Artykuły w czasopismach na temat „Na-S Batteries”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Na-S Batteries”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Vijaya Kumar Saroja, Ajay Piriya, i Yang Xu. "Carbon materials for Na-S and K-S batteries". Matter 5, nr 3 (marzec 2022): 808–36. http://dx.doi.org/10.1016/j.matt.2021.12.023.
Pełny tekst źródłaMasedi, M. C., P. E. Ngoepe i H. M. Sithole. "Beyond lithium-ion batteries: A computational study on Na-S and Na-O batteries". IOP Conference Series: Materials Science and Engineering 169 (luty 2017): 012001. http://dx.doi.org/10.1088/1757-899x/169/1/012001.
Pełny tekst źródłaLiu, Hanwen, Wei-Hong Lai, Yaru Liang, Xin Liang, Zi-Chao Yan, Hui-Ling Yang, Yao-Jie Lei i in. "Sustainable S cathodes with synergic electrocatalysis for room-temperature Na–S batteries". Journal of Materials Chemistry A 9, nr 1 (2021): 566–74. http://dx.doi.org/10.1039/d0ta08748c.
Pełny tekst źródłaRYU, HOSUK, INSOO KIM i JINSOO PARK. "Development of Room Temperature Na/S Secondary Batteries". Transactions of the Korean hydrogen and new energy society 27, nr 6 (30.12.2016): 753–63. http://dx.doi.org/10.7316/khnes.2016.27.6.753.
Pełny tekst źródłaYe, Hualin, Lu Ma, Yu Zhou, Lu Wang, Na Han, Feipeng Zhao, Jun Deng, Tianpin Wu, Yanguang Li i Jun Lu. "Amorphous MoS3 as the sulfur-equivalent cathode material for room-temperature Li–S and Na–S batteries". Proceedings of the National Academy of Sciences 114, nr 50 (27.11.2017): 13091–96. http://dx.doi.org/10.1073/pnas.1711917114.
Pełny tekst źródłaConder, Joanna, Cyril Marino, Petr Novák i Claire Villevieille. "Do imaging techniques add real value to the development of better post-Li-ion batteries?" Journal of Materials Chemistry A 6, nr 8 (2018): 3304–27. http://dx.doi.org/10.1039/c7ta10622j.
Pełny tekst źródłaLee, Suyeong, Jun Lee, Jaekook Kim, Marco Agostini, Shizhao Xiong, Aleksandar Matic i Jang-Yeon Hwang. "Recent Developments and Future Challenges in Designing Rechargeable Potassium-Sulfur and Potassium-Selenium Batteries". Energies 13, nr 11 (1.06.2020): 2791. http://dx.doi.org/10.3390/en13112791.
Pełny tekst źródłaJamesh, Mohammed-Ibrahim. "Recent advances on flexible electrodes for Na-ion batteries and Li–S batteries". Journal of Energy Chemistry 32 (maj 2019): 15–44. http://dx.doi.org/10.1016/j.jechem.2018.06.011.
Pełny tekst źródłaTabuyo-Martínez, Marina, Bernd Wicklein i Pilar Aranda. "Progress and innovation of nanostructured sulfur cathodes and metal-free anodes for room-temperature Na–S batteries". Beilstein Journal of Nanotechnology 12 (9.09.2021): 995–1020. http://dx.doi.org/10.3762/bjnano.12.75.
Pełny tekst źródłaJin, Fan, Bo Wang, Jiulin Wang, Yunxiao Wang, Yu Ning, Jing Yang, Zekun Zhang i in. "Boosting electrochemical kinetics of S cathodes for room temperature Na/S batteries". Matter 4, nr 6 (czerwiec 2021): 1768–800. http://dx.doi.org/10.1016/j.matt.2021.03.004.
