two-scale hierarchical nano- and microfiber advanced aerospace fiber-reinforced plastic composites". Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/120419.
Pełny tekst źródłaCataloged from PDF version of thesis.
Includes bibliographical references (pages 195-210).
The development of hierarchical nanoengineered "fuzzy fiber" aerospace fiber-reinforced plastic (FRP) composite laminates holds the potential for enabling future generations of lightweight, durable, and multifunctional vehicle structures. By reinforcing the weak matrix-rich regions between individual fibers and plies, the circumferential growth of aligned carbon nanotubes (A-CNTs) on carbon microfibers (CFs) enables new composites with improved strength, toughness, electrical and thermal properties. While these improvements have been empirically demonstrated on alumina fiber FRPs, CNT growth degrades the CFs and sacrifices in-plane FRP properties for the benefits of CNT reinforcement. This thesis presents novel and scalable methods for realizing advanced fuzzy carbon fiber reinforced plastic (fuzzy CFRP) composite laminates with retained CF and interlaminar strength properties. Earth-abundant sodium (Na) is revealed as a new facile catalyst for CNT growth that allows for direct deposition of the catalyst precursor on carbon fabrics without any fiber pretreatments. This new catalyst discovery also enables high-yield CNT growth on a variety of low-temperature substrates. Simultaneously, this finding has led to other novel findings in carbon nanostructure catalysis including a core-shell morphology and the use of other alkali metals (e.g., potassium) for CNT growth. Towards the development of advanced composites, vacuum-assisted resin infusion processes are studied and refined, resulting in high-quality woven and unidirectional fuzzy (via Na-catalysis of CNTs) CFRP laminates. Growth uniformity improvement studies yielded strategies for increasing the quantity of CNT reinforcement within matrix-rich regions. Moreover, a new commercial unidirectional fabric enables the first retention of CF properties concomitant with interlaminar shear strength retention in the fuzzy CFRP architecture. The contributions of this thesis extend beyond CF composites: techniques developed for improving fuzzy CF synthesis were applied towards demonstrating A-CNT growth on SiC woven fabric, desired for creating damage tolerant and multifunctional lightweight vehicle systems. These advances pave the way for improvements in catalysis of nanostructures, electronics interfaces, energy storage devices, and advanced composite materials.
by Richard Li.
Ph. D.
Książki na temat "Nano-catalysis"
Meeting, on Mesoporous Crystals and Related Nano-Structured Materials (2004 Stockholm Sweden). Mesoporous crystals and related nano-structured materials: Proceedings of the Meeting on Mesoporous Crystals and Related Nano-Structured Materials, Stockholm, Sweden, 1-5 June 2004. Amsterdam, The Netherlands: Elsevier, 2004.
Znajdź pełny tekst źródłaLuque, Rafael, Christophe Len i Konstantinos Triantafyllidis, red. Nano-(Bio)Catalysis in Lignocellulosic Biomass Valorization. Frontiers Media SA, 2019. http://dx.doi.org/10.3389/978-2-88945-772-4.
Pełny tekst źródłaTerasaki, Osamu. Mesoporous Crystals and Related Nano-Structured Materials, Volume 148: Proceedings of the Meeting on Mesoporous Crystals and Related Nano-Structured Materials, ... (Studies in Surface Science and Catalysis). Elsevier Science, 2004.
Znajdź pełny tekst źródłaTerasaki, Osamu. Mesoporous Crystals and Related Nano-Structured Materials: Proceedings of the Meeting on Mesoporous Crystals and Related Nano-Structured Materials, Stockholm, Sweden, 1-5 June 2004. Elsevier Science & Technology Books, 2004.
Znajdź pełny tekst źródłaPrakash Rai, Dibya, red. Advanced Materials and Nano Systems: Theory and Experiment (Part-1). BENTHAM SCIENCE PUBLISHERS, 2022. http://dx.doi.org/10.2174/97898150507451220101.
Pełny tekst źródłaCzęści książek na temat "Nano-catalysis"
Fechete, Ioana, i Jacques C. Vedrine. "Nano-Oxide Mesoporous Catalysts in Heterogeneous Catalysis". W Nanotechnology in Catalysis, 57–90. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2017. http://dx.doi.org/10.1002/9783527699827.ch4.
Pełny tekst źródłaMelchionna, Michele, Marcella Bonchio, Francesco Paolucci, Maurizio Prato i Paolo Fornasiero. "Catalysis-Material Crosstalk at Tailored Nano-Carbon Interfaces". W Making and Exploiting Fullerenes, Graphene, and Carbon Nanotubes, 139–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/128_2013_475.
Pełny tekst źródłaSharma, Rakesh K., Manavi Yadav i Manoj B. Gawande. "Silica-Coated Magnetic Nano-Particles: Application in Catalysis". W ACS Symposium Series, 1–38. Washington, DC: American Chemical Society, 2016. http://dx.doi.org/10.1021/bk-2016-1238.ch001.
Pełny tekst źródłaZhao, Guofeng, Ye Liu i Yong Lu. "From Nano- to Macro-engineering of Nanocomposites and Applications in Heterogeneous Catalysis". W Advances in Nanostructured Composites, 83–109. Boca Raton, FL : CRC Press, Taylor & Francis Group, [2018] | Series: Advances in nanostructured composites ; volume 2 | “A science publishers book.»: CRC Press, 2019. http://dx.doi.org/10.1201/9780429021718-5.
Pełny tekst źródłaMiotello, A., i N. Patel. "Nano-cluster Assembled Films, Produced by Pulsed Laser Deposition, for Catalysis and the Photocatalysis". W Lasers in Materials Science, 213–25. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-02898-9_9.