Pełny tekst źródłaGuo, Qianyi, i Zijian Zheng. "Rational Design of Binders for Stable Li‐S and Na‐S Batteries". Advanced Functional Materials 30, nr 6 (grudzień 2019): 1907931. http://dx.doi.org/10.1002/adfm.201907931.
Pełny tekst źródłaLiang, Yimin, Boxuan Zhang, Yiran Shi, Ruyi Jiang i Honghua Zhang. "Research on Wide-Temperature Rechargeable Sodium-Sulfur Batteries: Features, Challenges and Solutions". Materials 16, nr 12 (8.06.2023): 4263. http://dx.doi.org/10.3390/ma16124263.
Pełny tekst źródłaBhardwaj, Ravindra Kumar, i David Zitoun. "Recent Progress in Solid Electrolytes for All-Solid-State Metal(Li/Na)–Sulfur Batteries". Batteries 9, nr 2 (3.02.2023): 110. http://dx.doi.org/10.3390/batteries9020110.
Pełny tekst źródłaWang, Jiulin, Jun Yang, Yanna Nuli i Rudolf Holze. "Room temperature Na/S batteries with sulfur composite cathode materials". Electrochemistry Communications 9, nr 1 (styczeń 2007): 31–34. http://dx.doi.org/10.1016/j.elecom.2006.08.029.
Pełny tekst źródłaHuang, Xiang Long, Yun-Xiao Wang, Shu-Lei Chou, Shi Xue Dou i Zhiming M. Wang. "Materials engineering for adsorption and catalysis in room-temperature Na–S batteries". Energy & Environmental Science 14, nr 7 (2021): 3757–95. http://dx.doi.org/10.1039/d1ee01349a.
Pełny tekst źródłaZhang, Huang, Thomas Diemant, Bingsheng Qin, Huihua Li, R. Jürgen Behm i Stefano Passerini. "Solvent-Dictated Sodium Sulfur Redox Reactions: Investigation of Carbonate and Ether Electrolytes". Energies 13, nr 4 (14.02.2020): 836. http://dx.doi.org/10.3390/en13040836.
Pełny tekst źródłaYao, Yu, Linchao Zeng, Shuhe Hu, Yu Jiang, Beibei Yuan i Yan Yu. "Binding S0.6 Se0.4 in 1D Carbon Nanofiber with CS Bonding for High-Performance Flexible Li-S Batteries and Na-S Batteries". Small 13, nr 19 (29.03.2017): 1603513. http://dx.doi.org/10.1002/smll.201603513.
Pełny tekst źródłaYang, Kaishuai, Dayong Liu, Yiling Sun, Zhengfang Qian, Shengkui Zhong i Renheng Wang. "Metal-N4@Graphene as Multifunctional Anchoring Materials for Na-S Batteries: First-Principles Study". Nanomaterials 11, nr 5 (1.05.2021): 1197. http://dx.doi.org/10.3390/nano11051197.
Pełny tekst źródłaYang, Qiuju, Tingting Yang, Wei Gao, Yuruo Qi, Bingshu Guo, Wei Zhong, Jian Jiang i Maowen Xu. "An MXene-based aerogel with cobalt nanoparticles as an efficient sulfur host for room-temperature Na–S batteries". Inorganic Chemistry Frontiers 7, nr 22 (2020): 4396–403. http://dx.doi.org/10.1039/d0qi00939c.
Pełny tekst źródłaLi, Fang, Zengxi Wei, Arumugam Manthiram, Yuezhan Feng, Jianmin Ma i Liqiang Mai. "Sodium-based batteries: from critical materials to battery systems". Journal of Materials Chemistry A 7, nr 16 (2019): 9406–31. http://dx.doi.org/10.1039/c8ta11999f.
Pełny tekst źródłaPuttaswamy, Rangaswamy, Ranjith Krishna Pai i Debasis Ghosh. "Recent progress in quantum dots based nanocomposite electrodes for rechargeable monovalent metal-ion and lithium metal batteries". Journal of Materials Chemistry A 10, nr 2 (2022): 508–53. http://dx.doi.org/10.1039/d1ta06747h.
Pełny tekst źródłaZhu, Jianhui, Amr Abdelkader, Denisa Demko, Libo Deng, Peixin Zhang, Tingshu He, Yanyi Wang i Licong Huang. "Electrocatalytic Assisted Performance Enhancement for the Na-S Battery in Nitrogen-Doped Carbon Nanospheres Loaded with Fe". Molecules 25, nr 7 (30.03.2020): 1585. http://dx.doi.org/10.3390/molecules25071585.
Pełny tekst źródłaKandagal, Vinay S., Mridula Dixit Bharadwaj i Umesh V. Waghmare. "Theoretical prediction of a highly conducting solid electrolyte for sodium batteries: Na10GeP2S12". Journal of Materials Chemistry A 3, nr 24 (2015): 12992–99. http://dx.doi.org/10.1039/c5ta01616a.
Pełny tekst źródłaYang, Huiling, Si Zhou, Bin‐Wei Zhang, Sheng‐Qi Chu, Haipeng Guo, Qin‐Fen Gu, Hanwen Liu i in. "Architecting Freestanding Sulfur Cathodes for Superior Room‐Temperature Na–S Batteries". Advanced Functional Materials 31, nr 32 (3.06.2021): 2102280. http://dx.doi.org/10.1002/adfm.202102280.
Pełny tekst źródłaKumar, Deepak, D. K. Kanchan, Shravn Kumar i Kuldeep Mishra. "Recent trends on tailoring cathodes for room-temperature Na-S batteries". Materials Science for Energy Technologies 2, nr 1 (kwiecień 2019): 117–29. http://dx.doi.org/10.1016/j.mset.2018.11.007.
Pełny tekst źródłaKim, Tae Won, Kern Ho Park, Young Eun Choi, Ju Yeon Lee i Yoon Seok Jung. "Aqueous-solution synthesis of Na3SbS4 solid electrolytes for all-solid-state Na-ion batteries". Journal of Materials Chemistry A 6, nr 3 (2018): 840–44. http://dx.doi.org/10.1039/c7ta09242c.
Pełny tekst źródłaWu, Can, Yaojie Lei, Laura Simonelli, Dino Tonti, Ashley Black, Carlo Marini, Xinxin Lu i in. "Continuous Carbon Channels Enable Full Na‐Ion Accessibility for Superior Room‐Temperature Na–S Batteries". Advanced Materials 34, nr 39 (wrzesień 2022): 2205634. http://dx.doi.org/10.1002/adma.202205634.
Pełny tekst źródłaWu, Can, Yaojie Lei, Laura Simonelli, Dino Tonti, Ashley Black, Xinxin Lu, Wei‐Hong Lai i in. "Continuous Carbon Channels Enable Full Na‐Ion Accessibility for Superior Room‐Temperature Na–S Batteries". Advanced Materials 34, nr 8 (15.01.2022): 2108363. http://dx.doi.org/10.1002/adma.202108363.
Pełny tekst źródłaMa, Shaobo, Pengjian Zuo, Han Zhang, Zhenjiang Yu, Can Cui, Mengxue He i Geping Yin. "Iodine-doped sulfurized polyacrylonitrile with enhanced electrochemical performance for room-temperature sodium/potassium sulfur batteries". Chemical Communications 55, nr 36 (2019): 5267–70. http://dx.doi.org/10.1039/c9cc01612k.
Pełny tekst źródłaJayan, Rahul, i Md Mahbubul Islam. "Design Principles of Bifunctional Electrocatalysts for Engineered Interfaces in Na–S Batteries". ACS Catalysis 11, nr 24 (6.12.2021): 15149–61. http://dx.doi.org/10.1021/acscatal.1c04739.