Pełny tekst źródłaYang, Daowu, Zhuo Ren, Hui Liu i Yu Su. "Study of Bamboo Charcoal Load Ce-Doped Nano-TiO2Photochemical Catalysis Oxidation Degradation of Formaldehyde Device". W Energy Technology 2011, 165–74. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118061886.ch17.
Pełny tekst źródłaHulea, Vasile, i Emil Dumitriu. "Nano-oxides". W Nanomaterials in Catalysis, 375–413. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527656875.ch10.
Pełny tekst źródłaHamid, Sharifah Bee Abd, i Robert Schlögl. "Impact of Nanoscience on Heterogeneous Catalysis". W The Nano-Micro Interface, 139–50. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527604111.ch11.
Pełny tekst źródłaHamid, Sharifah Bee Abd, i Robert Schlögl. "The Impact of Nanoscience in Heterogeneous Catalysis". W The Nano-Micro Interface, 405–30. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527679195.ch20.
Pełny tekst źródłaKustov, Leonid M., i Vera I. Isaeva. "CHAPTER 22. Hybrids of Metal–Organic Frameworks as Organized Supramolecular Nano-reactors". W Catalysis Series, 479–502. Cambridge: Royal Society of Chemistry, 2019. http://dx.doi.org/10.1039/9781788016490-00479.
Pełny tekst źródłaStreszczenia konferencji na temat "Nano-catalysis"
Gyawali, Suraj, Fernando Soto, Sumegha Godara i Daniela S. Mainardi. "Nano-engineered materials for Fischer-Tropsch catalysis". W 2015 IEEE 15th International Conference on Nanotechnology (IEEE-NANO). IEEE, 2015. http://dx.doi.org/10.1109/nano.2015.7388703.
Pełny tekst źródłaZarepour, Eisa, Mahbub Hassan, Chun Tung Chou i Adesoji A. Adesina. "Nano-scale sensor networks for chemical catalysis". W 2013 IEEE 13th International Conference on Nanotechnology (IEEE-NANO). IEEE, 2013. http://dx.doi.org/10.1109/nano.2013.6720813.
Pełny tekst źródłaOhtani, Bunsho. "Nano and microstructured materials with chemical functions: Anisotropic particles for catalysis and photo-catalysis". W 2010 International Conference on Enabling Science and Nanotechnology (ESciNano). IEEE, 2010. http://dx.doi.org/10.1109/escinano.2010.5701098.
Pełny tekst źródłaDing, Y., R. Fu, Z. Ren i Q. Wu. "P2NG.14 - Electrochemical catalysis and determination acetaminophen through nano-sensor with lindgrenite nanoflower". W 17th International Meeting on Chemical Sensors - IMCS 2018. AMA Service GmbH, Von-Münchhausen-Str. 49, 31515 Wunstorf, Germany, 2018. http://dx.doi.org/10.5162/imcs2018/p2ng.14.
Pełny tekst źródłaSegre, Daniel, Dafna Ben-Eli, Yitzhak Pilpel, Ora Kedem i Doron Lancet. "GARDobes: primordial cell nano-precursors with organic catalysis, compositional genome, and capacity to evolve". W SPIE's International Symposium on Optical Science, Engineering, and Instrumentation, redaktor Richard B. Hoover. SPIE, 1999. http://dx.doi.org/10.1117/12.375084.
Pełny tekst źródłaGondal, M. A., M. A. Dastageer i A. Khalil. "Nano-NiO as a photocatalyst in antimicrobial activity of infected water using laser induced photo-catalysis". W 2011 Saudi International Electronics, Communications and Photonics Conference (SIECPC). IEEE, 2011. http://dx.doi.org/10.1109/siecpc.2011.5876969.
Pełny tekst źródłaScheuerlein, Martin Christoph, i Wolfgang Ensinger. "Electroless Nano-Plating in Ion-track Etched Polymers: Iridium- and Bismuth-coated Membranes for Catalysis and Sensing Applications". W The 6th World Congress on Recent Advances in Nanotechnology. Avestia Publishing, 2021. http://dx.doi.org/10.11159/icnnfc21.lx.109.
Pełny tekst źródłaNishioka, Kensuke, Tsuyoshi Sueto i Nobuo Saito. "Antireflection structure of silicon solar cells formed by wet process using catalysis of single nano-sized gold or silver particle". W 2009 34th IEEE Photovoltaic Specialists Conference (PVSC). IEEE, 2009. http://dx.doi.org/10.1109/pvsc.2009.5411705.
Pełny tekst źródłaGondal, M. A., M. A. Dastageer i A. Khalil. "Preparation and band gap shift of nano-structured metal oxides and their activity in disinfection of water using laser induced photo-catalysis". W 2011 High Capacity Optical Networks and Enabling Technologies (HONET). IEEE, 2011. http://dx.doi.org/10.1109/honet.2011.6149820.
Pełny tekst źródłaBiyikli, Necmi, Cagla Ozgit-Akgun, Hamit Eren, Ali Haider, Tamer Uyar, Fatma Kayaci, Mustafa Ozgur Guler i in. "Template-assisted synthesis of III-nitride and metal-oxide nano-heterostructures using low-temperature atomic layer deposition for energy, sensing, and catalysis applications (Presentation Recording)". W SPIE Nanoscience + Engineering, redaktorzy Nobuhiko P. Kobayashi, A. Alec Talin, M. Saif Islam i Albert V. Davydov. SPIE, 2015. http://dx.doi.org/10.1117/12.2190261.
Pełny tekst źródła