Pełny tekst źródłaSingh, Arvinder, i Vibha Kalra. "Electrospun nanostructures for conversion type cathode (S, Se) based lithium and sodium batteries". Journal of Materials Chemistry A 7, nr 19 (2019): 11613–50. http://dx.doi.org/10.1039/c9ta00327d.
Pełny tekst źródłaChen, Kejun, HuangJingWei Li, Yan Xu, Kang Liu, Hongmei Li, Xiaowen Xu, Xiaoqing Qiu i Min Liu. "Untying thioether bond structures enabled by “voltage-scissors” for stable room temperature sodium–sulfur batteries". Nanoscale 11, nr 13 (2019): 5967–73. http://dx.doi.org/10.1039/c9nr01637f.
Pełny tekst źródłaKaewmaraya, T., T. Hussain, R. Umer, Z. Hu i X. S. Zhao. "Efficient suppression of the shuttle effect in Na–S batteries with an As2S3 anchoring monolayer". Physical Chemistry Chemical Physics 22, nr 46 (2020): 27300–27307. http://dx.doi.org/10.1039/d0cp05507g.
Pełny tekst źródłaLee, Kyungbin, Young Jun Lee, Bumjoon J. Kim i Seung Woo Lee. "3D-Structured Porous Carbon Host with Iron Nanoparticles for High Performance Sodium-Metal Batteries". ECS Meeting Abstracts MA2022-02, nr 4 (9.10.2022): 430. http://dx.doi.org/10.1149/ma2022-024430mtgabs.
Pełny tekst źródłaWang, Hao, Yuruo Qi, Fangyuan Xiao, Pan Liu, Yi Li, Shu-juan Bao i Maowen Xu. "Tessellated N-doped carbon/CoSe2 as trap-catalyst sulfur hosts for room-temperature sodium–sulfur batteries". Inorganic Chemistry Frontiers 9, nr 8 (2022): 1743–51. http://dx.doi.org/10.1039/d2qi00057a.
Pełny tekst źródłaLi, Xiu, Xincheng Hu, Lin Zhou, Rui Wen, Xun Xu, Shulei Chou, Libao Chen, An-Min Cao i Shixue Dou. "A S/N-doped high-capacity mesoporous carbon anode for Na-ion batteries". Journal of Materials Chemistry A 7, nr 19 (2019): 11976–84. http://dx.doi.org/10.1039/c9ta01615e.
Pełny tekst źródłaMou, Jirong, Ting Liu, Yijuan Li, Wenjia Zhang, Mei Li, Yuting Xu, Jianlin Huang i Meilin Liu. "Hierarchical porous carbon sheets for high-performance room temperature sodium–sulfur batteries: integration of nitrogen-self-doping and space confinement". Journal of Materials Chemistry A 8, nr 46 (2020): 24590–97. http://dx.doi.org/10.1039/d0ta08876e.
Pełny tekst źródłaKumar, Deepak, i Kuldeep Mishra. "A Brief Overview of Room Temperature Na‐S Batteries Using Composite Sulfur Cathode". Macromolecular Symposia 398, nr 1 (sierpień 2021): 1900206. http://dx.doi.org/10.1002/masy.201900206.
Pełny tekst źródłaHegde, Guruprasad S., i Ramaprabhu Sundara. "Current Collector/Solid Electrolyte Interfaces in Room Temperature Anode-Free Na/S Batteries". ECS Meeting Abstracts MA2021-02, nr 20 (19.10.2021): 735. http://dx.doi.org/10.1149/ma2021-0220735mtgabs.
Pełny tekst źródłaTopor, D. C., K. Pearl, J. R. Selman i M. Stackpool. "Preparation and Testing of Molybdenum Carbide Coatings for Na/S (Beta-Alumina) Batteries". Key Engineering Materials 59-60 (styczeń 1991): 347–66. http://dx.doi.org/10.4028/www.scientific.net/kem.59-60.347.
Pełny tekst źródłaHuang, Xiang Long, Yaojie Lei, Chao Wu, Yuhai Dou, Hua Kun Liu i Shi Xue Dou. "Design and applications of transition metal sulfides in room-temperature Na-S batteries". Next Nanotechnology 1 (marzec 2023): 100005. http://dx.doi.org/10.1016/j.nxnano.2023.100005.
Pełny tekst źródłaWang, Nana, Yunxiao Wang, Zhongchao Bai, Zhiwei Fang, Xiao Zhang, Zhongfei Xu, Yu Ding i in. "High-performance room-temperature sodium–sulfur battery enabled by electrocatalytic sodium polysulfides full conversion". Energy & Environmental Science 13, nr 2 (2020): 562–70. http://dx.doi.org/10.1039/c9ee03251g.
Pełny tekst źródłaCen, Shangxu, Wentao Mei, Xiangyuan Xing, Yiwei Zeng, Zhiyong Mao, Dajian Wang, Jingjing Chen i Chenlong Dong. "Bi2O3-Assisted Sintering of Na3Zr2Si2PO12 Electrolyte for Solid-State Sodium Metal Batteries". Coatings 12, nr 11 (20.11.2022): 1774. http://dx.doi.org/10.3390/coatings12111774.
Pełny tekst źródłaZeng, Linchao, Yu Yao, Jinan Shi, Yu Jiang, Weihan Li, Lin Gu i Yan Yu. "A flexible S1−xSex@porous carbon nanofibers (x≤0.1) thin film with high performance for Li-S batteries and room-temperature Na-S batteries". Energy Storage Materials 5 (październik 2016): 50–57. http://dx.doi.org/10.1016/j.ensm.2016.05.011.
Pełny tekst źródłaXiao, Xiang, Wei Li i Jianbing Jiang. "Sulfur-Biological Carbon for Long-Life Room-Temperature Sodium-Sulfur Battery". Journal of Biobased Materials and Bioenergy 14, nr 4 (1.08.2020): 487–91. http://dx.doi.org/10.1166/jbmb.2020.1982.
Pełny tekst źródłaPan, Yuede, Shulei Chou, Hua Kun Liu i Shi Xue Dou. "Functional membrane separators for next-generation high-energy rechargeable batteries". National Science Review 4, nr 6 (4.04.2017): 917–33. http://dx.doi.org/10.1093/nsr/nwx037.
Pełny tekst źródłaJayakumar, M., K. Hemalatha, K. Ramesha i A. S. Prakash. "Framework structured Na4Mn4Ti5O18 as an electrode for Na-ion storage hybrid devices". Physical Chemistry Chemical Physics 17, nr 32 (2015): 20733–40. http://dx.doi.org/10.1039/c5cp02866c.
Pełny tekst źródłaYuan, Chenbo, Rui Li, Xiaowen Zhan, Vincent L. Sprenkle i Guosheng Li. "Stabilizing Metallic Na Anodes via Sodiophilicity Regulation: A Review". Materials 15, nr 13 (1.07.2022): 4636. http://dx.doi.org/10.3390/ma15134636.
Pełny tekst źródłaZhu, Yaoyao, Ping Nie, Laifa Shen, Shengyang Dong, Qi Sheng, Hongsen Li, Haifeng Luo i Xiaogang Zhang. "High rate capability and superior cycle stability of a flower-like Sb2S3anode for high-capacity sodium ion batteries". Nanoscale 7, nr 7 (2015): 3309–15. http://dx.doi.org/10.1039/c4nr05242k.
Pełny tekst źródłaHu, Xiaofei, Gulbahar Dawut, Jiaqi Wang, Haixia Li i Jun Chen. "Room-temperature rechargeable Na–SO2 batteries containing a gel-polymer electrolyte". Chemical Communications 54, nr 42 (2018): 5315–18. http://dx.doi.org/10.1039/c8cc02094a.
Pełny tekst źródła